# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. """Megatron Module""" import torch from torch.autograd import Variable from torch.nn.parameter import Parameter from megatron.core import parallel_state, tensor_parallel from megatron.core.transformer.transformer_config import TransformerConfig _FLOAT_TYPES = (torch.FloatTensor, torch.cuda.FloatTensor) _HALF_TYPES = (torch.HalfTensor, torch.cuda.HalfTensor) _BF16_TYPES = (torch.BFloat16Tensor, torch.cuda.BFloat16Tensor) def param_is_not_shared(param): return not hasattr(param, 'shared') or not param.shared class MegatronModule(torch.nn.Module): """Megatron specific extensions of torch Module with support for pipelining.""" # def __init__(self, config: TransformerConfig, share_word_embeddings=True): def __init__(self, config: TransformerConfig): super().__init__() self.config = config def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False): """Use this function to override the state dict for saving checkpoints. """ return self.state_dict(prefix=prefix, keep_vars=keep_vars) def sharded_state_dict(self, prefix=''): """ Override sharded_state_dict when using distributed checkpointing. keep_vars must always be set to True so that optimizer states can be sharded. """ return self.state_dict(prefix=prefix, keep_vars=True) def conversion_helper(val, conversion): """Apply conversion to val. Recursively apply conversion if `val` #is a nested tuple/list structure.""" if not isinstance(val, (tuple, list)): return conversion(val) rtn = [conversion_helper(v, conversion) for v in val] if isinstance(val, tuple): rtn = tuple(rtn) return rtn def fp32_to_float16(val, float16_convertor): """Convert fp32 `val` to fp16/bf16""" def half_conversion(val): val_typecheck = val if isinstance(val_typecheck, (Parameter, Variable)): val_typecheck = val.data if isinstance(val_typecheck, _FLOAT_TYPES): val = float16_convertor(val) return val return conversion_helper(val, half_conversion) def float16_to_fp32(val): """Convert fp16/bf16 `val` to fp32""" def float_conversion(val): val_typecheck = val if isinstance(val_typecheck, (Parameter, Variable)): val_typecheck = val.data if isinstance(val_typecheck, (_BF16_TYPES, _HALF_TYPES)): val = val.float() return val return conversion_helper(val, float_conversion) class Float16Module(MegatronModule): def __init__(self, config: TransformerConfig, module: torch.nn.Module): super(Float16Module, self).__init__(config) self.config = config self.fp16 = config.fp16 self.bf16 = config.bf16 if self.fp16: self.add_module('module', module.half()) def float16_convertor(val): return val.half() elif self.bf16: self.add_module('module', module.bfloat16()) def float16_convertor(val): return val.bfloat16() else: raise Exception('Either config.fp16 or config.bf16 should be True.') self.float16_convertor = float16_convertor def set_input_tensor(self, input_tensor): return self.module.set_input_tensor(input_tensor) def forward(self, *inputs, **kwargs): if parallel_state.is_pipeline_first_stage(): inputs = fp32_to_float16(inputs, self.float16_convertor) outputs = self.module(*inputs, **kwargs) if parallel_state.is_pipeline_last_stage(): outputs = float16_to_fp32(outputs) return outputs def state_dict(self, destination=None, prefix='', keep_vars=False): return self.module.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False): """ Retrieve state_dict from the module being wrapped.""" return self.module.state_dict_for_save_checkpoint(prefix=prefix, keep_vars=keep_vars) def sharded_state_dict(self, prefix=''): """ Retrieve sharded_state_dict from the module being wrapped. """ return self.module.sharded_state_dict(prefix=prefix) def load_state_dict(self, state_dict, strict=True): self.module.load_state_dict(state_dict, strict=strict)