# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataloaders.""" import torch from megatron import get_args from megatron import mpu def build_pretraining_data_loader(dataset, consumed_samples, random_sample=False): """Buld dataloader given an input dataset.""" if dataset is None: return None args = get_args() # Megatron sampler batch_sampler = MegatronPretrainingSampler( total_samples=len(dataset), consumed_samples=consumed_samples, micro_batch_size=args.micro_batch_size, data_parallel_rank=mpu.get_data_parallel_rank(), data_parallel_size=mpu.get_data_parallel_world_size(), random_sample=random_sample) # Torch dataloader. return torch.utils.data.DataLoader(dataset, batch_sampler=batch_sampler, num_workers=args.num_workers, pin_memory=True) class MegatronPretrainingSampler: def __init__(self, total_samples, consumed_samples, micro_batch_size, data_parallel_rank, data_parallel_size, random_sample=False): # Keep a copy of input params for later use. self.total_samples = total_samples self.consumed_samples = consumed_samples self.micro_batch_size = micro_batch_size self.data_parallel_rank = data_parallel_rank self.micro_batch_times_data_parallel_size = \ self.micro_batch_size * data_parallel_size self.random_sample = random_sample # Sanity checks. assert self.total_samples > 0, \ 'no sample to consume: {}'.format(self.total_samples) #assert self.consumed_samples < self.total_samples, \ # 'no samples left to consume: {}, {}'.format(self.consumed_samples, # self.total_samples) assert self.micro_batch_size > 0 assert data_parallel_size > 0 assert self.data_parallel_rank < data_parallel_size, \ 'data_parallel_rank should be smaller than data size: {}, ' \ '{}'.format(self.data_parallel_rank, data_parallel_size) def __len__(self): return self.total_samples def __iter__(self): self.epoch = self.consumed_samples // self.total_samples current_epoch_samples = self.consumed_samples % self.total_samples if self.random_sample: g = torch.Generator() g.manual_seed(self.epoch) idx_range_total = \ torch.randperm(self.total_samples, generator=g).tolist() idx_range = idx_range_total[current_epoch_samples:] else: idx_range = range(current_epoch_samples, self.total_samples) batch = [] # Last batch if not complete will be dropped. for idx in idx_range: batch.append(idx) if len(batch) == self.micro_batch_times_data_parallel_size: self.consumed_samples += len(batch) start_idx = self.data_parallel_rank * self.micro_batch_size end_idx = start_idx + self.micro_batch_size yield batch[start_idx:end_idx] batch = [] self.consumed_samples += len(batch)