# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. from pathlib import Path from typing import List, Tuple from unittest import mock import pytest import torch import torch.distributed from megatron.core import parallel_state from megatron.core.dist_checkpointing import ShardedTensor from megatron.core.dist_checkpointing.dict_utils import ( dict_list_map_outplace, map_reduce, nested_values, ) from megatron.core.dist_checkpointing.exchange_utils import _get_empty_tensor_for_exchange from megatron.core.dist_checkpointing.mapping import ( ShardedObject, ShardedStateDict, ShardedTensorFactory, is_main_replica, ) from megatron.core.dist_checkpointing.strategies.base import ( LoadShardedStrategy, SaveShardedStrategy, ) from megatron.core.dist_checkpointing.strategies.fully_parallel import ( FullyParallelLoadStrategyWrapper, FullyParallelSaveStrategyWrapper, _sharded_tensor_shard_id, ) from tests.unit_tests.dist_checkpointing import TempNamedDir from tests.unit_tests.test_utilities import Utils class MockSaveStrategy(SaveShardedStrategy): def __init__(self): super().__init__('mock', 1) self.save_keys = set() def save(self, sharded_state_dict, ckpt_dir): for sh_ten in nested_values(sharded_state_dict): if is_main_replica(sh_ten.replica_id): self.save_keys.add(sh_ten.key) class MockLoadStrategy(LoadShardedStrategy): def __init__(self, device='cpu'): super().__init__() self.device = device self.load_keys = set() def load(self, sharded_state_dict, ckpt_dir): for sh_ten in nested_values(sharded_state_dict): if is_main_replica(sh_ten.replica_id): self.load_keys.add(sh_ten.key) def load_rand(x): assert isinstance(x, ShardedTensor) or isinstance(x, ShardedObject) if isinstance(x, ShardedTensor): x.init_data(self.device) x.data.fill_(Utils.rank) return x.data else: x.data = [Utils.rank] return x.data return dict_list_map_outplace(load_rand, sharded_state_dict) def load_tensors_metadata(self, checkpoint_dir: Path): pass def check_backend_compatibility(self, loaded_version): pass def check_version_compatibility(self, loaded_version): pass class TestFullyParallelSaveAndLoad: def setup_method(self, method): pass def teardown_method(self, method): Utils.destroy_model_parallel() @staticmethod def get_sharded_state_dict(): return { 'sd_key_tp_repl1': ShardedTensor.from_rank_offsets( 'key_TP_repl1', torch.ones(10), ( 0, parallel_state.get_tensor_model_parallel_rank(), parallel_state.get_tensor_model_parallel_world_size(), ), replica_id=parallel_state.get_data_parallel_rank(with_context_parallel=True), ), 'sd_key_tp_repl2': ShardedTensor.from_rank_offsets( 'key_TP_repl2', torch.ones(10), ( 0, parallel_state.get_tensor_model_parallel_rank(), parallel_state.get_tensor_model_parallel_world_size(), ), replica_id=parallel_state.get_data_parallel_rank(with_context_parallel=True), ), 'sd_keyB': ShardedTensor.from_rank_offsets( 'keyB', torch.ones(20), (0, Utils.rank, Utils.world_size) ), 'sd_keyE_no_C': ShardedTensor.from_rank_offsets( 'keyC', torch.ones(100), replica_id=Utils.rank ), 'sd_keyX_no_D': ShardedTensor.from_rank_offsets( 'keyD', torch.ones(1000), replica_id=Utils.rank ), 'sd_keyC_no_E': ShardedTensor.from_rank_offsets( 'keyE', torch.ones(100), replica_id=Utils.rank ), } @pytest.mark.parametrize("parallelization_along_dp", [False, True]) def test_save_distribution(self, parallelization_along_dp, tmp_path_dist_ckpt): Utils.initialize_model_parallel(2, 1) state_dict = self.get_sharded_state_dict() # Ranks assignment: # 1. Lowest coverage # 2. Largest tensor # 3. Shard id (key) if not parallelization_along_dp: expected_key_to_saving_ranks = { 'keyB': list( range(Utils.world_size) ), # everyone must save (disjoint shards, coverage == 1) 'key_TP_repl1': [0, 1], # lowest coverage (4), first TP domain 'key_TP_repl2': [2, 3], # lowest coverage (4), second TP domain 'keyD': [4], # largest tensor 'keyC': [5], # second largest tensor 'keyE': [6], # second largest tensor } else: if parallel_state.get_tensor_model_parallel_rank() == 0: expected_key_to_saving_ranks = { # everyone must save (disjoint shards, coverage == 1): 'keyB': list( range( parallel_state.get_data_parallel_world_size(with_context_parallel=True) ) ), # this time, TP sharded tensors have the same coverage as fully replicated! 'keyD': [0], # largest tensor 'keyC': [1], # second largest tensor 'keyE': [2], # second largest tensor 'key_TP_repl1': [3], # smallest tensor 'key_TP_repl2': [3], # smallest tensor, last rank is the least occupied } else: expected_key_to_saving_ranks = { # everyone must save (disjoint shards, coverage == 1): 'keyB': list( range( parallel_state.get_data_parallel_world_size(with_context_parallel=True) ) ), # tensors C, D, E are absent in this DP group 'key_TP_repl1': [0], # smallest tensor 'key_TP_repl2': [1], # smallest tensor, last rank is the least occupied } parallelization_group = ( parallel_state.get_data_parallel_group(with_context_parallel=True) if parallelization_along_dp else None ) dp_rank = torch.distributed.get_rank(parallelization_group) expected_keys_saved_by_current_rank = { k for k, v in expected_key_to_saving_ranks.items() if dp_rank in v } # Run save and tests mock_strategy = MockSaveStrategy() save_strategy = FullyParallelSaveStrategyWrapper( mock_strategy, parallelization_group, do_cache_distribution=True ) with TempNamedDir(tmp_path_dist_ckpt / 'mock_dir') as ckpt_dir_A: save_strategy.save(state_dict, ckpt_dir_A) key_to_saving_rank = dict( map_reduce( save_strategy.cached_distribution.main_rank_for_shard.items(), lambda shard_rank: shard_rank[0][0], lambda shard_rank: shard_rank[1], ) ) assert expected_key_to_saving_ranks == key_to_saving_rank for _, sh_ten in state_dict.items(): if ( _sharded_tensor_shard_id(sh_ten) in save_strategy.cached_distribution.shards_in_this_group ): is_expected_to_be_saved_by_this_rank = dp_rank in expected_key_to_saving_ranks.get( sh_ten.key, [] ) assert sh_ten.replica_id == int( not is_expected_to_be_saved_by_this_rank ), expected_key_to_saving_ranks assert mock_strategy.save_keys == expected_keys_saved_by_current_rank, ( Utils.rank, mock_strategy.save_keys, expected_keys_saved_by_current_rank, ) @pytest.mark.parametrize("parallelization_along_dp", [False, True]) def test_load_distribution(self, parallelization_along_dp, tmp_path_dist_ckpt): Utils.initialize_model_parallel(2, 1) state_dict = self.get_sharded_state_dict() # Ranks assignment: # 1. Lowest coverage # 2. Largest tensor # 3. Shard id (key) if not parallelization_along_dp: expected_key_to_saving_ranks = { 'keyB': list( range(Utils.world_size) ), # everyone must save (disjoint shards, coverage == 1) 'key_TP_repl1': [0, 1], # lowest coverage (4), first TP domain 'key_TP_repl2': [2, 3], # lowest coverage (4), second TP domain 'keyD': [4], # largest tensor 'keyC': [5], # second largest tensor 'keyE': [6], # second largest tensor } else: # When loading, expected key distribution is the same across TP, because every replica # needs to be loaded expected_key_to_saving_ranks = { # everyone must load (disjoint shards, coverage == 1): 'keyB': list( range(parallel_state.get_data_parallel_world_size(with_context_parallel=True)) ), # this time, TP sharded tensors have the same coverage as fully replicated! 'keyD': [0], # largest tensor 'keyC': [1], # second largest tensor 'keyE': [2], # second largest tensor 'key_TP_repl1': [3], # smallest tensor 'key_TP_repl2': [3], # smallest tensor, last rank is the least occupied } parallelization_group = ( parallel_state.get_data_parallel_group(with_context_parallel=True) if parallelization_along_dp else None ) dp_rank = torch.distributed.get_rank(parallelization_group) expected_keys_saved_by_current_rank = { k for k, v in expected_key_to_saving_ranks.items() if dp_rank in v } # Run save and tests mock_strategy = MockLoadStrategy() load_strategy = FullyParallelLoadStrategyWrapper( mock_strategy, parallelization_group, do_cache_distribution=True ) with TempNamedDir(tmp_path_dist_ckpt / 'mock_dir') as ckpt_dir_A: loaded_state_dict = load_strategy.load(state_dict, ckpt_dir_A) key_to_saving_rank = dict( map_reduce( load_strategy.cached_distribution.main_rank_for_shard.items(), lambda shard_rank: shard_rank[0][0], lambda shard_rank: shard_rank[1], ) ) assert expected_key_to_saving_ranks == key_to_saving_rank assert mock_strategy.load_keys == expected_keys_saved_by_current_rank, ( Utils.rank, mock_strategy.load_keys, expected_keys_saved_by_current_rank, ) assert loaded_state_dict.keys() == state_dict.keys() @pytest.mark.parametrize('state_dict_device', ['cpu', 'cuda']) @pytest.mark.flaky @pytest.mark.flaky_in_dev def test_memory_usage(self, state_dict_device, tmp_path_dist_ckpt): Utils.initialize_model_parallel(2, 1) megabytes = 1024 * 1024 mock_strategy = MockLoadStrategy(state_dict_device) mem_alloc = [] real_get_empty_tensor_for_exchange = _get_empty_tensor_for_exchange def mock_get_empty_tensor_for_exchange(*args, **kwargs) -> torch.Tensor: ret = real_get_empty_tensor_for_exchange(*args, **kwargs) mem_alloc.append(torch.cuda.memory_allocated()) return ret load_strategy = FullyParallelLoadStrategyWrapper(mock_strategy) torch.distributed.barrier() # Each tensor is 4MB, 40MB in total. # We expect extra memory usage peak at ~32MB, not 1GB sharded_state_dict = { f'ten_{i}': ShardedTensor.from_rank_offsets( f'ten_{i}', torch.rand(megabytes, dtype=torch.float, device=state_dict_device), (0, Utils.rank, Utils.world_size), ) for i in range(10) } mem_alloc_start = torch.cuda.memory_allocated() with mock.patch( 'megatron.core.dist_checkpointing.exchange_utils._get_empty_tensor_for_exchange', new=mock_get_empty_tensor_for_exchange, ), TempNamedDir(tmp_path_dist_ckpt / 'mock_dir') as ckpt_dir_A: _ = load_strategy.load(sharded_state_dict, ckpt_dir_A) # Each rank is expected to do 7 * 10 empty allocations assert len(mem_alloc) == 7 * 10 # Peak mem usage should be within 4MB (single tensor) assert max(mem_alloc) - mem_alloc_start < 4.01 * megabytes, ( max(mem_alloc), mem_alloc_start, ) Utils.destroy_model_parallel() def test_only_necessary_exchanges_performed_during_load(self, tmp_path_dist_ckpt): Utils.initialize_model_parallel(2, 1) # State dict with 2 expected exchanges sharded_state_dict_baseline_two_exchanges = { 'needed_by_all_A': ShardedTensor.from_rank_offsets( 'needed_by_all_A', torch.ones(4, dtype=torch.float, device='cuda'), replica_id=Utils.rank, ), 'needed_by_all_B': ShardedTensor.from_rank_offsets( 'needed_by_all_B', torch.ones(4, dtype=torch.float, device='cuda'), replica_id=Utils.rank, ), } # State dict with 1 expected exchange sharded_state_dict_baseline_one_exchange = { 'needed_by_all': sharded_state_dict_baseline_two_exchanges['needed_by_all_A'] } # State dict with 1 expected exchanges even though there are 2 tensors to load (1 is unique for each rank) sharded_state_dict_test_one_exchange = sharded_state_dict_baseline_one_exchange.copy() sharded_state_dict_test_one_exchange['unique'] = ShardedTensor.from_rank_offsets( 'unique', torch.ones(4, dtype=torch.float, device='cuda'), (0, Utils.rank, Utils.world_size), ) expected_call_counts: List[Tuple[ShardedStateDict, int]] = [ (sharded_state_dict_baseline_one_exchange, 1), (sharded_state_dict_baseline_two_exchanges, 2), (sharded_state_dict_test_one_exchange, 1), ] mock_strategy = MockLoadStrategy() with TempNamedDir(tmp_path_dist_ckpt / 'mock_dir') as ckpt_dir: for sharded_state_dict, expected_count in expected_call_counts: load_strategy = FullyParallelLoadStrategyWrapper( mock_strategy, None, do_cache_distribution=True, exchange_algo='broadcast' ) with mock.patch( 'megatron.core.dist_checkpointing.strategies.fully_parallel.torch.distributed.broadcast' ) as broadcast_mock: _ = load_strategy.load(sharded_state_dict, ckpt_dir) assert broadcast_mock.call_count == expected_count Utils.destroy_model_parallel() def test_broadcast_sharded_objects(self, tmp_path_dist_ckpt): sharded_state_dict = { f'Obj_{i}': ShardedObject(f'Obj_{i}', None, (1,), (0,), replica_id=abs(Utils.rank - i)) for i in range(Utils.world_size) } with TempNamedDir(tmp_path_dist_ckpt / 'test_broadcast_sharded_objects') as ckpt_dir: load_strategy = MockLoadStrategy() load_strategy = FullyParallelLoadStrategyWrapper(load_strategy, None) loaded_state_dict = load_strategy.load(sharded_state_dict, ckpt_dir) # each rank is supposed to only load obj_rank because of how replica_id is set assert load_strategy.base_strategy.load_keys == set({f'Obj_{Utils.rank}'}) # since each rank only loaded their Obj they were broadcasted assert set(sharded_state_dict.keys()) == set(loaded_state_dict.keys())