# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. import argparse import os import torch def convert(output_path, tensor_parallel_size, use_te, version): device = "cuda" model = torch.hub.load('NVlabs/RADIO', 'radio_model', version=version, progress=True) state_dict = model.state_dict() new_state_dicts = [{"model": dict()} for _ in range(tensor_parallel_size)] # Indices from mapping pytorch multihead attention to megatron. kv_channels = 80 hidden_dim = 1280 num_heads = 16 indices = [] for i in range(num_heads): lb = i * kv_channels ub = (i + 1) * kv_channels indices.append(torch.arange(lb, ub, dtype=torch.int)) indices.append(torch.arange(hidden_dim + lb, hidden_dim + ub, dtype=torch.int)) indices.append(torch.arange(2 * hidden_dim + lb, 2 * hidden_dim + ub, dtype=torch.int)) indices = torch.cat(indices) for name, tensor in state_dict.items(): # Map parameter names to ones used in megatron. new_name = "" new_tensor = tensor if new_tensor.dtype == torch.float16: new_tensor = new_tensor.to(torch.float32) # This is used for chunking some tensors to target tensor parallel size. chunk_dim = None if "summary_idxs" in name: continue elif "patch_generator" in name: if "embedder" in name: new_name = "embedder.weight" chunk_dim = 0 elif "cls_token" in name: new_name = "class_token" elif "pos_embed" in name: new_name = "position_embeddings" elif "input_conditioner" in name: continue elif "blocks" in name: layer_idx = name.split(".")[2] base = f"decoder.layers.{layer_idx}" if "attn.qkv.weight" in name: new_name = f"{base}.self_attention.linear_qkv.weight" new_tensor = new_tensor[indices] chunk_dim = 0 elif "attn.qkv.bias" in name: new_name = f"{base}.self_attention.linear_qkv.bias" new_tensor = new_tensor[indices] chunk_dim = 0 elif "attn.proj.weight" in name: new_name = f"{base}.self_attention.linear_proj.weight" chunk_dim = 1 elif "attn.proj.bias" in name: new_name = f"{base}.self_attention.linear_proj.bias" elif "norm1.weight" in name: new_name = f"{base}.input_layernorm.weight" if use_te: new_name = f"{base}.self_attention.linear_qkv.layer_norm_weight" elif "norm1.bias" in name: new_name = f"{base}.input_layernorm.bias" if use_te: new_name = f"{base}.self_attention.linear_qkv.layer_norm_bias" elif "mlp.fc1.weight" in name: new_name = f"{base}.mlp.linear_fc1.weight" chunk_dim = 0 elif "mlp.fc1.bias" in name: new_name = f"{base}.mlp.linear_fc1.bias" chunk_dim = 0 elif "mlp.fc2.weight" in name: new_name = f"{base}.mlp.linear_fc2.weight" chunk_dim = 1 elif "mlp.fc2.bias" in name: new_name = f"{base}.mlp.linear_fc2.bias" elif "norm2.weight" in name: new_name = f"{base}.pre_mlp_layernorm.weight" if use_te: new_name = f"{base}.mlp.linear_fc1.layer_norm_weight" elif "norm2.bias" in name: new_name = f"{base}.pre_mlp_layernorm.bias" if use_te: new_name = f"{base}.mlp.linear_fc1.layer_norm_bias" assert new_name != "", f"unexpected layer name {name}" if chunk_dim is None: new_tensors = [new_tensor for _ in range(tensor_parallel_size)] else: new_tensors = torch.chunk(new_tensor, tensor_parallel_size, dim=chunk_dim) for i in range(tensor_parallel_size): # chunk() creates a view of a bigger tensor. clone() is used here to avoid excessive storage. new_state_dicts[i]["model"][new_name] = new_tensors[i].clone() # TE sets _extra_state (for FP8 purposes), so set an empty one here for compatibility. extra_state_layers = ("linear_qkv", "linear_proj", "linear_fc1", "linear_fc2") is_extra_state_layer = any([l in new_name for l in extra_state_layers]) if use_te and is_extra_state_layer: layer = new_name.split(".")[-2] if layer in extra_state_layers: extra_state_name = ( new_name[: new_name.rfind(".") + 1] + "_extra_state" ) # Replace the weight name. new_state_dicts[i]["model"][extra_state_name] = None for i in range(tensor_parallel_size): output_dir_tp = os.path.join(output_path, "iter_0000001", f"mp_rank_0{i}") os.makedirs(output_dir_tp) output_path_tp = os.path.join(output_dir_tp, "model_optim_rng.pt") torch.save(new_state_dicts[i], output_path_tp) with open(os.path.join(output_path, "latest_checkpointed_iteration.txt"), "w") as f: f.write("1") if __name__ == "__main__": parser = argparse.ArgumentParser( description=""" Convert RADIO weights to megatron format. Example usage: python radio_converter.py --output /some/output/folder --tensor-parallel-size 4 """, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument( "--output", type=str, required=True, help="output directory for megatron state dict file(s)" ) parser.add_argument( "--tensor-parallel-size", type=int, default=1, help="model tensor parallel size" ) parser.add_argument("--use-te", action="store_true", help="Use Transformer Engine") parser.add_argument("--version", type=str, default="radio_v2.5-h", help="Version of radio to load for conversion") args = parser.parse_args() convert(args.output, args.tensor_parallel_size, args.use_te, args.version) print("done.")