#! /bin/bash # Runs the "345M" parameter model GPUS_PER_NODE=8 # Change for multinode config MASTER_ADDR=localhost MASTER_PORT=6000 NNODES=1 NODE_RANK=0 WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES)) DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" python -m torch.distributed.launch $DISTRIBUTED_ARGS \ pretrain_gpt2.py \ --num-layers 24 \ --hidden-size 1024 \ --num-attention-heads 16 \ --batch-size 8 \ --seq-length 1024 \ --max-position-embeddings 1024 \ --train-iters 320000 \ --save checkpoints/gpt2_345m \ --load checkpoints/gpt2_345m \ --resume-dataloader \ --train-data wikipedia \ --lazy-loader \ --tokenizer-type GPT2BPETokenizer \ --cache-dir cache \ --split 949,50,1 \ --distributed-backend nccl \ --lr 0.00015 \ --lr-decay-style cosine \ --weight-decay 1e-2 \ --clip-grad 1.0 \ --warmup .01 \ --checkpoint-activations \ --fp16 set +x