# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. import pytest import torch from megatron.core.models.common.embeddings.language_model_embedding import LanguageModelEmbedding from megatron.core.transformer.transformer_config import TransformerConfig from tests.unit_tests.test_utilities import Utils class TestBaseEmbedding: def setup_method(self, method): Utils.initialize_model_parallel(1, 1) transformer_config = TransformerConfig( num_layers=2, hidden_size=12, num_attention_heads=4, use_cpu_initialization=True ) self.base_embedding = LanguageModelEmbedding( config=transformer_config, vocab_size=100, max_sequence_length=4, position_embedding_type='learned_absolute', ) def teardown_method(self, method): Utils.destroy_model_parallel() def test_constructor(self): assert isinstance(self.base_embedding, LanguageModelEmbedding) num_weights = sum([p.numel() for p in self.base_embedding.parameters()]) assert num_weights == 1248 def test_zero_parameters(self): sum_weights = sum([p.sum() for p in self.base_embedding.parameters()]) assert sum_weights != 0 self.base_embedding.zero_parameters() sum_weights = sum([p.sum() for p in self.base_embedding.parameters()]) assert sum_weights == 0 def test_cpu_forward(self): input_ids = torch.tensor([0, 1, 2, 3], dtype=torch.int64).repeat((2, 1)) position_ids = torch.tensor([0, 1, 2, 3], dtype=torch.int64).repeat((2, 1)) embeddings = self.base_embedding(input_ids, position_ids) assert embeddings.device.type == 'cpu' assert embeddings.shape[0] == self.base_embedding.max_sequence_length assert embeddings.shape[1] == input_ids.shape[0] assert embeddings.shape[2] == self.base_embedding.config.hidden_size def test_gpu_forward(self): self.base_embedding.cuda() input_ids = torch.tensor([0, 1, 2, 3], dtype=torch.int64).repeat((2, 1)).cuda() position_ids = torch.tensor([0, 1, 2, 3], dtype=torch.int64).repeat((2, 1)).cuda() embeddings = self.base_embedding(input_ids, position_ids) assert embeddings.device.type == 'cuda' assert embeddings.shape[0] == self.base_embedding.max_sequence_length assert embeddings.shape[1] == input_ids.shape[0] assert embeddings.shape[2] == self.base_embedding.config.hidden_size