# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. import bisect import dataclasses import json import re import sys import traceback from dataclasses import dataclass from typing import Dict, List, Optional, Tuple, Union from image_processing import find_closest_aspect_ratio, find_closest_area_weighted_aspect_ratio, get_visual_transform from PIL import Image from torchvision.transforms import ToPILImage import numpy as np import torch from energon_util import OfflineTargetAspectRatioSample, SampleListSample from megatron.core.models.multimodal.llava_model import IGNORE_INDEX, IMAGE_TOKEN, VIDEO_TOKEN from megatron.core.models.vision.clip_vit_model import get_num_image_embeddings from megatron.energon import ( Batch, CaptioningSample, DefaultTaskEncoder, OCRSample, Sample, SimilarityInterleavedSample, VQASample, MultiChoiceVQASample ) from megatron.energon.task_encoder.base import stateless from megatron.training import get_args, get_tokenizer @dataclass class ImageTaskSample(Sample): __key__: str __restore_key__: Tuple[Union[str, int, tuple], ...] __subflavor__: Dict __subflavors__: Dict # (c, h, w) imgs: List[torch.Tensor] num_tiles: List[int] tokens: torch.Tensor total_len: int # Total token count in the sample, including text and image tokens labels: torch.Tensor = None @dataclass class ImageTaskSamplePacked(Sample): """Dataclass to store a single packed sample (not a batch). P = Number of sub-samples in the packed sample seq_len = Total sequence length num_imgs = Number of images across all samples in the packed sample """ __key__: str # Sample name __restore_key__: Tuple[Union[str, int, tuple], ...] __subflavor__: Dict # Sample metadata. Deprecated. __subflavors__: Dict # Sample metadata. tokens: torch.Tensor # Input tokens packed into a single tensor (seq_len,) labels: torch.Tensor # Target tokens packed into a single tensor (seq_len,) imgs: List[torch.Tensor] # Input images num_tiles: List[int] # Number of tiles for each image of each sample (num_imgs) max_length: int # Maximum length across sub-samples. cu_lengths: List[int] # Cumulative length of each sub-sample in this packed sample incl. text and image tokens (P,) # Typing for the resulting batch data after encode_batch() @dataclass class ImageTaskBatchPacked(Batch): """Dataclass to store a batch of packed samples. N = Batch size P = Number of samples in the packed sample seq_len = Maximum sequence length num_imgs = Number of images across all samples in the packed sample """ __key__: List[str] # Sample names __restore_key__: Tuple[Union[str, int, tuple], ...] __subflavor__: Dict # Sample metadata. Deprecated. __subflavors__: List[Dict] # Sample metadatas. tokens: torch.Tensor # Input tokens packed and padded (N, seq_len) labels: torch.Tensor # Target tokens packed and padded (N, seq_len) imgs: torch.Tensor # All image tiles stacked into a single tensor (num_tiles, C, H, W) num_tiles: List[List[int]] # Number of tiles per image (N, num_imgs) max_lengths: List[int] # Maximum length across sub-samples (N,) cu_lengths: List[List[int]] # Cumulative length of each sub-sample in each packed sample of the batch (N, P) # Based on https://github.com/hiyouga/LLaMA-Factory/blob/641d0dab08d96a93c34657742213d8994d9ed476/src/llamafactory/data/processors/processor_utils.py#L19 # Copyright (c) 2024 LLaMA-Factory. Apache license 2.0. def search_for_fit(numbers: List[int], capacity: int) -> int: """Finds the index of largest number that fits into the knapsack with the given capacity.""" index = bisect.bisect(numbers, capacity) return -1 if index == 0 else (index - 1) # Based on https://github.com/hiyouga/LLaMA-Factory/blob/641d0dab08d96a93c34657742213d8994d9ed476/src/llamafactory/data/processors/processor_utils.py#L27 # Copyright (c) 2024 LLaMA-Factory. Apache license 2.0. def greedy_knapsack(item_sizes: List[int], samples: List, max_capacity: int) -> List: """Greedy algorithm with binary search for the knapsack problem. Pack as many samples as possible given a maximum capacity and capacities of individual samples. Used if sequence packing is enabled. """ assert len(item_sizes) == len(samples), "sample lengths and samples must have the same length." knapsacks = [] if len(item_sizes) == 0: return knapsacks # Sort sample lengths and samples together. sorted_item_sizes, sorted_samples = zip(*sorted(zip(item_sizes, samples), key=lambda x: x[0])) sorted_item_sizes = list(sorted_item_sizes) sorted_samples = list(sorted_samples) # Check if all samples fit in the knapsack capacity. if sorted_item_sizes[-1] > max_capacity: raise ValueError(f"knapsack: A sample is larger {sorted_item_sizes[-1]} than the max_sequence_length {max_capacity}.") while sorted_item_sizes: current_knapsack = [] remaining_capacity = max_capacity while True: idx = search_for_fit(sorted_item_sizes, remaining_capacity) if idx == -1: break # Can't fit more samples. remaining_capacity -= sorted_item_sizes[idx] sorted_item_sizes.pop(idx) sample = sorted_samples.pop(idx) current_knapsack.append(sample) knapsacks.append(current_knapsack) return knapsacks class TaskEncoder(DefaultTaskEncoder[OCRSample, OCRSample, ImageTaskBatchPacked, dict]): """A simple task encoder for VLMs.""" def __init__( self ): super().__init__() self.args = get_args() self.tokenizer = get_tokenizer() with open(self.args.prompt_path, "r") as f: self.manual_prompts = json.load(f) self.dataloader_seq_length = self.args.dataloader_seq_length # Always return samples of this length. self.packing_seq_length = self.args.packing_seq_length # Packing sequence length, if packing is enabled. self.is_packing_enabled = self.args.packing_buffer_size is not None and self.args.packing_buffer_size > 0 if self.dataloader_seq_length and self.packing_seq_length: assert self.dataloader_seq_length >= self.packing_seq_length, "dataloader sequence length must be greater than or equal to the packing sequence length" if self.is_packing_enabled: assert self.packing_seq_length > 0, "packing sequence length must be set" self.num_image_embeddings_per_tile = get_num_image_embeddings( self.args.img_h, self.args.img_w, self.args.patch_dim, self.args.vision_model_type, self.args.disable_vision_class_token, 1, self.args.pixel_shuffle, self.args.use_tile_tags, ) self.txt_to_token_dict = {} self.img_h, self.img_w = self.args.img_h, self.args.img_w self.img_token_id = self.tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) # This map is used to reduce the number of tiles used per image if the number of tokens is # larger than the decoder_seq_length. self.num_tiles_degradation_map = {12:8, 8:6, 6:4, 4:2, 2:1, 1:1} self.find_closest_aspect_ratio_fn = ( find_closest_area_weighted_aspect_ratio if self.args.use_area_weighted_aspect_ratio else find_closest_aspect_ratio) def _get_total_seq_length(self, input_ids, num_tiles): """Calculate expected sequence length given text tokens length and number of tiles.""" total_num_images = len(num_tiles) total_num_tiles = sum(num_tiles) total_len = len(input_ids) + total_num_tiles * self.num_image_embeddings_per_tile - total_num_images return total_len def _truncate_for_packing(self, input_ids, target, num_tiles): """Truncate tokens and labels if they exceed packing sequence length.""" total_num_images = len(num_tiles) total_num_tiles = sum(num_tiles) total_img_embeddings_len = total_num_tiles * self.num_image_embeddings_per_tile max_text_tokens = self.packing_seq_length - total_img_embeddings_len + total_num_images input_ids = input_ids[:max_text_tokens] target = target[:max_text_tokens] # If truncate causes all labels to be ignored, then skip the sample if (target == IGNORE_INDEX).all(): raise ValueError(f"all targets will be ignored after truncation: {input_ids}") return input_ids, target @stateless(restore_seeds=True) def encode_sample(self, sample: Union[CaptioningSample, OCRSample, VQASample, SimilarityInterleavedSample]): if isinstance(sample, OCRSample): if "pdfa" in sample.__key__: yield self.combined_ocr_encoder(sample, task_type='encode_pdf') elif "multi" in sample.__key__: yield self.combined_ocr_encoder(sample, task_type='_encode_ocr') else: yield self.combined_ocr_encoder(sample, task_type='encode_ocr_ref') elif isinstance(sample, CaptioningSample): yield self.encode_captioning(sample) elif isinstance(sample, VQASample): is_llava_training = sample.__subflavors__["is_llava_training"] if "is_llava_training" in sample.__subflavors__ else False if "llava" in sample.__key__ or is_llava_training: yield self.encode_llava_pretrain(sample) else: yield self.encode_any_single_turn_vqa(sample) elif isinstance(sample, SimilarityInterleavedSample): yield self.encode_llava_sft(sample) elif isinstance(sample, MultiChoiceVQASample): yield self.encode_any_single_turn_vqa(sample) # Because the SampleListSample is defined in the Megatron module but loaded by the Energon # library, we need to resort to the more brittle check: elif type(sample).__name__ == "SampleListSample": yield self.encode_sample_list(sample) else: raise NotImplementedError("Sample format not supported", sample) def encode_captioning(self, sample: CaptioningSample): """Encode CaptioningSample.""" augment = sample.__subflavors__.get("augmentation") imgs = get_visual_transform( sample.image, self.img_h, self.img_w, self.args.use_tiling, self.args.max_num_tiles, self.args.use_thumbnail, augment, self.args.vision_model_type, find_closest_aspect_ratio_fn=self.find_closest_aspect_ratio_fn ) num_tiles = [len(imgs)] prompt_list = self.manual_prompts["CaptioningPretraining"]["raw"] prompt_idx = np.random.randint(len(prompt_list)) cur_prompt = prompt_list[prompt_idx] cur_prompt = IMAGE_TOKEN + "\n" + cur_prompt + "\n" caption = sample.caption.strip() split_by_line_flag = sample.__subflavors__.get("SplitByLine") if split_by_line_flag: caption_list = caption.split('\n') caption = np.random.choice(caption_list) conv = [ # Note: no system message. {"role": "user", "content": cur_prompt}, {"role": "assistant", "content": caption}, ] input_ids, target = self.tokenizer.tokenize_conversation(conv, True, False) if self.is_packing_enabled: input_ids, target = self._truncate_for_packing(input_ids, target, num_tiles) return ImageTaskSample( __key__=sample.__key__, __restore_key__=sample.__restore_key__, __subflavor__=None, __subflavors__=sample.__subflavors__, imgs=imgs, num_tiles=num_tiles, tokens=torch.tensor(input_ids), labels=torch.tensor(target), total_len=self._get_total_seq_length(input_ids, num_tiles), ) def encode_llava_pretrain(self, sample: VQASample): """Encode pretrain sample in LLAVA style.""" augment = sample.__subflavors__.get("augmentation", False) imgs = get_visual_transform( sample.image, self.img_h, self.img_w, self.args.use_tiling, self.args.max_num_tiles, self.args.use_thumbnail, augment, self.args.vision_model_type, find_closest_aspect_ratio_fn=self.find_closest_aspect_ratio_fn ) num_tiles = [len(imgs)] # LLAVA training: override text-prompt with just the image. conv = [ # Note: no system message. {"role": "user", "content": IMAGE_TOKEN + "\n"}, {"role": "assistant", "content": sample.answers}, ] input_ids, target = self.tokenizer.tokenize_conversation(conv, True, False) if self.is_packing_enabled: input_ids, target = self._truncate_for_packing(input_ids, target, num_tiles) return ImageTaskSample( __key__=sample.__key__, __restore_key__=sample.__restore_key__, __subflavor__=None, __subflavors__=sample.__subflavors__, imgs=imgs, num_tiles=num_tiles, tokens=torch.tensor(input_ids), labels=torch.tensor(target), total_len=self._get_total_seq_length(input_ids, num_tiles), ) def encode_sample_list(self, samples: SampleListSample): """We encode the list of samples using encode_llava_sft on each sample.""" error_msg = ("You probably don't want to use online packing since SampleListSample is " "usually used along offline packing.") assert not self.is_packing_enabled, error_msg encoded_samples = [] current_length = 0 for sample in samples.samples: encoded_sample = self.encode_llava_sft(sample, truncate_for_sample_list_packing=True) if current_length + encoded_sample.total_len > self.packing_seq_length: break else: encoded_samples.append(encoded_sample) current_length += encoded_sample.total_len return self.pack_selected_samples(encoded_samples) def encode_llava_sft(self, sample: Union[SimilarityInterleavedSample, OfflineTargetAspectRatioSample], truncate_for_sample_list_packing=False): """Encode SFT sample.""" augment = sample.__subflavors__['augmentation'] if 'augmentation' in sample.__subflavors__ else False has_video = sample.__subflavors__['has_video'] if 'has_video' in sample.__subflavors__ else False # If the target aspect ratio are provided by the dataset, we use them instead of computing # them with the self.find_closest_aspect_ratio_fn function. local_find_closest_aspect_ratio_fn = self.find_closest_aspect_ratio_fn if type(sample).__name__ == "OfflineTargetAspectRatioSample": target_aspect_ratio = tuple(sample.target_aspect_ratio[0]) assert target_aspect_ratio is not None, "Sample of type OfflineTargetAspectRatioSample needs to define the target aspect ratio." local_find_closest_aspect_ratio_fn = lambda *args, **kwargs: target_aspect_ratio has_image = False # We infer whether the sample has image or not. if hasattr(sample, "images") and not has_video: # If this is a text-only sample and we are freezing the LM, # then use a dummy input image. if len(sample.images) == 0 and self.args.freeze_LM: empty_img = Image.new('RGB', (self.args.img_w, self.args.img_h), (255, 255, 255)) sample.images.append(empty_img) if len(sample.images) > 0: has_image = True # Note: Some tokenizers may ignore the system prompt. conversation = [{"role": "system", "content": "Answer the questions."}] # Format the conversation as a list of "user" / "assistant" turns. for text in sample.texts: error_msg = f"unexpected role {text['from']} in {sample.texts}" assert text["from"] in ["human", "gpt"], error_msg conversation.append({ "role": "user" if text["from"] == "human" else "assistant", "content": text["value"]}) # Replace the image tags with IMAGE_TOKEN and count the number of image tags number_image_tags = 0 image_tag_ids_list = [] for turn in conversation: if turn["role"] == "user": image_tag_ids = [int(x) - 1 for x in re.findall(r"", turn["content"])] image_tag_ids_list.extend(image_tag_ids) turn["content"] = re.sub(r"", IMAGE_TOKEN, turn["content"]) # For videos, we use the image token to locate where to put the frames. if has_video: turn["content"] = turn["content"].replace(VIDEO_TOKEN, IMAGE_TOKEN) number_image_tags += turn["content"].count(IMAGE_TOKEN) # We re-order the images in sample.images according to how they appear in the conversation. if len(image_tag_ids_list) > 0: sample.images = [sample.images[idx] for idx in image_tag_ids_list] # If there is only one image, but several image tags, we assume all the tags refer to the # same image and duplicate the image: if not has_video and len(sample.images) == 1 and number_image_tags > 1: sample.images = sample.images * number_image_tags # We currently only support one video per sample. number_of_images = 1 if has_video else len(sample.images) # Fail if there are more image or video tags than image or videos: error_msg = ( f"Found {number_image_tags} image tags for {number_of_images} images. {sample.texts}") assert number_image_tags <= number_of_images, error_msg # If there are less image of video tags than image or videos, prepend the tags to the first # user message: if number_image_tags < number_of_images: for turn in conversation: if turn["role"] == "user": turn["content"] = IMAGE_TOKEN*(number_of_images-number_image_tags) + "\n" + turn["content"] break input_ids, target = self.tokenizer.tokenize_conversation(conversation, True, False) if has_image: imgs = [] num_tiles = [] max_num_tiles = self.args.max_num_tiles # We keep a buffer of 4 tokens for the question, # the rest can be used for image tokens. max_image_token_allowed = self.args.decoder_seq_length - len(input_ids) - 4 # We start by extracting as many tiles per image as possible, and decrease the max # number of tiles if there are too many image tokens. while True: imgs = [] num_tiles = [] for img in sample.images: img_tiles = get_visual_transform( img, self.img_h, self.img_w, self.args.use_tiling, max_num_tiles, self.args.use_thumbnail, augment, self.args.vision_model_type, find_closest_aspect_ratio_fn=local_find_closest_aspect_ratio_fn) imgs += img_tiles num_tiles += [len(img_tiles)] if max_num_tiles == 1: break if sum(num_tiles) * self.num_image_embeddings_per_tile > max_image_token_allowed: if max_num_tiles in self.num_tiles_degradation_map: max_num_tiles = self.num_tiles_degradation_map[max_num_tiles] else: raise RuntimeError(( f"Tried to decrease the number of tiles {max_num_tiles} but it's not ", f"defined in the degradation map {self.num_tiles_degradation_map}")) else: break elif has_video: # We don't use tiling for videos to limit the number of tokens. use_tiling=False # Grab the selected frames of the video as a tensor with shape # fhwc: (num_frames, num_channels, height, width). video_fchw = sample.images.frames if video_fchw.shape[0] == 0: raise ValueError(f"Video {sample.__key__} {sample.__restore_key__} {sample.texts} has no frames.") selected_frames = torch.linspace( 0, video_fchw.shape[0] - 1, self.args.num_frames).long() video_fchw = video_fchw[selected_frames] imgs = [] for video_chw in video_fchw: to_pil = ToPILImage() video_chw = to_pil(video_chw) imgs += get_visual_transform( video_chw, self.img_h, self.img_w, use_tiling, self.args.max_num_tiles, self.args.use_thumbnail, augment, self.args.vision_model_type, find_closest_aspect_ratio_fn=local_find_closest_aspect_ratio_fn) num_tiles = [len(imgs)] else: imgs = num_tiles = [] if self.is_packing_enabled or truncate_for_sample_list_packing: input_ids, target = self._truncate_for_packing(input_ids, target, num_tiles) # Some final checks with respect to the number of image tokens and images on the tokenized # conversation. There can still be errors, for instance if a non-video sample happens to # have our pre-defined video token, or if the packing truncation removed a necessary image # tag. number_image_token = np.sum(input_ids == self.img_token_id) error_msg = ( f"Found {number_image_token} image tokens for len({num_tiles}) = {len(num_tiles)} image tiles in {conversation}.") assert number_image_token == len(num_tiles), error_msg error_msg = ( f"Found sum({num_tiles}) = {np.sum(num_tiles)} tiles for {len(imgs)} images in {conversation}.") assert np.sum(num_tiles) == len(imgs), error_msg # We need to ensure that there are at least some trainable tokens in the sample. assert self.target_has_trainable_tokens(input_ids, num_tiles, target), "Sample has no trainable tokens." return ImageTaskSample( __key__=sample.__key__, __restore_key__=sample.__restore_key__, __subflavor__=None, __subflavors__=sample.__subflavors__, imgs=imgs, num_tiles=num_tiles, tokens=torch.tensor(input_ids), labels=torch.tensor(target), total_len=self._get_total_seq_length(input_ids, num_tiles), ) def target_has_trainable_tokens(self, input_ids, num_tiles, target): # Compute the loss mask based on extending the image tags with the proper # number of image tokens, extracting the first self.args.decoder_seq_length tokens, and # ensuring that some of these tokens have a loss mask > 0. # Note that this is a bit hacky because we reproduce here parts of the logics which are in # the model itself. Ideally, the data sampler would return the already processed inputs # and targets to avoid this duplication. expanded_target = target.copy() expanded_target[input_ids==self.img_token_id] = self.img_token_id expanded_target = self.replace_value_with_repetition( expanded_target, self.img_token_id, self.num_image_embeddings_per_tile * np.array(num_tiles), IGNORE_INDEX) loss_mask = torch.ones(torch.tensor(expanded_target).size(), dtype=torch.float) loss_mask[expanded_target == self.tokenizer.pad] = 0.0 # mask paddings loss_mask[expanded_target == IGNORE_INDEX] = 0.0 # mask prompts loss_mask = torch.cat((loss_mask[1:], torch.zeros((1,)))) loss_mask = loss_mask[:self.args.decoder_seq_length] return torch.sum(loss_mask) > 0 def replace_value_with_repetition(self, arr, token_to_replace, num_repetition, new_token): """ Replace every occurrence of value V in the input array with R repetitions of W. Args: arr (Array): Input array to be modified token_to_replace: token to be replaced new_token: new token num_repetition (Array): number of repetition of new token. Returns: Array: New array with token_to_replace replaced by num_repetition repetitions of new_token """ error_msg = "The number of image tokens must match the length of the tile tensor." assert np.sum(arr==token_to_replace) == len(num_repetition), error_msg result = [] idx = 0 for item in arr: if item == token_to_replace: # If the current item matches token_to_replace, add R copies of W result.extend([new_token] * num_repetition[idx]) idx += 1 else: # Otherwise, keep the original item result.append(item) return np.array(result) def encode_any_single_turn_vqa(self, sample): """Encode MultiChoiceVQA or VQA sample.""" augment = sample.__subflavors__['augmentation'] if 'augmentation' in sample.__subflavors__ else False has_video = sample.__subflavors__['has_video'] if 'has_video' in sample.__subflavors__ else False if has_video: # Grab the selected frames of the video as a tensor with shape # fhwc: (num_frames, height, width, num_channels). video_fhwc = sample.image.permute(0, 2, 3, 1) selected_frames = torch.linspace( 0, video_fhwc.shape[0] - 1, self.args.num_frames).long() video_frame_fhwc = video_fhwc[selected_frames] imgs = [] for video_frame_hwc in video_frame_fhwc: imgs += get_visual_transform( video_frame_hwc, self.img_h, self.img_w, self.args.use_tiling, self.args.max_num_tiles, self.args.use_thumbnail, augment, self.args.vision_model_type, find_closest_aspect_ratio_fn=self.find_closest_aspect_ratio_fn) else: imgs = get_visual_transform( sample.image, self.img_h, self.img_w, self.args.use_tiling, self.args.max_num_tiles, self.args.use_thumbnail, augment, self.args.vision_model_type, find_closest_aspect_ratio_fn=self.find_closest_aspect_ratio_fn ) num_tiles = [len(imgs)] if isinstance(sample, MultiChoiceVQASample): cur_prompt = format_multichoice_question(sample.context, sample.choices) if IMAGE_TOKEN not in cur_prompt: cur_prompt = IMAGE_TOKEN + "\n" + cur_prompt cur_answer = format_multichoice_answer(sample.correct_choice_idx) elif isinstance(sample, VQASample): if 'docvqa' in sample.__key__: prompt_list = self.manual_prompts["VQASFT"]["docvqa"] elif sample.__subflavors__.get("VQASFT"): prompt_list = self.manual_prompts["VQASFT"]["raw"] else: prompt_list = ["{}"] prompt_idx = np.random.randint(len(prompt_list)) cur_prompt = prompt_list[prompt_idx] cur_prompt = cur_prompt.format(sample.context) if IMAGE_TOKEN not in cur_prompt: cur_prompt = IMAGE_TOKEN + "\n" + cur_prompt if isinstance(sample.answers, list): answer_list = sample.answers weight_list = np.array(sample.answer_weights).astype(np.float32) weight_list = weight_list / np.sum(weight_list) answer_idx = np.random.choice(weight_list.shape[0], 1, p=weight_list)[0] cur_answer = answer_list[answer_idx] else: cur_answer = sample.answers else: raise NotImplementedError("Unsupported data type provided", sample) conversation = [ {"role": "system", "content": "Answer the questions."}, {"role": "user", "content": cur_prompt}, {"role": "assistant", "content": str(cur_answer)}, ] input_ids, target = self.tokenizer.tokenize_conversation(conversation, True, False) if self.is_packing_enabled: input_ids, target = self._truncate_for_packing(input_ids, target, num_tiles) return ImageTaskSample( __key__=sample.__key__, __restore_key__=sample.__restore_key__, __subflavor__=None, __subflavors__=sample.__subflavors__, imgs=imgs, num_tiles=num_tiles, tokens=torch.tensor(input_ids), labels=torch.tensor(target), total_len=self._get_total_seq_length(input_ids, num_tiles), ) def combined_ocr_encoder(self, sample, task_type): """Encode OCR samples.""" augment = sample.__subflavors__['augmentation'] if 'augmentation' in sample.__subflavors__ else False if task_type == "encode_pdf": sample, cur_prompt, cur_answer = self.encode_pdf_prompt(sample) elif task_type == "encode_ocr_ref": sample, cur_prompt, cur_answer = self.encode_ocr_ref_prompt(sample) elif task_type == "_encode_ocr": sample, cur_prompt, cur_answer = self.encode_ocr_prompt(sample) imgs = get_visual_transform( sample.image, self.img_h, self.img_w, self.args.use_tiling, self.args.max_num_tiles, self.args.use_thumbnail, augment, self.args.vision_model_type, find_closest_aspect_ratio_fn=self.find_closest_aspect_ratio_fn ) num_tiles = [len(imgs)] conversation = [ {"role": "system", "content": "Answer the questions."}, {"role": "user", "content": cur_prompt}, {"role": "assistant", "content": str(cur_answer)}, ] input_ids, target = self.tokenizer.tokenize_conversation(conversation, True, False) if self.is_packing_enabled: input_ids, target = self._truncate_for_packing(input_ids, target, num_tiles) return ImageTaskSample( __key__=sample.__key__, __restore_key__=sample.__restore_key__, __subflavor__=None, __subflavors__=sample.__subflavors__, imgs=imgs, num_tiles=num_tiles, tokens=torch.tensor(input_ids), labels=torch.tensor(target), total_len=self._get_total_seq_length(input_ids, num_tiles), ) def encode_pdf_prompt(self, sample: OCRSample) -> ImageTaskSample: """Encode OCR sample.""" prompt_list = self.manual_prompts["DocPretraining"]["raw"] prompt_idx = np.random.randint(len(prompt_list)) cur_prompt = prompt_list[prompt_idx] if IMAGE_TOKEN not in cur_prompt: cur_prompt = IMAGE_TOKEN + "\n" + cur_prompt # Make sure there is no extra IMAGE_TOKEN tag. sample.text = sample.text.replace(IMAGE_TOKEN, "") caption = sample.text.strip() split_by_line_flag = sample.__subflavors__.get("SplitByLine") if split_by_line_flag: caption_list = caption.split('\n') caption = np.random.choice(caption_list) cur_answer = caption return sample, cur_prompt, cur_answer def encode_ocr_ref_prompt(self, sample: OCRSample) -> ImageTaskSample: """Encode OCR sample.""" ref = sample.text region = sample.words_boxes # Make sure there is no extra IMAGE_TOKEN tag ref = ref.replace(IMAGE_TOKEN, "") if len(region) == 4: region = f"({region[0]},{region[1]}),({region[2]},{region[3]})" else: region = f"({region[0]},{region[1]}),({region[2]},{region[3]}),({region[4]},{region[5]}),({region[6]},{region[7]})" # Randomly choose between two tasks task_idx = np.random.randint(2) if task_idx == 0: # Referring Grounding prompt_list = self.manual_prompts["DocPretraining"]["referring_grounding"] prompt_content = ref answer = region else: # Grounded OCR prompt_list = self.manual_prompts["DocPretraining"]["grounded_ocr"] prompt_content = region answer = ref prompt_idx = np.random.randint(len(prompt_list)) cur_prompt = prompt_list[prompt_idx] cur_prompt = cur_prompt.format(prompt_content) if IMAGE_TOKEN not in cur_prompt: cur_prompt = IMAGE_TOKEN + "\n" + cur_prompt return sample, cur_prompt, answer def bbox_coord_to_label(self, text, bbox): """Format bbox coordinates as text.""" assert len(bbox) == 4 or len(bbox) == 8 # Make sure there is no extra IMAGE_TOKEN tag text = text.replace(IMAGE_TOKEN, "") if len(bbox) == 4: label_str = f"{text}({bbox[0]},{bbox[1]}),({bbox[2]},{bbox[3]})" else: label_str = f"{text}({bbox[0]},{bbox[1]}),({bbox[2]},{bbox[3]}),({bbox[4]},{bbox[5]}),({bbox[6]},{bbox[7]})" return label_str def encode_ocr_prompt(self, sample: OCRSample) -> ImageTaskSample: """Encode OCR sample.""" if isinstance(sample.words_boxes[0], int): answer = self.bbox_coord_to_label(sample.text, sample.words_boxes) elif isinstance(sample.words_boxes[0], list): answer = "" for i, bbox in enumerate(sample.words_boxes): answer += self.bbox_coord_to_label(sample.words_text[i], bbox) prompt_list = self.manual_prompts["DocPretraining"]["ocr_multi"] prompt_idx = np.random.randint(len(prompt_list)) cur_prompt = prompt_list[prompt_idx] if IMAGE_TOKEN not in cur_prompt: cur_prompt = IMAGE_TOKEN + "\n" + cur_prompt cur_answer = answer return sample, cur_prompt, cur_answer def batch(self, samples: List[Union[ImageTaskSample, ImageTaskSamplePacked]]) -> ImageTaskBatchPacked: # Stack images to [num_tiles, c, h, w]. If there are no images (text-only), then use a dummy image. imgs = [img for s in samples for img in s.imgs] if len(imgs) > 0: imgs = torch.stack(imgs) else: imgs = torch.tensor([[0]], dtype=torch.float32) # If the user hasn't defined a target dataloader sequence length, then use the max along the sample lengths. max_seq_len = self.dataloader_seq_length if not max_seq_len: max_seq_len = max(len(s.tokens) for s in samples) tokens = np.full((len(samples), max_seq_len), self.tokenizer.pad, dtype=np.int64) # +1 to accommodate shift to left by one later. labels = np.full((len(samples), max_seq_len + 1), self.tokenizer.pad, dtype=np.int64) for i, s in enumerate(samples): # If the sample/target length exceeds the target sequence length, then truncate. text_len = min(max_seq_len, len(s.tokens)) target_len = min(max_seq_len+1, len(s.labels)) tokens[i, :text_len] = s.tokens[:text_len] labels[i, :target_len] = s.labels[:target_len] num_tiles = torch.tensor([n for s in samples for n in s.num_tiles], dtype=torch.int32) if len(num_tiles) == 0: num_tiles = torch.tensor([[0]], dtype=torch.int32) # Cumulative sample lengths are needed for packing, otherwise use dummy values. cu_lengths = torch.tensor([[0]], dtype=torch.int32) max_lengths = torch.tensor([[0]], dtype=torch.int32) if self.is_packing_enabled: cu_lengths = torch.stack([s.cu_lengths for s in samples]) max_lengths = torch.tensor([s.max_length for s in samples], dtype=torch.int32) return ImageTaskBatchPacked( __key__=[s.__key__ for s in samples], __restore_key__=[s.__restore_key__ for s in samples], __subflavor__=None, __subflavors__=samples[0].__subflavors__, tokens=tokens, labels=labels, imgs=imgs, num_tiles=num_tiles, cu_lengths=cu_lengths, max_lengths=max_lengths, ) def encode_batch(self, batch: ImageTaskBatchPacked) -> dict: raw = dataclasses.asdict(batch) del raw["__subflavors__"] return raw def select_samples_to_pack(self, samples: List[ImageTaskSample]) -> List[List[ImageTaskSample]]: """Selects which samples will be packed together. NOTE: Energon dataloader calls this method internally if packing is used. Please see https://nvidia.github.io/Megatron-Energon/packing.html """ lengths = [sample.total_len for sample in samples] packed_samples = greedy_knapsack(lengths, samples, self.packing_seq_length) return packed_samples @stateless def pack_selected_samples(self, samples: List[ImageTaskSample]) -> List[ImageTaskSamplePacked]: """ Function to pack a list of ImageTaskSample into a single ImageTaskSamplePacked. NOTE: Energon dataloader calls this method internally if packing is used. Please see https://nvidia.github.io/Megatron-Energon/packing.html Args: samples: List of ImageTaskSample instances to pack into one sample. Returns: ImageTaskSamplePacked instance. """ packing_seq_len = self.packing_seq_length packed_tokens = [] packed_labels = [] packed_imgs = [] current_length = 0 max_length = 0 cu_lengths = [0] # Process each sample and build lists that we will concatenate to create the packed sample. for _, sample in enumerate(samples): sample_len = sample.total_len if sample_len > max_length: max_length = sample_len # If adding this sample exceeds the max length, stop. # This should not happen. The select_samples_to_pack method should have already ensured that the samples fit. if current_length + sample_len > packing_seq_len: raise ValueError(f"Packed sample exceeds the maximum sequence length of {packing_seq_len}: {samples}") # Add the sample's tokens and labels packed_tokens.append(sample.tokens) packed_labels.append(sample.labels) # Add the images packed_imgs += sample.imgs current_length += sample_len cu_lengths.append(current_length) # Concatenate packed tokens and labels. packed_tokens = torch.cat(packed_tokens, dim=0) packed_labels = torch.cat(packed_labels, dim=0) return ImageTaskSamplePacked( __key__=",".join([s.__key__ for s in samples]), __restore_key__=(), # Will be set by energon based on `samples` __subflavor__=None, __subflavors__=samples[0].__subflavors__, tokens=packed_tokens, labels=packed_labels, imgs=packed_imgs, cu_lengths=torch.tensor(cu_lengths, dtype=torch.int32), max_length=max_length, num_tiles=[n for s in samples for n in s.num_tiles], ) def print_error_handler(exc: Exception, key: Optional[str]): print( f"The following exception occurred in the dataloader for sample {key} and is skipped", file=sys.stderr, ) traceback.print_exc() def format_multichoice_question(question, multichoice_options): """Format multi-choice question.""" options_text = ["{}. {}\n".format(chr(ord('A') + i), option) for i, option in zip(range(len(multichoice_options)), multichoice_options)] options_text = "".join(options_text) options_text = f"{options_text}Answer with the option's letter from the given choices directly." return "{}\n{}".format(question, options_text) def format_multichoice_answer(idx): """Format multi-choice answer.""" return chr(ord('A') + idx)