# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for generating text.""" import copy import json import os import time import torch import torch.nn.functional as F from megatron import get_args from megatron import get_tokenizer from megatron import mpu from megatron.training import communicate from megatron.utils import get_ltor_masks_and_position_ids def get_batch(context_tokens): """Generate batch from context tokens.""" args = get_args() tokenizer = get_tokenizer() # Move to GPU. tokens = context_tokens.view(args.micro_batch_size, -1).contiguous().cuda() # Get the attention mask and postition ids. attention_mask, _, position_ids = get_ltor_masks_and_position_ids( tokens, tokenizer.eod, args.reset_position_ids, args.reset_attention_mask, args.eod_mask_loss) return tokens, attention_mask, position_ids def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): """ This function has been mostly taken from huggingface conversational ai code at https://medium.com/huggingface/how-to-build-a-state-of-the-art- conversational-ai-with-transfer-learning-2d818ac26313 """ if top_k > 0: # Remove all tokens with a probability less than the # last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p > 0.0: # Cconvert to 1D sorted_logits, sorted_indices = torch.sort( logits, descending=True, dim=-1) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probs > top_p # Shift the indices to the right to keep also the first token # above the threshold sorted_indices_to_remove[..., 1:] \ = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 for i in range(sorted_indices.size(0)): indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]] logits[i][indices_to_remove] = filter_value return logits def generate_samples_input_from_file(model): args = get_args() tokenizer = get_tokenizer() # Read the sample file and open the output file. assert args.sample_input_file is not None, \ 'sample input file is not provided.' if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0: fname = open(args.sample_input_file, "r") all_raw_text = fname.readlines() input_count = len(all_raw_text) input_pos = 0 if args.sample_output_file is None: sample_output_file = args.sample_input_file + ".out" print('`sample-output-file` not specified, setting ' 'it to {}'.format(sample_output_file)) else: sample_output_file = args.sample_output_file fname_out = open(sample_output_file, "w+") context_count = 0 model.eval() with torch.no_grad(): while True: terminate_runs = 0 raw_text_len = 0 if mpu.is_pipeline_first_stage() \ and mpu.get_tensor_model_parallel_rank() == 0: raw_text = all_raw_text[input_pos] input_pos += 1 if input_pos == input_count: raw_text = "stop" raw_text_len = len(raw_text) if "stop" in raw_text: terminate_runs = 1 else: context_tokens = tokenizer.tokenize(raw_text) context_length = len(context_tokens) if context_length >= (args.seq_length // 2): print("\nContext length", context_length, "\nPlease give smaller context (half of the " "sequence length)!", flush=True) continue else: context_tokens = tokenizer.tokenize("EMPTY TEXT") context_length = 0 input_info = [terminate_runs, raw_text_len, context_length] input_info_tensor = torch.cuda.LongTensor(input_info) torch.distributed.all_reduce(input_info_tensor, group=mpu.get_model_parallel_group()) terminate_runs = input_info_tensor[0].item() raw_text_len = input_info_tensor[1].item() if terminate_runs == 1: return # For pipeline parallel we send context tokens to last stage # so it knows when to start overwriting if mpu.get_tensor_model_parallel_rank() == 0 \ and args.pipeline_model_parallel_size > 1: if mpu.is_pipeline_first_stage(): src = mpu.get_pipeline_model_parallel_first_rank() group = mpu.get_embedding_group() context_tokens_tensor = torch.cuda.LongTensor(context_tokens) torch.distributed.broadcast(context_tokens_tensor, src, group) if mpu.is_pipeline_last_stage(): src = mpu.get_pipeline_model_parallel_first_rank() group = mpu.get_embedding_group() context_length = input_info_tensor[2].item() context_tokens_tensor = torch.empty(context_length, dtype=torch.int64, device=torch.device("cuda")) torch.distributed.broadcast(context_tokens_tensor, src, group) context_tokens = context_tokens_tensor.cpu().numpy().tolist() token_stream = get_token_stream(model, [context_tokens]) for _, decode_tokens in enumerate(token_stream): pass if mpu.get_tensor_model_parallel_rank() == 0: if mpu.is_pipeline_first_stage(): os.system('clear') print("\nContext:", raw_text, flush=True) fname_out.write("\nContext:") fname_out.write(raw_text) decode_tokens, _ = decode_tokens decode_tokens = decode_tokens[0].cpu().numpy().tolist() trim_decode_tokens = tokenizer.detokenize( decode_tokens)[raw_text_len:] print("\nMegatron-LM:", trim_decode_tokens, flush=True) fname_out.write("\n\nMegatron-LM:") fname_out.write(trim_decode_tokens) fname_out.write("\n") raw_text = None context_count += 1 def generate_samples_interactive(model, print_frequency=24): args = get_args() tokenizer = get_tokenizer() context_count = 0 model.eval() with torch.no_grad(): while True: terminate_runs = 0 raw_text_len = 0 if mpu.is_pipeline_first_stage() \ and mpu.get_tensor_model_parallel_rank() == 0: os.system('clear') raw_text = input("\nContext prompt (stop to exit) >>> ") while not raw_text: print('Prompt should not be empty!') raw_text = input("\nContext prompt (stop to exit) >>> ") raw_text_len = len(raw_text) if "stop" in raw_text: terminate_runs = 1 else: context_tokens = tokenizer.tokenize(raw_text) context_length = len(context_tokens) if context_length >= (args.seq_length // 2): print("\nContext length", context_length, "\nPlease give smaller context (half of the " "sequence length)!", flush=True) continue else: context_tokens = tokenizer.tokenize("EMPTY TEXT") context_length = 0 input_info = [terminate_runs, raw_text_len, context_length] input_info_tensor = torch.cuda.LongTensor(input_info) torch.distributed.all_reduce(input_info_tensor, group=mpu.get_model_parallel_group()) terminate_runs = input_info_tensor[0].item() raw_text_len = input_info_tensor[1].item() if terminate_runs == 1: return # For pipeline parallel we send context tokens to last stage # so it knows when to start overwriting if mpu.get_tensor_model_parallel_rank() == 0 \ and args.pipeline_model_parallel_size > 1: if mpu.is_pipeline_first_stage(): src = mpu.get_pipeline_model_parallel_first_rank() group = mpu.get_embedding_group() context_tokens_tensor = torch.cuda.LongTensor(context_tokens) torch.distributed.broadcast(context_tokens_tensor, src, group) if mpu.is_pipeline_last_stage(): src = mpu.get_pipeline_model_parallel_first_rank() group = mpu.get_embedding_group() context_length = input_info_tensor[2].item() context_tokens_tensor = torch.empty(context_length, dtype=torch.int64, device=torch.device("cuda")) torch.distributed.broadcast(context_tokens_tensor, src, group) context_tokens = context_tokens_tensor.cpu().numpy().tolist() token_stream = get_token_stream(model, [context_tokens]) for counter, decode_tokens in enumerate(token_stream): if counter % print_frequency != 0 \ or mpu.get_tensor_model_parallel_rank() != 0 \ or not mpu.is_pipeline_first_stage(): continue os.system('clear') print("\nContext:", raw_text, flush=True) decode_tokens, _ = decode_tokens decode_tokens = decode_tokens[0].cpu().numpy().tolist() trim_decode_tokens = tokenizer.detokenize( decode_tokens)[raw_text_len:] print("\nMegatron-LM:", trim_decode_tokens, flush=True) if mpu.is_pipeline_first_stage() \ and mpu.get_tensor_model_parallel_rank() == 0: os.system('clear') print("\nContext:", raw_text, flush=True) if not isinstance(decode_tokens, list): decode_tokens, _ = decode_tokens decode_tokens = decode_tokens[0].cpu().numpy().tolist() trim_decode_tokens = tokenizer.detokenize( decode_tokens)[raw_text_len:] print("\nMegatron-LM:", trim_decode_tokens, flush=True) input("\nPress Enter to continue >>>") raw_text = None context_count += 1 def generate_samples_unconditional(model): args = get_args() tokenizer = get_tokenizer() num_samples = args.num_samples context_tokens = [[tokenizer.eod] for _ in range(args.micro_batch_size)] ctr = 0 while True: start_time = time.time() for token_stream in get_token_stream(model, copy.deepcopy(context_tokens)): pass if mpu.is_pipeline_last_stage() and \ mpu.get_tensor_model_parallel_rank() == 0: if ctr % args.log_interval == 0: print('Avg s/batch:', (time.time() - start_time) / min(args.log_interval, ctr + 1)) start_time = time.time() length = len(token_stream) token_batch = token_stream[0].cpu().numpy().tolist() length_batch = token_stream[1].cpu().numpy().tolist() assert len(length_batch) == args.micro_batch_size for tokens, length in zip(token_batch, length_batch): tokens = tokens[1:length - 1] text = tokenizer.detokenize(tokens) is_finished = length < args.seq_length - 1 datum = {'text': text, 'length': length - 1, 'finished': is_finished} yield datum ctr += 1 if ctr >= num_samples: break else: for _ in range(args.micro_batch_size): yield None ctr += 1 if ctr >= num_samples: break if ctr >= num_samples: break def generate_and_write_samples_unconditional(model): args = get_args() assert args.genfile is not None with open(args.genfile, 'w') as f: for datum in generate_samples_unconditional(model): if mpu.is_pipeline_last_stage() and \ mpu.get_tensor_model_parallel_rank() == 0: f.write(json.dumps(datum) + '\n') def pad_batch(batch, pad_id, args): context_lengths = [] for tokens in batch: context_length = len(tokens) if context_length < args.seq_length: tokens.extend([pad_id] * (args.seq_length - context_length)) context_lengths.append(context_length) return batch, context_lengths def get_token_stream(model, context_tokens): args = get_args() tokenizer = get_tokenizer() context_tokens, context_lengths = pad_batch(context_tokens, tokenizer.eod, args) context_tokens_tensor = torch.cuda.LongTensor(context_tokens) context_length_tensor = torch.cuda.LongTensor(context_lengths) torch.distributed.broadcast(context_length_tensor, mpu.get_tensor_model_parallel_src_rank(), group=mpu.get_tensor_model_parallel_group()) torch.distributed.broadcast(context_tokens_tensor, mpu.get_tensor_model_parallel_src_rank(), group=mpu.get_tensor_model_parallel_group()) context_length = context_length_tensor.min().item() tokens, attention_mask, position_ids = get_batch(context_tokens_tensor) batch_token_iterator = sample_sequence_batch(model, context_tokens_tensor, context_length_tensor, attention_mask, position_ids) for tokens, lengths in batch_token_iterator: context_length += 1 if tokens is not None: yield tokens[:, :context_length], lengths else: yield None, None def switch(val1, val2, boolean): boolean = boolean.type_as(val1) return (1 - boolean) * val1 + boolean * val2 def forward_step(model, tokens, position_ids, attention_mask, tokentype_ids, layer_past=None, get_key_value=None, forward_method_parallel_output=None): if not mpu.is_pipeline_first_stage(): input_tensor, _ = communicate( tensor_send_next=None, tensor_send_prev=None, recv_forward=True, recv_backward=False) else: input_tensor = None # Forward pass through the model. if mpu.is_pipeline_first_stage(): assert input_tensor is None if mpu.is_pipeline_last_stage(): output_tensor = model(tokens, position_ids, attention_mask, tokentype_ids=tokentype_ids, layer_past=layer_past, get_key_value=get_key_value, forward_method_parallel_output=forward_method_parallel_output) else: output_tensor = model(tokens, position_ids, attention_mask, tokentype_ids=tokentype_ids, layer_past=layer_past, get_key_value=get_key_value) elif mpu.is_pipeline_last_stage(): assert input_tensor is not None output_tensor = model(input_tensor, attention_mask, layer_past=layer_past, get_key_value=get_key_value, forward_method_parallel_output=forward_method_parallel_output) else: assert input_tensor is not None output_tensor = model(input_tensor, attention_mask, layer_past=layer_past, get_key_value=get_key_value) if get_key_value: output_tensor, layer_past = output_tensor if not mpu.is_pipeline_last_stage(): communicate(tensor_send_next=output_tensor, tensor_send_prev=None, recv_forward=False, recv_backward=False) return None if get_key_value: return output_tensor, layer_past return output_tensor def sample_sequence_batch(model, context_tokens, context_lengths, attention_mask, position_ids, maxlen=None, type_ids=None): args = get_args() tokenizer = get_tokenizer() model.eval() with torch.no_grad(): context_length = context_lengths.min().item() eos_id = tokenizer.eod counter = 0 org_context_length = context_length layer_past = None batch_size = context_tokens.size(0) is_done = torch.zeros([batch_size]).byte().cuda() tokens = context_tokens if maxlen is None: maxlen = args.seq_length - 1 if maxlen > (org_context_length + args.out_seq_length): maxlen = org_context_length + args.out_seq_length lengths = torch.ones([batch_size]).long().cuda() * maxlen while context_length <= (maxlen): if args.recompute: output = forward_step(model, tokens, position_ids, attention_mask, tokentype_ids=type_ids, forward_method_parallel_output=False) if mpu.is_pipeline_last_stage(): assert output is not None logits = output[:, context_length - 1, :] else: types2use = None if counter == 0: tokens2use = tokens[:, :context_length] positions2use = position_ids[:, :context_length] if type_ids is not None: types2use = type_ids[:, :context_length] else: tokens2use = tokens[:, context_length - 1].view( batch_size, -1) positions2use = position_ids[:, context_length - 1].view( batch_size, -1) if type_ids is not None: types2use = type_ids[:, context_length - 1].view( batch_size, -1) logits, layer_past = forward_step(model, tokens2use, positions2use, attention_mask, layer_past=layer_past, get_key_value=True, tokentype_ids=types2use, forward_method_parallel_output=False) if mpu.is_pipeline_last_stage(): assert output is not None logits = logits[:, -1].view(batch_size, -1).contiguous() if mpu.is_pipeline_last_stage(): if args.greedy: prev = torch.argmax(logits, dim=-1).view(-1) else: logits = logits.float() logits /= args.temperature logits = top_k_logits(logits, top_k=args.top_k, top_p=args.top_p) log_probs = F.softmax(logits, dim=-1) prev = torch.multinomial(log_probs, num_samples=1).view(-1) started = context_lengths <= context_length new_tokens = switch( tokens[:, context_length].view(-1), prev, started) tokens[:, context_length] = new_tokens src = mpu.get_pipeline_model_parallel_last_rank() group = mpu.get_embedding_group() torch.distributed.broadcast(new_tokens, src, group) done_token = (prev == eos_id).byte() & started.byte() just_finished = (done_token & ~is_done).bool() lengths[just_finished.view(-1)] = context_length is_done = is_done | done_token done = torch.all(is_done) src = mpu.get_pipeline_model_parallel_last_rank() group = mpu.get_pipeline_model_parallel_group() torch.distributed.broadcast(done, src, group) yield tokens, lengths else: if mpu.is_pipeline_first_stage(): src = mpu.get_pipeline_model_parallel_last_rank() group = mpu.get_embedding_group() new_tokens = torch.empty_like(tokens[:, context_length]) torch.distributed.broadcast(new_tokens, src, group) tokens[:, context_length] = new_tokens yield tokens, None else: yield None, None done = torch.cuda.ByteTensor([0]) src = mpu.get_pipeline_model_parallel_last_rank() group = mpu.get_pipeline_model_parallel_group() torch.distributed.broadcast(done, src, group) context_length += 1 counter += 1 if done: break