from collections import defaultdict import os import pickle import numpy as np import torch from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP from megatron import get_args from megatron import mpu from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name from megatron.data.bert_dataset import get_indexed_dataset_ from megatron.data.ict_dataset import InverseClozeDataset from megatron.data.samplers import DistributedBatchSampler from megatron.initialize import initialize_megatron from megatron.training import get_model from pretrain_bert_ict import get_batch, model_provider def embed_docs(): initialize_megatron(extra_args_provider=None, args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'}) args = get_args() model = load_checkpoint() model.eval() dataset = get_dataset() data_iter = iter(get_dataloader(dataset)) hash_data = defaultdict(list) hash_matrix = torch.cuda.HalfTensor(np.random.rand(128, 1024)) hash_data['matrix'] = hash_matrix block_data = defaultdict(list) i = 0 while True: try: input_tokens, input_types, input_pad_mask, \ block_tokens, block_token_types, block_pad_mask, block_indices = get_batch(data_iter) except: break # TODO: make sure input is still in block input_logits, block_logits, _ = model.module.module.forward( input_tokens, input_types, input_pad_mask, block_tokens, block_pad_mask, block_token_types, return_logits=True) block_hash_pos = torch.matmul(block_logits, hash_matrix) block_hash_full = torch.cat((block_hash_pos, -block_hash_pos), axis=1) block_hashes = torch.argmax(block_hash_full, axis=1).detach().cpu().numpy() for hash, indices_array in zip(block_hashes, block_indices): hash_data[int(hash)].append(indices_array.detach().cpu().numpy()) block_logits = block_logits.detach().cpu().numpy() block_indices = block_indices.detach().cpu().numpy()[:, 3] for logits, idx in zip(block_logits, block_indices): block_data[int(idx)] = logits if i % 100 == 0: print(i, flush=True) i += 1 dir_name = 'block_hash_data' if not os.path.isdir(dir_name): os.mkdir(dir_name) with open('{}/{}.pkl'.format(dir_name, args.rank), 'wb') as data_file: all_data = {'block_data': block_data, 'hash_data': hash_data} pickle.dump(all_data, data_file) torch.distributed.barrier() if mpu.get_data_parallel_rank() == 0: all_block_data = defaultdict(dict) dir_name = 'block_hash_data' fnames = os.listdir(dir_name) for fname in fnames: with open(fname, 'rb') as f: data = pickle.load(f) all_block_data['hash_data'].update(data['hash_data']) all_block_data['block_data'].update(data['block_data']) with open('block_hash_data.pkl', 'wb') as final_file: pickle.dump(all_block_data, final_file) os.rmdir(dir_name) return def load_checkpoint(): args = get_args() model = get_model(model_provider) if isinstance(model, torchDDP): model = model.module tracker_filename = get_checkpoint_tracker_filename(args.load) with open(tracker_filename, 'r') as f: iteration = int(f.read().strip()) assert iteration > 0 checkpoint_name = get_checkpoint_name(args.load, iteration, False) if mpu.get_data_parallel_rank() == 0: print('global rank {} is loading checkpoint {}'.format( torch.distributed.get_rank(), checkpoint_name)) state_dict = torch.load(checkpoint_name, map_location='cpu') model.load_state_dict(state_dict['model']) torch.distributed.barrier() if mpu.get_data_parallel_rank() == 0: print(' successfully loaded {}'.format(checkpoint_name)) return model def get_dataset(): args = get_args() block_dataset = get_indexed_dataset_(args.data_path, 'mmap', True) titles_dataset = get_indexed_dataset_(args.data_path + '-titles', 'mmap', True) kwargs = dict( name='full', context_dataset=block_dataset, titles_dataset=titles_dataset, data_prefix=args.data_path, num_epochs=1, max_num_samples=None, max_seq_length=288, # doesn't matter short_seq_prob=0.0001, # doesn't matter seed=1 ) dataset = InverseClozeDataset(**kwargs) return dataset def get_dataloader(dataset): args = get_args() world_size = mpu.get_data_parallel_world_size() rank = mpu.get_data_parallel_rank() global_batch_size = args.batch_size * world_size num_workers = args.num_workers sampler = torch.utils.data.SequentialSampler(dataset) batch_sampler = DistributedBatchSampler(sampler, batch_size=global_batch_size, drop_last=True, rank=rank, world_size=world_size) return torch.utils.data.DataLoader(dataset, batch_sampler=batch_sampler, num_workers=num_workers, pin_memory=True) if __name__ == "__main__": embed_docs()