import argparse import json import multiprocessing import nltk import sys import time import torch from bert_tokenization import FullTokenizer import indexed_dataset class CustomLanguageVars(nltk.tokenize.punkt.PunktLanguageVars): _period_context_fmt = r""" \S* # some word material %(SentEndChars)s # a potential sentence ending \s* # <-- THIS is what I changed (?=(?P %(NonWord)s # either other punctuation | (?P\S+) # <-- Normally you would have \s+ here ))""" class Encoder(object): def __init__(self, args): self.args = args def initializer(self): # Use Encoder class as a container for global data Encoder.tokenizer = FullTokenizer(self.args.vocab, do_lower_case=True) spliter = nltk.load("tokenizers/punkt/english.pickle") if self.args.keep_newlines: # this prevents punkt from eating newlines after sentences Encoder.spliter = nltk.tokenize.punkt.PunktSentenceTokenizer( train_text = spliter._params, lang_vars = CustomLanguageVars()) else: Encoder.splitter = spliter def encode(self, json_line): text = json.loads(json_line)[self.args.json_key] doc_ids = [] for sentence in Encoder.splitter.tokenize(text): tokens = Encoder.tokenizer.tokenize(sentence) ids = Encoder.tokenizer.convert_tokens_to_ids(tokens) if len(ids) > 0: doc_ids.append(ids) return doc_ids, len(json_line) def main(): parser = argparse.ArgumentParser() parser.add_argument('--input', type=str, help='Path to input JSON') parser.add_argument('--vocab', type=str, help='Path to vocab.txt') parser.add_argument('--json-key', type=str, default='text', help='Key to extract from json') parser.add_argument('--output-prefix', type=str, help='Path to binary output file without suffix') parser.add_argument('--workers', type=int, default=20, help='Number of worker processes to launch') parser.add_argument('--log-interval', type=int, default=100, help='Interval between progress updates') parser.add_argument('--keep-newlines', action='store_true', help='Keep newlines between sentences.') parser.add_argument('--dataset-impl', type=str, default='mmap', choices=['lazy', 'cached', 'mmap']) args = parser.parse_args() args.keep_empty = False startup_start = time.time() print("Opening", args.input) fin = open(args.input, 'r', encoding='utf-8') nltk.download("punkt", quiet=True) encoder = Encoder(args) tokenizer = FullTokenizer(args.vocab, do_lower_case=True) pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer) encoded_docs = pool.imap(encoder.encode, fin, 25) print(f"Vocab size: {tokenizer.vocab_size()}") output_bin_file = "{}.bin".format(args.output_prefix) output_idx_file = "{}.idx".format(args.output_prefix) builder = indexed_dataset.make_builder(output_bin_file, impl=args.dataset_impl, vocab_size=tokenizer.vocab_size()) startup_end = time.time() proc_start = time.time() total_bytes_processed = 0 print("Time to startup:", startup_end - startup_start) for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1): total_bytes_processed += bytes_processed for sentence in doc: #print(sentence) #print(tokenizer.convert_ids_to_tokens(sentence)) builder.add_item(torch.IntTensor(sentence)) builder.end_document() if i % args.log_interval == 0: current = time.time() elapsed = current - proc_start mbs = total_bytes_processed/elapsed/1024/1024 print(f"Processed {i} documents", f"({i/elapsed} docs/s, {mbs} MB/s).", file=sys.stderr) builder.finalize(output_idx_file) if __name__ == '__main__': main()