# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Input/output checkpointing.""" import os import random import sys import numpy as np import torch from torch.nn.parallel import DistributedDataParallel as torchDDP from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP from megatron import mpu, get_args from megatron import get_args from megatron import print_rank_0 def check_checkpoint_args(checkpoint_args): """Ensure fixed arguments for a model are the same for the input arguments and the one retreived frm checkpoint.""" args = get_args() def _compare(arg_name): checkpoint_value = getattr(checkpoint_args, arg_name) args_value = getattr(args, arg_name) error_message = '{} value from checkpoint ({}) is not equal to the ' \ 'input argument value ({}).'.format( arg_name, checkpoint_value, args_value) assert checkpoint_value == args_value, error_message _compare('num_layers') _compare('hidden_size') _compare('num_attention_heads') _compare('max_position_embeddings') _compare('make_vocab_size_divisible_by') _compare('padded_vocab_size') _compare('tokenizer_type') _compare('model_parallel_size') def ensure_directory_exists(filename): """Build filename's path if it does not already exists.""" dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) def get_checkpoint_name(checkpoints_path, iteration, release=False, mp_rank=None): """A unified checkpoint name.""" if release: directory = 'release' else: directory = 'iter_{:07d}'.format(iteration) return os.path.join(checkpoints_path, directory, 'mp_rank_{:02d}'.format( mpu.get_model_parallel_rank() if mp_rank is None else mp_rank), 'model_optim_rng.pt') def get_checkpoint_tracker_filename(checkpoints_path): """Tracker file rescords the latest chckpoint during training to restart from.""" return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt') def save_checkpoint(iteration, model, optimizer, lr_scheduler): """Save a model checkpoint.""" args = get_args() # Only rank zero of the data parallel writes to the disk. if isinstance(model, torchDDP): model = model.module if mpu.get_data_parallel_rank() == 0: # Arguments, iteration, and model. state_dict = {} state_dict['args'] = args state_dict['iteration'] = iteration state_dict['model'] = model.state_dict_for_save_checkpoint() # Optimizer stuff. if not args.no_save_optim: if optimizer is not None: state_dict['optimizer'] = optimizer.state_dict() if lr_scheduler is not None: state_dict['lr_scheduler'] = lr_scheduler.state_dict() # RNG states. if not args.no_save_rng: state_dict['random_rng_state'] = random.getstate() state_dict['np_rng_state'] = np.random.get_state() state_dict['torch_rng_state'] = torch.get_rng_state() state_dict['cuda_rng_state'] = torch.cuda.get_rng_state() state_dict['rng_tracker_states'] \ = mpu.get_cuda_rng_tracker().get_states() # Save. checkpoint_name = get_checkpoint_name(args.save, iteration) print('global rank {} is saving checkpoint at iteration {:7d} to {}'. format(torch.distributed.get_rank(), iteration, checkpoint_name)) ensure_directory_exists(checkpoint_name) torch.save(state_dict, checkpoint_name) print(' successfully saved {}'.format(checkpoint_name)) # Wait so everyone is done (necessary) torch.distributed.barrier() # And update the latest iteration if torch.distributed.get_rank() == 0: tracker_filename = get_checkpoint_tracker_filename(args.save) with open(tracker_filename, 'w') as f: f.write(str(iteration)) # Wait so everyone is done (not necessary) torch.distributed.barrier() def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load'): """Load a model checkpoint and return the iteration.""" args = get_args() load_dir = getattr(args, load_arg) if isinstance(model, torchDDP): model = model.module # Read the tracker file and set the iteration. tracker_filename = get_checkpoint_tracker_filename(load_dir) # If no tracker file, return iretation zero. if not os.path.isfile(tracker_filename): print_rank_0('WARNING: could not find the metadata file {} '.format( tracker_filename)) print_rank_0(' will not load any checkpoints and will start from ' 'random') return 0 # Otherwise, read the tracker file and either set the iteration or # mark it as a release checkpoint. iteration = 0 release = False with open(tracker_filename, 'r') as f: metastring = f.read().strip() try: iteration = int(metastring) except ValueError: release = metastring == 'release' if not release: print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format( tracker_filename)) sys.exit() assert iteration > 0 or release, 'error parsing metadata file {}'.format( tracker_filename) # Checkpoint. checkpoint_name = get_checkpoint_name(load_dir, iteration, release) if mpu.get_data_parallel_rank() == 0: print('global rank {} is loading checkpoint {}'.format( torch.distributed.get_rank(), checkpoint_name)) # Load the checkpoint. try: state_dict = torch.load(checkpoint_name, map_location='cpu') except ModuleNotFoundError: # For backward compatibility. print_rank_0(' > deserializing using the old code structure ...') sys.modules['fp16.loss_scaler'] = sys.modules[ 'megatron.fp16.loss_scaler'] state_dict = torch.load(checkpoint_name, map_location='cpu') sys.modules.pop('fp16.loss_scaler', None) except BaseException: print_rank_0('could not load the checkpoint') sys.exit() # Set iteration. if args.finetune or release: iteration = 0 else: try: iteration = state_dict['iteration'] except KeyError: try: # Backward compatible with older checkpoints iteration = state_dict['total_iters'] except KeyError: print_rank_0('A metadata file exists but unable to load ' 'iteration from checkpoint {}, exiting'.format( checkpoint_name)) sys.exit() # Check arguments. if 'args' in state_dict: checkpoint_args = state_dict['args'] check_checkpoint_args(checkpoint_args) else: print_rank_0('could not find arguments in the checkpoint ...') # Model. model.load_state_dict(state_dict['model']) # Optimizer. if not release and not args.finetune and not args.no_load_optim: try: if optimizer is not None: optimizer.load_state_dict(state_dict['optimizer']) if lr_scheduler is not None: lr_scheduler.load_state_dict(state_dict['lr_scheduler']) except KeyError: print_rank_0('Unable to load optimizer from checkpoint {}. ' 'Specify --no-load-optim or --finetune to prevent ' 'attempting to load the optimizer state, ' 'exiting ...'.format(checkpoint_name)) sys.exit() # rng states. if not release and not args.finetune and not args.no_load_rng: try: random.setstate(state_dict['random_rng_state']) np.random.set_state(state_dict['np_rng_state']) torch.set_rng_state(state_dict['torch_rng_state']) torch.cuda.set_rng_state(state_dict['cuda_rng_state']) mpu.get_cuda_rng_tracker().set_states( state_dict['rng_tracker_states']) except KeyError: print_rank_0('Unable to load optimizer from checkpoint {}. ' 'Specify --no-load-rng or --finetune to prevent ' 'attempting to load the optimizer state, ' 'exiting ...'.format(checkpoint_name)) sys.exit() torch.distributed.barrier() if mpu.get_data_parallel_rank() == 0: print(' successfully loaded {}'.format(checkpoint_name)) return iteration def load_ict_checkpoint(model, only_query_model=False, only_block_model=False, from_realm_chkpt=False): """selectively load ICT models for indexing/retrieving from ICT or REALM checkpoints""" args = get_args() if isinstance(model, torchDDP): model = model.module load_path = args.load if from_realm_chkpt else args.ict_load tracker_filename = get_checkpoint_tracker_filename(load_path) with open(tracker_filename, 'r') as f: iteration = int(f.read().strip()) # assert iteration > 0 checkpoint_name = get_checkpoint_name(load_path, iteration, False) if mpu.get_data_parallel_rank() == 0: print('global rank {} is loading checkpoint {}'.format( torch.distributed.get_rank(), checkpoint_name)) state_dict = torch.load(checkpoint_name, map_location='cpu') ict_state_dict = state_dict['model'] if from_realm_chkpt and mpu.get_data_parallel_rank() == 0: print(" loading ICT state dict from REALM", flush=True) ict_state_dict = ict_state_dict['retriever']['ict_model'] if only_query_model: ict_state_dict.pop('context_model') if only_block_model: ict_state_dict.pop('question_model') model.load_state_dict(ict_state_dict) torch.distributed.barrier() if mpu.get_data_parallel_rank() == 0: print(' successfully loaded {}'.format(checkpoint_name)) return model