# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. import pytest import torch from megatron.core.transformer.attention import SelfAttention from tests.unit_tests.test_utilities import Utils from megatron.core.tensor_parallel.random import model_parallel_cuda_manual_seed from megatron.core.transformer.transformer_config import TransformerConfig class TestParallelAttention: def setup_method(self, method): Utils.initialize_model_parallel(1,1) model_parallel_cuda_manual_seed(123) self.transformer_config = TransformerConfig(num_layers=2, hidden_size=12, num_attention_heads=4, use_cpu_initialization=True) self.parallel_attention = SelfAttention(self.transformer_config) def teardown_method(self, method): Utils.destroy_model_parallel() def test_constructor(self): assert isinstance(self.parallel_attention, SelfAttention) assert self.parallel_attention.layer_number == 1 num_weights = sum([p.numel() for p in self.parallel_attention.parameters()]) assert num_weights == 648 def test_cpu_forward(self): # we can't currently do this because the global memory buffer is on GPU pass def test_gpu_forward(self): config = self.parallel_attention.config sequence_length = 32 micro_batch_size = 2 self.parallel_attention.cuda() # [sequence length, batch size, hidden size] hidden_states = torch.ones((sequence_length, micro_batch_size, self.parallel_attention.config.hidden_size)) hidden_states = hidden_states.cuda() attention_mask = torch.ones((1, 1, sequence_length, sequence_length), dtype=bool).cuda() output, bias = self.parallel_attention(hidden_states, attention_mask) assert config.recompute_granularity is None assert output.shape[0] == sequence_length assert output.shape[1] == micro_batch_size assert output.shape[2] == config.hidden_size assert bias.shape[0] == config.hidden_size def test_checkpointed_gpu_forward(self): transformer_config = self.transformer_config transformer_config.recompute_granularity='selective' checkpointed_parallel_attention = SelfAttention(transformer_config) config = checkpointed_parallel_attention.config sequence_length = 32 micro_batch_size = 2 checkpointed_parallel_attention.cuda() # [sequence length, batch size, hidden size] hidden_states = torch.ones( (sequence_length, micro_batch_size, checkpointed_parallel_attention.config.hidden_size) ) hidden_states = hidden_states.cuda() attention_mask = torch.ones((1, 1, sequence_length, sequence_length), dtype=bool).cuda() output, bias = checkpointed_parallel_attention(hidden_states, attention_mask) assert config.recompute_granularity == 'selective' assert output.shape[0] == sequence_length assert output.shape[1] == micro_batch_size assert output.shape[2] == config.hidden_size assert bias.shape[0] == config.hidden_size