# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference API.""" import torch from megatron import mpu from .communication import broadcast_float_list from .generation import generate_tokens_probs_and_return_on_first_stage from .tokenization import ( tokenize_prompts, detokenize_generations) def generate_and_post_process(model, prompts=None, tokens_to_generate=0, return_output_log_probs=False, return_all_log_probs=False, temperature=1.0, add_BOS=False): """TO DO ...""" # Main inference. tokens, lengths, output_log_probs, all_log_probs = generate( model, prompts=prompts, tokens_to_generate=tokens_to_generate, return_output_log_probs=return_output_log_probs, return_all_log_probs=return_all_log_probs, temperature=temperature, add_BOS=add_BOS) # Only post-process on first stage. if mpu.is_pipeline_first_stage(): tokens, prompts_plus_generations, prompts_plus_generations_segments = \ detokenize_generations(tokens, lengths, True) if return_output_log_probs: output_log_probs = output_log_probs.cpu().numpy().tolist() if return_all_log_probs: all_log_probs = all_log_probs.cpu().numpy() #.tolist() return prompts_plus_generations, prompts_plus_generations_segments, \ output_log_probs, all_log_probs, tokens return None def generate(model, prompts=None, tokens_to_generate=0, return_output_log_probs=False, return_all_log_probs=False, temperature=1.0, add_BOS=False): """TO DO ...""" # Make sure input params are avaialble to all ranks. values = [tokens_to_generate, return_output_log_probs, return_all_log_probs, temperature, add_BOS] values_float_tensor = broadcast_float_list(5, float_list=values) tokens_to_generate = int(values_float_tensor[0].item()) return_output_log_probs = bool(values_float_tensor[1].item()) return_all_log_probs = bool(values_float_tensor[2].item()) temperature = values_float_tensor[3].item() add_BOS = bool(values_float_tensor[4].item()) # Tokenize prompts and get the batch. # Note that these tensors are broadcaseted to all ranks. if torch.distributed.get_rank() == 0: assert prompts is not None assert tokens_to_generate > 0 context_tokens_tensor, context_length_tensor = tokenize_prompts( prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS) # Main inference function. # Note that the outputs are available on the first stage. return generate_tokens_probs_and_return_on_first_stage( model, context_tokens_tensor, context_length_tensor, return_output_log_probs=return_output_log_probs, return_all_log_probs=return_all_log_probs, temperature=temperature)