# coding=utf-8 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pretrain BERT""" import os import json import math import random import numpy as np import torch from arguments import get_args from configure_data import configure_data from megatron.fp16 import FP16_Module from megatron.fp16 import FP16_Optimizer from megatron.learning_rates import AnnealingLR from megatron.model import GPT2Model from megatron.model import DistributedDataParallel as DDP from megatron import mpu from apex.optimizers import FusedAdam as Adam from megatron.utils import Timers from megatron.utils import load_checkpoint from megatron.utils import report_memory from megatron.utils import print_params_min_max_norm from megatron import print_rank_0 from megatron.data_utils import make_tokenizer from detokenizer import * def get_model(args): """Build the model.""" print_rank_0('building GPT2 model ...') model = GPT2Model(num_layers=args.num_layers, vocab_size=args.vocab_size, hidden_size=args.hidden_size, num_attention_heads=args.num_attention_heads, embedding_dropout_prob=args.hidden_dropout, attention_dropout_prob=args.attention_dropout, output_dropout_prob=args.hidden_dropout, max_sequence_length=args.max_position_embeddings, checkpoint_activations=args.checkpoint_activations, checkpoint_num_layers=args.checkpoint_num_layers, parallel_output=not args.cloze_eval) print_rank_0(' > number of parameters: {}'.format( sum([p.nelement() for p in model.parameters()]))) # GPU allocation. model.cuda(torch.cuda.current_device()) # Fp16 conversion. if args.fp16: model = FP16_Module(model) # Wrap model for distributed training. model = DDP(model) return model def setup_model(args): """Setup model and optimizer.""" model = get_model(args) if args.load is not None: _ = load_checkpoint( model, None, None, args) return model def get_masks_and_position_ids(data, eod_token, reset_position_ids, reset_attention_mask): # Extract batch size and sequence length. batch_size, seq_length = data.size() # Attention mask (lower triangular). if reset_attention_mask: att_mask_batch = batch_size else: att_mask_batch = 1 attention_mask = torch.tril(torch.ones( (att_mask_batch, seq_length, seq_length), device=data.device)).view( att_mask_batch, 1, seq_length, seq_length) # Loss mask. loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device) loss_mask[data == eod_token] = 0.0 # Position ids. position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device) position_ids = position_ids.unsqueeze(0).expand_as(data) # We need to clone as the ids will be modifed based on batch index. if reset_position_ids: position_ids = position_ids.clone() if reset_position_ids or reset_attention_mask: # Loop through the batches: for b in range(batch_size): # Find indecies where EOD token is. eod_index = position_ids[b, data[b] == eod_token] # Detach indecies from positions if going to modify positions. if reset_position_ids: eod_index = eod_index.clone() # Loop through EOD indecies: prev_index = 0 for j in range(eod_index.size()[0]): i = eod_index[j] # Mask attention loss. if reset_attention_mask: attention_mask[b, 0, (i+1):, :(i+1)] = 0 # Reset positions. if reset_position_ids: position_ids[b, (i+1):] -= (i + 1 - prev_index) prev_index = i + 1 return attention_mask, loss_mask, position_ids def get_batch(data_iterator, args, timers): ''' get_batch subdivides the source data into chunks of length args.seq_length. If source is equal to the example output of the data loading example, with a seq_length limit of 2, we'd get the following two Variables for i = 0: ┌ a g m s ┐ ┌ b h n t ┐ └ b h n t ┘ └ c i o u ┘ Note that despite the name of the function, the subdivison of data is not done along the batch dimension (i.e. dimension 1), since that was handled by the data loader. The chunks are along dimension 0, corresponding to the seq_len dimension in the LSTM. A Variable representing an appropriate shard reset mask of the same dimensions is also returned. ''' # Items and their type. keys = ['text', 'pad_mask'] datatype = torch.int64 # Broadcast data. timers('data loader').start() if data_iterator is not None: data = next(data_iterator) else: data = None timers('data loader').stop() data_b = mpu.broadcast_data(keys, data, datatype) # Unpack. tokens_ = data_b['text'].long() lm_labels = tokens_[:, 1:].contiguous() tokens = tokens_[:, :-1].contiguous() padding_mask = data_b['pad_mask'].byte() # Get the masks and postition ids. attention_mask, loss_mask, position_ids = get_masks_and_position_ids( tokens, args.eod_token, args.reset_position_ids, args.reset_attention_mask) # Convert if args.fp16: attention_mask = attention_mask.half() return tokens, lm_labels, attention_mask, position_ids, padding_mask def forward_step(data_iterator, model, args, timers): """Forward step.""" # Get the batch. timers('batch generator').start() batch = get_batch(data_iterator, args, timers) if batch is None: return None tokens, lm_labels, attention_mask, position_ids, loss_mask = batch timers('batch generator').stop() # Forward model. if args.eval_hf: output, _ = model(tokens) else: output = model(tokens, position_ids, attention_mask) if not args.cloze_eval: #losses = torch.nn.CrossEntropyLoss(reduce=False)( losses = mpu.vocab_parallel_cross_entropy( output.contiguous().float(), lm_labels.contiguous()) loss_mask = loss_mask.contiguous() loss_mask = loss_mask.view(-1) lm_loss = torch.sum( losses.view(-1) * loss_mask.float()) else: outputs = torch.argmax(output, -1) correct = (outputs == lm_labels).float() correct[(1-loss_mask).bool()] = 1 correct = correct.prod(-1) lm_loss = correct.sum() # loss_mask = loss_mask.contiguous().view(-1).float() # lm_loss = torch.sum(acc * loss_mask) return lm_loss def evaluate(data_loader, model, args, timers, num_iterations=None): """Evaluation.""" # Turn on evaluation mode which disables dropout. model.eval() total_lm_loss = 0 if num_iterations is not None: max_iters = num_iterations else: if mpu.get_model_parallel_rank() == 0: max_iters_gpu = torch.cuda.LongTensor([len(data_loader)]) else: max_iters_gpu = torch.cuda.LongTensor([0]) torch.distributed.broadcast(max_iters_gpu, mpu.get_model_parallel_src_rank(), group=mpu.get_model_parallel_group()) max_iters = max_iters_gpu[0].item() print_rank_0('global rank: {} | max iters: {}'.format( torch.distributed.get_rank(), max_iters)) if data_loader is not None: data_iterator = iter(data_loader) else: data_iterator = None with torch.no_grad(): iteration = 0 while iteration < max_iters: if iteration % args.log_interval == 0: print_rank_0('global rank: {} | iteration: {}'.format( torch.distributed.get_rank(), iteration)) # Forward evaluation. lm_loss = forward_step(data_iterator, model, args, timers) if lm_loss is None: break # Reduce across processes. if isinstance(model, DDP): torch.distributed.all_reduce(lm_loss.data) if args.cloze_eval: lm_loss.data = lm_loss.data / args.world_size else: lm_loss.data = lm_loss.data / args.model_parallel_size if not args.cloze_eval: total_lm_loss += lm_loss.data.detach().float().item()/(args.num_tokenized_tokens-1) else: total_lm_loss += lm_loss.data.detach().float().item() iteration += 1 # Move model back to the train mode. model.train() return total_lm_loss def evaluate_and_print_results(prefix, data_iterator, model, args, timers, num_iterations=None): """Helper function to evaluate and dump results on screen.""" if not args.cloze_eval: lm_loss = evaluate(data_iterator, model, args, timers, num_iterations) val_loss = lm_loss ppl = math.exp(min(20, val_loss)) token_ratio = (args.num_tokenized_tokens-1)/(args.num_original_tokens-1) adjusted_ppl = math.exp(min(20, val_loss*token_ratio)) print_rank_0('-' * 100) string = ' validation results on {} | '.format(prefix) string += 'avg loss: {:.4E} | '.format(val_loss) string += 'ppl: {:.4E} | '.format(ppl) string += 'adjusted ppl: {:.4E} | '.format(adjusted_ppl) string += 'token ratio: {} |'.format(token_ratio) length = len(string) + 1 print_rank_0('-' * length) print_rank_0(string) print_rank_0('-' * length) return val_loss else: num_correct = evaluate(data_iterator, model, args, timers, num_iterations) acc = num_correct / args.num_examples print_rank_0('-' * 100) string = ' validation results on {} | '.format(prefix) string += 'number correct: {:.4E} | '.format(num_correct) string += 'total examples: {:.4E} | '.format(args.num_examples) string += 'avg accuracy: {:.4E}'.format(acc) length = len(string) + 1 print_rank_0('-' * length) print_rank_0(string) print_rank_0('-' * length) return acc def initialize_distributed(args): """Initialize torch.distributed.""" # Manually set the device ids. device = args.rank % torch.cuda.device_count() if args.local_rank is not None: device = args.local_rank torch.cuda.set_device(device) # Call the init process init_method = 'tcp://' master_ip = os.getenv('MASTER_ADDR', 'localhost') master_port = os.getenv('MASTER_PORT', '6000') init_method += master_ip + ':' + master_port torch.distributed.init_process_group( backend=args.distributed_backend, world_size=args.world_size, rank=args.rank, init_method=init_method) # Set the model-parallel / data-parallel communicators. mpu.initialize_model_parallel(args.model_parallel_size) def set_random_seed(seed): """Set random seed for reproducability.""" if seed is not None and seed > 0: random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) mpu.model_parallel_cuda_manual_seed(seed) class LM_Eval_Dataset(torch.utils.data.Dataset): def __init__(self, tokens, seq_len, pad_idx, overalapping_eval=None, **kwargs): self.tokens = tokens self.seq_len = seq_len self.pad_idx = pad_idx self.overalapping_eval = overalapping_eval if self.overalapping_eval is None: self.overalapping_eval = self.seq_len self.overalapping_eval = max(1, self.overalapping_eval) self.total_targets = len(self.tokens) - 1 # remove first sequence tokens targets = max(self.total_targets - self.overalapping_eval, 0) self.total_sequences = max(math.ceil(targets / self.overalapping_eval)+1, 1) def __len__(self): return self.total_sequences def __getitem__(self, idx): start_idx = idx * self.overalapping_eval end_idx = start_idx + self.seq_len tokens = self.tokens[start_idx:end_idx+1] num_tokens = len(tokens) pad_mask = [1]*num_tokens if num_tokens < self.seq_len+1: num_pad = (self.seq_len+1-num_tokens) pad_mask += [0]*(num_pad) tokens += [self.pad_idx] * num_pad pad_mask = np.array(pad_mask[1:]) if self.overalapping_eval != self.seq_len and idx!=0: pad_mask[:-self.overalapping_eval] *= 0 return {'text': np.array(tokens), 'pad_mask': pad_mask} class Lambada_Eval_Dataset(torch.utils.data.Dataset): def __init__(self, path, tokenizer, seq_len, strict=False, **kwargs): self.seq_len = seq_len self.pad_idx = tokenizer.get_command('pad').Id self.tokenizer = tokenizer self.strict = strict self.tokens = [] self.labels = [] with open(path, 'r') as f: for line in f.readlines(): text = json.loads(line)['text'] tokens, labels = self.get_tokens(text) self.tokens.append(tokens) self.labels.append(labels) def get_tokens(self, text): if not self.strict: tokens = self.tokenizer.EncodeAsIds(text).tokenization return tokens[:-1], [tokens[-1]] last_token = text.split()[-1] start_idx = text.rfind(last_token) beginning_tokens = self.tokenizer.EncodeAsIds(text[:start_idx].strip()).tokenization last_token = self.tokenizer.EncodeAsIds(' '+last_token).tokenization return beginning_tokens, last_token def __len__(self): return len(self.tokens) def __getitem__(self, idx): tokens = self.tokens[idx] num_tokens = len(tokens) pad_mask = [0]*num_tokens labels = self.labels[idx] pad_mask += [1]*len(labels) tokens = tokens+labels num_tokens = len(tokens) if num_tokens < self.seq_len+1: num_pad = (self.seq_len+1-num_tokens) pad_mask += [0]*(num_pad) tokens += [self.pad_idx] * num_pad pad_mask = np.array(pad_mask[1:]) return {'text': np.array(tokens), 'pad_mask': pad_mask} def get_tokenizer(args): tokenizer_args = { 'tokenizer_type': args.tokenizer_type, 'corpus': None, 'model_path': args.tokenizer_path, 'vocab_size': args.vocab_size, 'model_type': args.tokenizer_model_type, 'cache_dir': args.cache_dir} return make_tokenizer(**tokenizer_args) def get_eval_data(args): val_dataloader = None if mpu.get_model_parallel_rank() == 0: eval_batch_size = args.eval_batch_size eval_batch_size = args.batch_size if eval_batch_size is None else eval_batch_size seq_len = args.seq_length valid_data = args.valid_data valid_data = valid_data[0] if isinstance(valid_data, list) else valid_data tokenizer = get_tokenizer(args) if not args.cloze_eval: with open(valid_data, "rb") as reader: entire_data = reader.read().decode('utf-8') num_original_tokens = len(entire_data.strip().split(" ")) entire_data = get_detokenizer(valid_data)(entire_data) tokenized_data = tokenizer.EncodeAsIds(entire_data).tokenization num_tokenized_tokens = len(tokenized_data) string = 'Original Tokens: %d, Detokenized tokens: %d' % (num_tokenized_tokens, num_original_tokens) print_rank_0(string) eod_token = tokenizer.get_command('pad').Id val_dataset = LM_Eval_Dataset(tokenized_data, seq_len, eod_token, args.overlapping_eval) else: val_dataset = Lambada_Eval_Dataset(valid_data, tokenizer, seq_len, args.strict_lambada) num_tokenized_tokens = 0 num_original_tokens = 0 val_dataloader = torch.utils.data.DataLoader( val_dataset, batch_size=eval_batch_size, drop_last=False) before = tokenizer.num_tokens after = before multiple = args.make_vocab_size_divisible_by * \ mpu.get_model_parallel_world_size() while (after % multiple) != 0: after += 1 print_rank_0('> padded vocab (size: {}) with {} dummy tokens (new size: {})'. format(before, after - before, after)) eod_token = tokenizer.get_command('pad').Id num_examples = len(val_dataset) token_counts = torch.cuda.LongTensor([after, eod_token, num_examples, num_original_tokens, num_tokenized_tokens]) else: token_counts = torch.cuda.LongTensor([0, 0, 0, 0, 0]) torch.distributed.broadcast(token_counts, mpu.get_model_parallel_src_rank(), group=mpu.get_model_parallel_group()) args.vocab_size = token_counts[0].item() args.eod_token = token_counts[1].item() args.num_examples = token_counts[2].item() args.num_original_tokens = token_counts[3].item() args.num_tokenized_tokens = token_counts[4].item() print('global rank: {} | vocab size: {} | eod token: {} | ' 'num_examples: {} | num_original_tokens: {} | ' 'num_tokenized_tokens: {}'.format( torch.distributed.get_rank(), args.vocab_size, args.eod_token, args.num_examples, args.num_original_tokens, args.num_tokenized_tokens )) return val_dataloader def main(): """Main training program.""" print('Evaluate GPT2 model') # Disable CuDNN. torch.backends.cudnn.enabled = False # Timer. timers = Timers() # Arguments. args = get_args() # Pytorch distributed. initialize_distributed(args) # Random seeds for reproducability. set_random_seed(args.seed) # Data stuff. eval_data = get_eval_data(args) # Model, optimizer, and learning rate. if args.eval_hf: from pytorch_pretrained_bert import GPT2LMHeadModel from pytorch_pretrained_bert import GPT2Model as HFGPT2Model if args.num_layers == 24: model_path = args.load #model_path = '/home/universal-lm-data.cosmos549/repos/gpt2_mp/models/345M' hfmodel = HFGPT2Model.from_pretrained(model_path, cache_dir='gpt2_weights', from_tf=True).cuda() model = GPT2LMHeadModel(hfmodel.config) model.transformer.load_state_dict(hfmodel.state_dict()) model.cuda() else: model = GPT2LMHeadModel.from_pretrained('gpt2', cache_dir='gpt2_weights').cuda() else: if args.load_openai: from megatron.utils import move_weights model_path = args.load args.load = None model = setup_model(args) from pytorch_pretrained_bert import GPT2LMHeadModel from pytorch_pretrained_bert import GPT2Model as HFGPT2Model model_path = 'gpt2' from_tf = False print('loading openai weights') model.cpu() if args.num_layers == 24: #model_path = '/home/universal-lm-data.cosmos549/repos/gpt2_mp/models/345M' hfmodel = HFGPT2Model.from_pretrained(model_path, cache_dir='gpt2_weights', from_tf=True) gpt2model = GPT2LMHeadModel(hfmodel.config) gpt2model.transformer.load_state_dict(hfmodel.state_dict()) gpt2model else: gpt2model = GPT2LMHeadModel.from_pretrained('gpt2', cache_dir='gpt2_weights') model2fill = model while isinstance(model2fill, (DDP, FP16_Module)): model2fill = model2fill.module move_weights(model2fill, gpt2model) model.cuda() else: model = setup_model(args) # Run on test data. prefix = "wiki" #os.path.basename(args.valid_data) evaluate_and_print_results(prefix, eval_data, model, args, timers) if __name__ == "__main__": main()