Commit fb4cbdc2 authored by Raul Puri's avatar Raul Puri
Browse files

initial commit

parents
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for wrapping BertModel."""
import torch
from .modeling import BertConfig
from .modeling import BertForPreTraining
from .modeling import BertLayerNorm
def get_params_for_weight_decay_optimization(module):
weight_decay_params = {'params': []}
no_weight_decay_params = {'params': [], 'weight_decay': 0}
for module_ in module.modules():
if isinstance(module_, (BertLayerNorm, torch.nn.LayerNorm)):
no_weight_decay_params['params'].extend(
[p for p in list(module_._parameters.values())
if p is not None])
else:
weight_decay_params['params'].extend(
[p for n, p in list(module_._parameters.items())
if p is not None and n != 'bias'])
no_weight_decay_params['params'].extend(
[p for n, p in list(module_._parameters.items())
if p is not None and n == 'bias'])
return weight_decay_params, no_weight_decay_params
class BertModel(torch.nn.Module):
def __init__(self, tokenizer, args):
super(BertModel, self).__init__()
if args.pretrained_bert:
self.model = BertForPreTraining.from_pretrained(
args.tokenizer_model_type,
cache_dir=args.cache_dir,
fp32_layernorm=args.fp32_layernorm,
fp32_embedding=args.fp32_embedding,
layernorm_epsilon=args.layernorm_epsilon)
else:
if args.intermediate_size is None:
intermediate_size = 4 * args.hidden_size
else:
intermediate_size = args.intermediate_size
self.config = BertConfig(
tokenizer.num_tokens,
hidden_size=args.hidden_size,
num_hidden_layers=args.num_layers,
num_attention_heads=args.num_attention_heads,
intermediate_size=intermediate_size,
hidden_dropout_prob=args.hidden_dropout,
attention_probs_dropout_prob=args.attention_dropout,
max_position_embeddings=args.max_position_embeddings,
type_vocab_size=tokenizer.num_type_tokens,
fp32_layernorm=args.fp32_layernorm,
fp32_embedding=args.fp32_embedding,
fp32_tokentypes=args.fp32_tokentypes,
layernorm_epsilon=args.layernorm_epsilon)
self.model = BertForPreTraining(self.config)
def forward(self, input_tokens, token_type_ids=None,
attention_mask=None, checkpoint_activations=False):
return self.model(
input_tokens, token_type_ids, attention_mask,
checkpoint_activations=checkpoint_activations)
def state_dict(self, destination=None, prefix='', keep_vars=False):
return self.model.state_dict(destination=destination, prefix=prefix,
keep_vars=keep_vars)
def load_state_dict(self, state_dict, strict=True):
return self.model.load_state_dict(state_dict, strict=strict)
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import copy
import json
import math
import logging
import tarfile
import tempfile
import shutil
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from torch.utils.checkpoint import checkpoint
from data_utils.file_utils import cached_path
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz",
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz",
}
CONFIG_NAME = 'bert_config.json'
WEIGHTS_NAME = 'pytorch_model.bin'
TF_WEIGHTS_NAME = 'model.ckpt'
def load_tf_weights_in_bert(model, tf_checkpoint_path):
""" Load tf checkpoints in a pytorch model
"""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
tf_path = os.path.abspath(tf_checkpoint_path)
print("Converting TensorFlow checkpoint from {}".format(tf_path))
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
print("Loading TF weight {} with shape {}".format(name, shape))
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split('/')
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(n in ["adam_v", "adam_m"] for n in name):
print("Skipping {}".format("/".join(name)))
continue
pointer = model
for m_name in name:
if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
l = re.split(r'_(\d+)', m_name)
else:
l = [m_name]
if l[0] == 'kernel' or l[0] == 'gamma':
pointer = getattr(pointer, 'weight')
elif l[0] == 'output_bias' or l[0] == 'beta':
pointer = getattr(pointer, 'bias')
elif l[0] == 'output_weights':
pointer = getattr(pointer, 'weight')
else:
pointer = getattr(pointer, l[0])
if len(l) >= 2:
num = int(l[1])
pointer = pointer[num]
if m_name[-11:] == '_embeddings':
pointer = getattr(pointer, 'weight')
elif m_name == 'kernel':
array = np.transpose(array)
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
print("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array)
return model
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def swish(x):
return x * torch.sigmoid(x)
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
class BertConfig(object):
"""Configuration class to store the configuration of a `BertModel`.
"""
def __init__(self,
vocab_size_or_config_json_file,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
fp32_layernorm=False,
fp32_embedding=False,
fp32_tokentypes=False,
layernorm_epsilon=1e-12):
"""Constructs BertConfig.
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`BertModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
if isinstance(vocab_size_or_config_json_file, str):
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.fp32_layernorm = fp32_layernorm
self.fp32_embedding = fp32_embedding
self.layernorm_epsilon = layernorm_epsilon
self.fp32_tokentypes = fp32_tokentypes
else:
raise ValueError("First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)")
@classmethod
def from_dict(cls, json_object):
"""Constructs a `BertConfig` from a Python dictionary of parameters."""
config = BertConfig(vocab_size_or_config_json_file=-1)
for key, value in json_object.items():
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `BertConfig` from a json file of parameters."""
with open(json_file, "r", encoding='utf-8') as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
# try:
# from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
# except ImportError:
# print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.")
# class BertLayerNorm(nn.Module):
# def __init__(self, hidden_size, eps=1e-12):
# """Construct a layernorm module in the TF style (epsilon inside the square root).
# """
# super(BertLayerNorm, self).__init__()
# self.weight = nn.Parameter(torch.ones(hidden_size))
# self.bias = nn.Parameter(torch.zeros(hidden_size))
# self.variance_epsilon = eps
# def forward(self, x):
# u = x.mean(-1, keepdim=True)
# s = (x - u).pow(2).mean(-1, keepdim=True)
# x = (x - u) / torch.sqrt(s + self.variance_epsilon)
# return self.weight * x + self.bias
class BertLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BertLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config):
super(BertEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.fp32_layernorm = config.fp32_layernorm
self.fp32_embedding = config.fp32_embedding
self.fp32_tokentypes = config.fp32_tokentypes
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layernorm_epsilon)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None):
seq_length = input_ids.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
if not self.fp32_tokentypes:
embeddings = words_embeddings + position_embeddings + token_type_embeddings
if self.fp32_embedding and not self.fp32_layernorm:
embeddings = embeddings.half()
previous_type = embeddings.type()
if self.fp32_layernorm:
embeddings = embeddings.float()
embeddings = self.LayerNorm(embeddings)
if self.fp32_layernorm:
if self.fp32_embedding:
embeddings = embeddings.half()
else:
embeddings = embeddings.type(previous_type)
else:
embeddings = words_embeddings.float() + position_embeddings.float() + token_type_embeddings.float()
if self.fp32_tokentypes and not self.fp32_layernorm:
embeddings = embeddings.half()
previous_type = embeddings.type()
if self.fp32_layernorm:
embeddings = embeddings.float()
embeddings = self.LayerNorm(embeddings)
if self.fp32_layernorm:
if self.fp32_tokentypes:
embeddings = embeddings.half()
else:
embeddings = embeddings.type(previous_type)
embeddings = self.dropout(embeddings)
return embeddings
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
previous_type = attention_probs.type()
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.fp32_layernorm = config.fp32_layernorm
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layernorm_epsilon)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
ln_input = hidden_states + input_tensor
previous_type = ln_input.type()
if self.fp32_layernorm:
ln_input = ln_input.float()
hidden_states = self.LayerNorm(ln_input)
if self.fp32_layernorm:
hidden_states = hidden_states.type(previous_type)
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config):
super(BertAttention, self).__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def forward(self, input_tensor, attention_mask):
self_output = self.self(input_tensor, attention_mask)
attention_output = self.output(self_output, input_tensor)
return attention_output
class BertIntermediate(nn.Module):
def __init__(self, config):
super(BertIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.intermediate_act_fn = ACT2FN[config.hidden_act] \
if isinstance(config.hidden_act, str) else config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super(BertOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.fp32_layernorm = config.fp32_layernorm
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layernorm_epsilon)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
ln_input = hidden_states + input_tensor
previous_type = ln_input.type()
if self.fp32_layernorm:
ln_input = ln_input.float()
hidden_states = self.LayerNorm(ln_input)
if self.fp32_layernorm:
hidden_states = hidden_states.type(previous_type)
return hidden_states
class BertLayer(nn.Module):
def __init__(self, config):
super(BertLayer, self).__init__()
self.attention = BertAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(self, hidden_states, attention_mask):
attention_output = self.attention(hidden_states, attention_mask)
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BertEncoder(nn.Module):
def __init__(self, config):
super(BertEncoder, self).__init__()
layer = BertLayer(config)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
# def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
# all_encoder_layers = []
# for layer_module in self.layer:
# hidden_states = layer_module(hidden_states, attention_mask)
# if output_all_encoded_layers:
# all_encoder_layers.append(hidden_states)
# if not output_all_encoded_layers:
# all_encoder_layers.append(hidden_states)
# return all_encoder_layers
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True, checkpoint_activations=False):
all_encoder_layers = []
def custom(start, end):
def custom_forward(*inputs):
layers = self.layer[start:end]
x_ = inputs[0]
for layer in layers:
x_ = layer(x_, inputs[1])
return x_
return custom_forward
if checkpoint_activations:
l = 0
num_layers = len(self.layer)
chunk_length = math.ceil(math.sqrt(num_layers))
while l < num_layers:
hidden_states = checkpoint(custom(l, l+chunk_length), hidden_states, attention_mask*1)
l += chunk_length
# decoder layers
else:
for i,layer_module in enumerate(self.layer):
hidden_states = layer_module(hidden_states, attention_mask)
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if not output_all_encoded_layers or checkpoint_activations:
all_encoder_layers.append(hidden_states)
return all_encoder_layers
class BertPooler(nn.Module):
def __init__(self, config):
super(BertPooler, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super(BertPredictionHeadTransform, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.transform_act_fn = ACT2FN[config.hidden_act] \
if isinstance(config.hidden_act, str) else config.hidden_act
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layernorm_epsilon)
self.fp32_layernorm = config.fp32_layernorm
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
previous_type = hidden_states.type()
if self.fp32_layernorm:
hidden_states = hidden_states.float()
hidden_states = self.LayerNorm(hidden_states)
if self.fp32_layernorm:
hidden_states = hidden_states.type(previous_type)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super(BertLMPredictionHead, self).__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
bert_model_embedding_weights.size(0),
bias=False)
self.decoder.weight = bert_model_embedding_weights
self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))
self.fp32_embedding = config.fp32_embedding
self.fp32_layernorm = config.fp32_layernorm
def convert_to_type(tensor):
if self.fp32_embedding:
return tensor.half()
else:
return tensor
self.type_converter = convert_to_type
self.converted = False
def forward(self, hidden_states):
if not self.converted:
self.converted = True
if self.fp32_embedding:
self.transform.half()
if self.fp32_layernorm:
self.transform.LayerNorm.float()
hidden_states = self.transform(self.type_converter(hidden_states))
# hidden_states = self.decoder(hidden_states) + self.bias
hidden_states = F.linear(self.type_converter(hidden_states), self.type_converter(self.decoder.weight), self.type_converter(self.bias))
return hidden_states
class BertOnlyMLMHead(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super(BertOnlyMLMHead, self).__init__()
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class BertOnlyNSPHead(nn.Module):
def __init__(self, config):
super(BertOnlyNSPHead, self).__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output):
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
class BertPreTrainingHeads(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super(BertPreTrainingHeads, self).__init__()
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
for p in self.seq_relationship.parameters():
if p is None:
continue
pooled_output = pooled_output.type_as(p)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class PreTrainedBertModel(nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super(PreTrainedBertModel, self).__init__()
if not isinstance(config, BertConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
"To create a model from a Google pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
))
self.config = config
def init_bert_weights(self, module):
""" Initialize the weights.
"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, BertLayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@classmethod
def from_pretrained(cls, pretrained_model_name, state_dict=None, cache_dir=None,
fp32_layernorm=False, fp32_embedding=False, layernorm_epsilon=1e-12,
fp32_tokentypes=False, *inputs, **kwargs):
"""
Instantiate a PreTrainedBertModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
Params:
pretrained_model_name: either:
- a str with the name of a pre-trained model to load selected in the list of:
. `bert-base-uncased`
. `bert-large-uncased`
. `bert-base-cased`
. `bert-large-cased`
. `bert-base-multilingual-uncased`
. `bert-base-multilingual-cased`
. `bert-base-chinese`
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
if pretrained_model_name in PRETRAINED_MODEL_ARCHIVE_MAP:
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name]
else:
archive_file = pretrained_model_name
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
except FileNotFoundError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find any file "
"associated to this path or url.".format(
pretrained_model_name,
', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
archive_file))
return None
if resolved_archive_file == archive_file:
logger.info("loading archive file {}".format(archive_file))
else:
logger.info("loading archive file {} from cache at {}".format(
archive_file, resolved_archive_file))
tempdir = None
if os.path.isdir(resolved_archive_file):
serialization_dir = resolved_archive_file
else:
# Extract archive to temp dir
tempdir = tempfile.mkdtemp()
logger.info("extracting archive file {} to temp dir {}".format(
resolved_archive_file, tempdir))
with tarfile.open(resolved_archive_file, 'r:gz') as archive:
archive.extractall(tempdir)
serialization_dir = tempdir
# Load config
config_file = os.path.join(serialization_dir, CONFIG_NAME)
config = BertConfig.from_json_file(config_file)
config.fp32_layernorm = fp32_layernorm
config.fp32_embedding = fp32_embedding
config.layernorm_epsilon = layernorm_epsilon
config.fp32_tokentypes = fp32_tokentypes
logger.info("Model config {}".format(config))
# Instantiate model.
model = cls(config, *inputs, **kwargs)
if state_dict is None:
weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
state_dict = torch.load(weights_path)
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if 'gamma' in key:
new_key = key.replace('gamma', 'weight')
if 'beta' in key:
new_key = key.replace('beta', 'bias')
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
load(model, prefix='' if hasattr(model, 'bert') else 'bert.')
if len(missing_keys) > 0:
logger.info("Weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
logger.info("Weights from pretrained model not used in {}: {}".format(
model.__class__.__name__, unexpected_keys))
if tempdir:
# Clean up temp dir
shutil.rmtree(tempdir)
return model
class BertModel(PreTrainedBertModel):
"""BERT model ("Bidirectional Embedding Representations from a Transformer").
Params:
config: a BertConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
Outputs: Tuple of (encoded_layers, pooled_output)
`encoded_layers`: controled by `output_all_encoded_layers` argument:
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
to the last attention block of shape [batch_size, sequence_length, hidden_size],
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
classifier pretrained on top of the hidden state associated to the first character of the
input (`CLF`) to train on the Next-Sentence task (see BERT's paper).
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = modeling.BertModel(config=config)
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config):
super(BertModel, self).__init__(config)
self.embeddings = BertEmbeddings(config)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True, checkpoint_activations=False):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=next(self.encoder.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
embedding_output = self.embeddings(input_ids, token_type_ids)
encoded_layers = self.encoder(embedding_output,
extended_attention_mask,
output_all_encoded_layers=output_all_encoded_layers,
checkpoint_activations=checkpoint_activations)
sequence_output = encoded_layers[-1]
for p in self.pooler.parameters():
if p is None:
continue
sequence_output = sequence_output.type_as(p)
break
pooled_output = self.pooler(sequence_output)
if not output_all_encoded_layers or checkpoint_activations:
encoded_layers = encoded_layers[-1]
return encoded_layers, pooled_output
class BertForPreTraining(PreTrainedBertModel):
"""BERT model with pre-training heads.
This module comprises the BERT model followed by the two pre-training heads:
- the masked language modeling head, and
- the next sentence classification head.
Params:
config: a BertConfig class instance with the configuration to build a new model.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., vocab_size]
`next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
with indices selected in [0, 1].
0 => next sentence is the continuation, 1 => next sentence is a random sentence.
Outputs:
if `masked_lm_labels` and `next_sentence_label` are not `None`:
Outputs the total_loss which is the sum of the masked language modeling loss and the next
sentence classification loss.
if `masked_lm_labels` or `next_sentence_label` is `None`:
Outputs a tuple comprising
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
- the next sentence classification logits of shape [batch_size, 2].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertForPreTraining(config)
masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config):
super(BertForPreTraining, self).__init__(config)
self.bert = BertModel(config)
self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, next_sentence_label=None, checkpoint_activations=False):
sequence_output, pooled_output = self.bert(input_ids, token_type_ids, attention_mask,
output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
if masked_lm_labels is not None and next_sentence_label is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
total_loss = masked_lm_loss + next_sentence_loss
return total_loss
else:
return prediction_scores, seq_relationship_score
class BertForMaskedLM(PreTrainedBertModel):
"""BERT model with the masked language modeling head.
This module comprises the BERT model followed by the masked language modeling head.
Params:
config: a BertConfig class instance with the configuration to build a new model.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., vocab_size]
Outputs:
if `masked_lm_labels` is not `None`:
Outputs the masked language modeling loss.
if `masked_lm_labels` is `None`:
Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertForMaskedLM(config)
masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config):
super(BertForMaskedLM, self).__init__(config)
self.bert = BertModel(config)
self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, checkpoint_activations=False):
sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask,
output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
prediction_scores = self.cls(sequence_output)
if masked_lm_labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
return masked_lm_loss
else:
return prediction_scores
class BertForNextSentencePrediction(PreTrainedBertModel):
"""BERT model with next sentence prediction head.
This module comprises the BERT model followed by the next sentence classification head.
Params:
config: a BertConfig class instance with the configuration to build a new model.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
with indices selected in [0, 1].
0 => next sentence is the continuation, 1 => next sentence is a random sentence.
Outputs:
if `next_sentence_label` is not `None`:
Outputs the total_loss which is the sum of the masked language modeling loss and the next
sentence classification loss.
if `next_sentence_label` is `None`:
Outputs the next sentence classification logits of shape [batch_size, 2].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertForNextSentencePrediction(config)
seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config):
super(BertForNextSentencePrediction, self).__init__(config)
self.bert = BertModel(config)
self.cls = BertOnlyNSPHead(config)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None, checkpoint_activations=False):
_, pooled_output = self.bert(input_ids, token_type_ids, attention_mask,
output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
seq_relationship_score = self.cls( pooled_output)
if next_sentence_label is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
return next_sentence_loss
else:
return seq_relationship_score
class BertForSequenceClassification(PreTrainedBertModel):
"""BERT model for classification.
This module is composed of the BERT model with a linear layer on top of
the pooled output.
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
`num_labels`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_labels].
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, num_labels].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
num_labels = 2
model = BertForSequenceClassification(config, num_labels)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_labels=2):
super(BertForSequenceClassification, self).__init__(config)
self.num_labels = num_labels
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, num_labels)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, checkpoint_activations=False):
_, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return loss
else:
return logits
class BertForMultipleChoice(PreTrainedBertModel):
"""BERT model for multiple choice tasks.
This module is composed of the BERT model with a linear layer on top of
the pooled output.
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
`num_choices`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_choices].
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, num_labels].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
num_choices = 2
model = BertForMultipleChoice(config, num_choices)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_choices=2):
super(BertForMultipleChoice, self).__init__(config)
self.num_choices = num_choices
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, checkpoint_activations=False):
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1))
_, pooled_output = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, self.num_choices)
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
return loss
else:
return reshaped_logits
class BertForTokenClassification(PreTrainedBertModel):
"""BERT model for token-level classification.
This module is composed of the BERT model with a linear layer on top of
the full hidden state of the last layer.
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
`num_labels`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_labels].
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, sequence_length, num_labels].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
num_labels = 2
model = BertForTokenClassification(config, num_labels)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_labels=2):
super(BertForTokenClassification, self).__init__(config)
self.num_labels = num_labels
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, num_labels)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, checkpoint_activations=False):
sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return loss
else:
return logits
class BertForQuestionAnswering(PreTrainedBertModel):
"""BERT model for Question Answering (span extraction).
This module is composed of the BERT model with a linear layer on top of
the sequence output that computes start_logits and end_logits
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
Positions are clamped to the length of the sequence and position outside of the sequence are not taken
into account for computing the loss.
`end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
Positions are clamped to the length of the sequence and position outside of the sequence are not taken
into account for computing the loss.
Outputs:
if `start_positions` and `end_positions` are not `None`:
Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
if `start_positions` or `end_positions` is `None`:
Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
position tokens of shape [batch_size, sequence_length].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertForQuestionAnswering(config)
start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config):
super(BertForQuestionAnswering, self).__init__(config)
self.bert = BertModel(config)
# TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version
# self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None, end_positions=None, checkpoint_activations=False):
sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
return total_loss
else:
return start_logits, end_logits
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from torch.optim import SGD
from torch.optim import Adadelta
from torch.optim import Adagrad
from torch.optim import SparseAdam
from torch.optim import Adamax
from torch.optim import SGD
from torch.optim import Rprop
from torch.optim import RMSprop
from torch.optim import Optimizer
from torch.optim import LBFGS
from .adam import Adam
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
from torch.optim import Optimizer
class Adam(Optimizer):
r"""Implements Adam algorithm.
It has been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False)
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, amsgrad=amsgrad)
super(Adam, self).__init__(params, defaults)
def __setstate__(self, state):
super(Adam, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
amsgrad = group['amsgrad']
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
if amsgrad:
max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = max_exp_avg_sq.sqrt().add_(group['eps'])
else:
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr']# * math.sqrt(bias_correction2) / bias_correction1
if group['weight_decay'] != 0:
p.data.add_(-step_size * group['weight_decay'], p.data)
p.data.addcdiv_(-step_size, exp_avg, denom)
return loss
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pretrain BERT"""
import os
import random
import numpy as np
import torch
from arguments import get_args
from configure_data import configure_data
from fp16 import FP16_Module
from fp16 import FP16_Optimizer
from learning_rates import AnnealingLR
from model import BertModel
from model import get_params_for_weight_decay_optimization
from model import DistributedDataParallel as DDP
from optim import Adam
from utils import Timers
from utils import save_checkpoint
from utils import load_checkpoint
def get_model(tokenizer, args):
"""Build the model."""
print('building BERT model ...')
model = BertModel(tokenizer, args)
print(' > number of parameters: {}'.format(
sum([p.nelement() for p in model.parameters()])), flush=True)
# GPU allocation.
model.cuda(torch.cuda.current_device())
# Fp16 conversion.
if args.fp16:
model = FP16_Module(model)
if args.fp32_embedding:
model.module.model.bert.embeddings.word_embeddings.float()
model.module.model.bert.embeddings.position_embeddings.float()
model.module.model.bert.embeddings.token_type_embeddings.float()
if args.fp32_tokentypes:
model.module.model.bert.embeddings.token_type_embeddings.float()
if args.fp32_layernorm:
for name, _module in model.named_modules():
if 'LayerNorm' in name:
_module.float()
# Wrap model for distributed training.
if args.world_size > 1:
model = DDP(model)
return model
def get_optimizer(model, args):
"""Set up the optimizer."""
# Build parameter groups (weight decay and non-decay).
while isinstance(model, (DDP, FP16_Module)):
model = model.module
layers = model.model.bert.encoder.layer
pooler = model.model.bert.pooler
lmheads = model.model.cls.predictions
nspheads = model.model.cls.seq_relationship
embeddings = model.model.bert.embeddings
param_groups = []
param_groups += list(get_params_for_weight_decay_optimization(layers))
param_groups += list(get_params_for_weight_decay_optimization(pooler))
param_groups += list(get_params_for_weight_decay_optimization(nspheads))
param_groups += list(get_params_for_weight_decay_optimization(embeddings))
param_groups += list(get_params_for_weight_decay_optimization(
lmheads.transform))
param_groups[1]['params'].append(lmheads.bias)
# Use Adam.
optimizer = Adam(param_groups,
lr=args.lr, weight_decay=args.weight_decay)
# Wrap into fp16 optimizer.
if args.fp16:
optimizer = FP16_Optimizer(optimizer,
static_loss_scale=args.loss_scale,
dynamic_loss_scale=args.dynamic_loss_scale,
dynamic_loss_args={
'scale_window': args.loss_scale_window,
'min_scale':args.min_scale,
'delayed_shift': args.hysteresis})
return optimizer
def get_learning_rate_scheduler(optimizer, args):
"""Build the learning rate scheduler."""
# Add linear learning rate scheduler.
if args.lr_decay_iters is not None:
num_iters = args.lr_decay_iters
else:
num_iters = args.train_iters * args.epochs
init_step = -1
warmup_iter = args.warmup * num_iters
lr_scheduler = AnnealingLR(optimizer,
start_lr=args.lr,
warmup_iter=warmup_iter,
num_iters=num_iters,
decay_style=args.lr_decay_style,
last_iter=init_step)
return lr_scheduler
def setup_model_and_optimizer(args, tokenizer):
"""Setup model and optimizer."""
model = get_model(tokenizer, args)
optimizer = get_optimizer(model, args)
lr_scheduler = get_learning_rate_scheduler(optimizer, args)
criterion = torch.nn.CrossEntropyLoss(reduce=False, ignore_index=-1)
if args.load is not None:
epoch, i, total_iters = load_checkpoint(model, optimizer,
lr_scheduler, args)
if args.resume_dataloader:
args.epoch = epoch
args.mid_epoch_iters = i
args.total_iters = total_iters
return model, optimizer, lr_scheduler, criterion
def get_batch(data):
''' get_batch subdivides the source data into chunks of
length args.seq_length. If source is equal to the example
output of the data loading example, with a seq_length limit
of 2, we'd get the following two Variables for i = 0:
┌ a g m s ┐ ┌ b h n t ┐
└ b h n t ┘ └ c i o u ┘
Note that despite the name of the function, the subdivison of data is not
done along the batch dimension (i.e. dimension 1), since that was handled
by the data loader. The chunks are along dimension 0, corresponding
to the seq_len dimension in the LSTM. A Variable representing an appropriate
shard reset mask of the same dimensions is also returned.
'''
tokens = torch.autograd.Variable(data['text'].long())
types = torch.autograd.Variable(data['types'].long())
next_sentence = torch.autograd.Variable(data['is_random'].long())
loss_mask = torch.autograd.Variable(data['mask'].float())
lm_labels = torch.autograd.Variable(data['mask_labels'].long())
padding_mask = torch.autograd.Variable(data['pad_mask'].byte())
# Move to cuda
tokens = tokens.cuda()
types = types.cuda()
next_sentence = next_sentence.cuda()
loss_mask = loss_mask.cuda()
lm_labels = lm_labels.cuda()
padding_mask = padding_mask.cuda()
return tokens, types, next_sentence, loss_mask, lm_labels, padding_mask
def forward_step(data, model, criterion, args):
"""Forward step."""
# Get the batch.
tokens, types, next_sentence, loss_mask, lm_labels, \
padding_mask = get_batch(data)
# Forward model.
output, nsp = model(tokens, types, 1-padding_mask,
checkpoint_activations=args.checkpoint_activations)
nsp_loss = criterion(nsp.view(-1, 2).contiguous().float(),
next_sentence.view(-1).contiguous()).mean()
losses = criterion(output.view(-1, args.data_size).contiguous().float(),
lm_labels.contiguous().view(-1).contiguous())
loss_mask = loss_mask.contiguous()
loss_mask = loss_mask.view(-1)
lm_loss = torch.sum(
losses * loss_mask.view(-1).float()) / loss_mask.sum()
return lm_loss, nsp_loss
def backward_step(optimizer, model, lm_loss, nsp_loss, args):
"""Backward step."""
# Total loss.
loss = lm_loss + nsp_loss
# Backward pass.
optimizer.zero_grad()
if args.fp16:
optimizer.backward(loss, update_master_grads=False)
else:
loss.backward()
# Reduce across processes.
lm_loss_reduced = lm_loss
nsp_loss_reduced = nsp_loss
if args.world_size > 1:
reduced_losses = torch.cat((lm_loss.view(1), nsp_loss.view(1)))
torch.distributed.all_reduce(reduced_losses.data)
reduced_losses.data = reduced_losses.data / args.world_size
model.allreduce_params(reduce_after=False,
fp32_allreduce=args.fp32_allreduce)
lm_loss_reduced = reduced_losses[0]
nsp_loss_reduced = reduced_losses[1]
# Update master gradients.
if args.fp16:
optimizer.update_master_grads()
# Clipping gradients helps prevent the exploding gradient.
if args.clip_grad > 0:
if not args.fp16:
torch.nn.utils.clip_grad_norm(model.parameters(), args.clip_grad)
else:
optimizer.clip_master_grads(args.clip_grad)
return lm_loss_reduced, nsp_loss_reduced
def train_step(input_data, model, criterion, optimizer, lr_scheduler, args):
"""Single training step."""
# Forward model for one step.
lm_loss, nsp_loss = forward_step(input_data, model, criterion, args)
# Calculate gradients, reduce across processes, and clip.
lm_loss_reduced, nsp_loss_reduced = backward_step(optimizer, model, lm_loss,
nsp_loss, args)
# Update parameters.
optimizer.step()
# Update learning rate.
skipped_iter = 0
if not (args.fp16 and optimizer.overflow):
lr_scheduler.step()
else:
skipped_iter = 1
return lm_loss_reduced, nsp_loss_reduced, skipped_iter
def train_epoch(epoch, model, optimizer, train_data,
lr_scheduler, criterion, timers, args):
"""Train one full epoch."""
# Turn on training mode which enables dropout.
model.train()
# Tracking loss.
total_lm_loss = 0.0
total_nsp_loss = 0.0
# Iterations.
max_iters = args.train_iters
iteration = 0
skipped_iters = 0
if args.resume_dataloader:
iteration = args.mid_epoch_iters
args.resume_dataloader = False
# Data iterator.
data_iterator = iter(train_data)
timers('interval time').start()
while iteration < max_iters:
lm_loss, nsp_loss, skipped_iter = train_step(next(data_iterator),
model,
criterion,
optimizer,
lr_scheduler,
args)
skipped_iters += skipped_iter
iteration += 1
# Update losses.
total_lm_loss += lm_loss.data.detach().float()
total_nsp_loss += nsp_loss.data.detach().float()
# Logging.
if iteration % args.log_interval == 0:
learning_rate = optimizer.param_groups[0]['lr']
avg_nsp_loss = total_nsp_loss.item() / args.log_interval
avg_lm_loss = total_lm_loss.item() / args.log_interval
elapsed_time = timers('interval time').elapsed()
log_string = ' epoch{:2d} |'.format(epoch)
log_string += ' iteration {:8d}/{:8d} |'.format(iteration,
max_iters)
log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
elapsed_time * 1000.0 / args.log_interval)
log_string += ' learning rate {:.3E} |'.format(learning_rate)
log_string += ' lm loss {:.3E} |'.format(avg_lm_loss)
log_string += ' nsp loss {:.3E} |'.format(avg_nsp_loss)
if args.fp16:
log_string += ' loss scale {:.1f} |'.format(
optimizer.loss_scale)
print(log_string, flush=True)
total_nsp_loss = 0.0
total_lm_loss = 0.0
# Checkpointing
if args.save and args.save_iters and iteration % args.save_iters == 0:
total_iters = args.train_iters * (epoch-1) + iteration
model_suffix = 'model/%d.pt' % (total_iters)
save_checkpoint(model_suffix, epoch, iteration, model, optimizer,
lr_scheduler, args)
return iteration, skipped_iters
def evaluate(data_source, model, criterion, args):
"""Evaluation."""
# Turn on evaluation mode which disables dropout.
model.eval()
total_lm_loss = 0
total_nsp_loss = 0
max_iters = args.eval_iters
with torch.no_grad():
data_iterator = iter(data_source)
iteration = 0
while iteration < max_iters:
# Forward evaluation.
lm_loss, nsp_loss = forward_step(next(data_iterator), model,
criterion, args)
# Reduce across processes.
if isinstance(model, DDP):
reduced_losses = torch.cat((lm_loss.view(1), nsp_loss.view(1)))
torch.distributed.all_reduce(reduced_losses.data)
reduced_losses.data = reduced_losses.data/args.world_size
lm_loss = reduced_losses[0]
nsp_loss = reduced_losses[1]
total_lm_loss += lm_loss.data.detach().float().item()
total_nsp_loss += nsp_loss.data.detach().float().item()
iteration += 1
# Move model back to the train mode.
model.train()
total_lm_loss /= max_iters
total_nsp_loss /= max_iters
return total_lm_loss, total_nsp_loss
def initialize_distributed(args):
"""Initialize torch.distributed."""
# Manually set the device ids.
device = args.rank % torch.cuda.device_count()
if args.local_rank is not None:
device = args.local_rank
torch.cuda.set_device(device)
# Call the init process
if args.world_size > 1:
init_method = 'tcp://'
master_ip = os.getenv('MASTER_ADDR', 'localhost')
master_port = os.getenv('MASTER_PORT', '6000')
init_method += master_ip + ':' + master_port
torch.distributed.init_process_group(
backend=args.distributed_backend,
world_size=args.world_size, rank=args.rank,
init_method=init_method)
def set_random_seed(seed):
"""Set random seed for reproducability."""
if seed is not None and seed > 0:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def main():
"""Main training program."""
print('Pretrain BERT model')
# Disable CuDNN.
torch.backends.cudnn.enabled = False
# Timer.
timers = Timers()
# Arguments.
args = get_args()
# Pytorch distributed.
initialize_distributed(args)
# Random seeds for reproducability.
set_random_seed(args.seed)
# Data stuff.
data_config = configure_data()
data_config.set_defaults(data_set_type='BERT', transpose=False)
(train_data, val_data, test_data), tokenizer = data_config.apply(args)
args.data_size = tokenizer.num_tokens
# Model, optimizer, and learning rate.
model, optimizer, lr_scheduler, criterion = setup_model_and_optimizer(
args, tokenizer)
# At any point you can hit Ctrl + C to break out of training early.
try:
total_iters = 0
skipped_iters = 0
start_epoch = 1
best_val_loss = float('inf')
# Resume data loader if necessary.
if args.resume_dataloader:
start_epoch = args.epoch
total_iters = args.total_iters
train_data.batch_sampler.start_iter = total_iters % len(train_data)
# For all epochs.
for epoch in range(start_epoch, args.epochs+1):
timers('epoch time').start()
iteration, skipped = train_epoch(epoch, model, optimizer,
train_data, lr_scheduler,
criterion, timers, args)
elapsed_time = timers('epoch time').elapsed()
total_iters += iteration
skipped_iters += skipped
lm_loss, nsp_loss = evaluate(val_data, model, criterion, args)
val_loss = lm_loss + nsp_loss
print('-' * 100)
print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:.4E} | '
'valid LM Loss {:.4E} | valid NSP Loss {:.4E}'.format(
epoch, elapsed_time, val_loss, lm_loss, nsp_loss))
print('-' * 100)
if val_loss < best_val_loss:
best_val_loss = val_loss
if args.save:
best_path = 'best/model.pt'
print('saving best model to:',
os.path.join(args.save, best_path))
save_checkpoint(best_path, epoch+1, total_iters, model,
optimizer, lr_scheduler, args)
except KeyboardInterrupt:
print('-' * 100)
print('Exiting from training early')
if args.save:
cur_path = 'current/model.pt'
print('saving current model to:',
os.path.join(args.save, cur_path))
save_checkpoint(cur_path, epoch, total_iters, model, optimizer,
lr_scheduler, args)
exit()
if args.save:
final_path = 'final/model.pt'
print('saving final model to:', os.path.join(args.save, final_path))
save_checkpoint(final_path, args.epochs, total_iters, model, optimizer,
lr_scheduler, args)
if test_data is not None:
# Run on test data.
print('entering test')
lm_loss, nsp_loss = evaluate(test_data, model, criterion, args)
test_loss = lm_loss + nsp_loss
print('=' * 100)
print('| End of training | test loss {:5.4f} | valid LM Loss {:.4E} |'
' valid NSP Loss {:.4E}'.format(test_loss, lm_loss, nsp_loss))
print('=' * 100)
if __name__ == "__main__":
main()
nltk>=3.4
numpy>=1.15.4
pandas>=0.24.0
sentencepiece>=0.1.8
tensorflow>=1.12.0
#!/bin/bash
RANK=0
WORLD_SIZE=1
python pretrain_bert.py \
--batch-size 4 \
--tokenizer-type BertWordPieceTokenizer \
--cache-dir cache_dir \
--tokenizer-model-type bert-large-uncased \
--vocab-size 30522 \
--train-data wikipedia \
--loose-json \
--text-key text \
--split 1000,1,1 \
--lazy-loader \
--max-preds-per-seq 80 \
--seq-length 512 \
--max-position-embeddings 512 \
--num-layers 24 \
--hidden-size 1024 \
--intermediate-size 4096 \
--num-attention-heads 16 \
--hidden-dropout 0.1 \
--attention-dropout 0.1 \
--train-iters 1000000 \
--lr 0.0001 \
--lr-decay-style linear \
--lr-decay-iters 990000 \
--warmup .01 \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--fp16 \
--fp32-layernorm \
--fp32-embedding \
--hysteresis 2 \
--num-workers 2
#!/bin/bash
WORLD_SIZE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"
python -m torch.distributed.launch $DISTRIBUTED_ARGS \
pretrain_bert.py \
--batch-size 4 \
--tokenizer-type BertWordPieceTokenizer \
--cache-dir cache_dir \
--tokenizer-model-type bert-large-uncased \
--vocab-size 30522 \
--train-data wikipedia \
--loose-json \
--text-key text \
--split 1000,1,1 \
--lazy-loader \
--max-preds-per-seq 80 \
--seq-length 512 \
--max-position-embeddings 512 \
--num-layers 24 \
--hidden-size 1024 \
--intermediate-size 4096 \
--num-attention-heads 16 \
--hidden-dropout 0.1 \
--attention-dropout 0.1 \
--train-iters 1000000 \
--lr 0.0001 \
--lr-decay-style linear \
--lr-decay-iters 990000 \
--warmup .01 \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--fp16 \
--fp32-layernorm \
--fp32-embedding \
--hysteresis 2 \
--num-workers 2
#!/bin/bash
RANK=0
WORLD_SIZE=1
python pretrain_bert.py \
--batch-size 4 \
--tokenizer-type SentencePieceTokenizer \
--tokenizer-model-type bpe \
--tokenizer-path tokenizer.model \
--vocab-size 30522 \
--train-data wikipedia \
--loose-json \
--text-key text \
--split 1000,1,1 \
--lazy-loader \
--max-preds-per-seq 80 \
--seq-length 512 \
--max-position-embeddings 512 \
--num-layers 24 \
--hidden-size 1024 \
--intermediate-size 4096 \
--num-attention-heads 16 \
--hidden-dropout 0.1 \
--attention-dropout 0.1 \
--train-iters 1000000 \
--lr 0.0001 \
--lr-decay-style linear \
--lr-decay-iters 990000 \
--warmup .01 \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--fp16 \
--fp32-layernorm \
--fp32-embedding \
--hysteresis 2 \
--num-workers 2
#!/bin/bash
WORLD_SIZE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"
python -m torch.distributed.launch $DISTRIBUTED_ARGS \
pretrain_bert.py \
--batch-size 4 \
--tokenizer-type BertWordPieceTokenizer \
--cache-dir cache_dir \
--tokenizer-model-type bert-large-uncased \
--vocab-size 30522 \
--use-tfrecords \
--train-data <TFRecord 1> <TFRecord 2> \
--valid-data <TF Record 3> \
--test-data <TF Record 4> \
--max-preds-per-seq 80 \
--seq-length 512 \
--max-position-embeddings 512 \
--num-layers 24 \
--hidden-size 1024 \
--intermediate-size 4096 \
--num-attention-heads 16 \
--hidden-dropout 0.1 \
--attention-dropout 0.1 \
--train-iters 1000000 \
--lr 0.0001 \
--lr-decay-style linear \
--lr-decay-iters 990000 \
--warmup .01 \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--fp16 \
--fp32-layernorm \
--fp32-embedding \
--hysteresis 2 \
--num-workers 2
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for logging and serialization"""
import os
import random
import time
import numpy as np
import torch
class Timers:
"""Group of timers."""
class Timer:
"""Timer."""
def __init__(self, name):
self.name_ = name
self.elapsed_ = 0.0
self.started_ = False
self.start_time = time.time()
def start(self):
"""Start the timer."""
assert not self.started_, 'timer has already been started'
torch.cuda.synchronize()
self.start_time = time.time()
self.started_ = True
def stop(self):
"""Stop the timer."""
assert self.started_, 'timer is not started'
torch.cuda.synchronize()
self.elapsed_ += (time.time() - self.start_time)
self.started_ = False
def reset(self):
"""Reset timer."""
self.elapsed_ = 0.0
self.started_ = False
def elapsed(self, reset=True):
"""Calculate the elapsed time."""
started_ = self.started_
# If the timing in progress, end it first.
if self.started_:
self.stop()
# Get the elapsed time.
elapsed_ = self.elapsed_
# Reset the elapsed time
if reset:
self.reset()
# If timing was in progress, set it back.
if started_:
self.start()
return elapsed_
def __init__(self):
self.timers = {}
def __call__(self, name):
if name not in self.timers:
self.timers[name] = self.Timer(name)
return self.timers[name]
def log(self, names, normalizer=1.0, reset=True):
"""Log a group of timers."""
assert normalizer > 0.0
string = 'time (ms)'
for name in names:
elapsed_time = self.timers[name].elapsed(
reset=reset) * 1000.0/ normalizer
string += ' | {}: {:.2f}'.format(name, elapsed_time)
print(string, flush=True)
def report_memory(name):
"""Simple GPU memory report."""
mega_bytes = 1024.0 * 1024.0
string = name + ' memory (MB)'
string += ' | allocated: {}'.format(
torch.cuda.memory_allocated() / mega_bytes)
string += ' | max allocated: {}'.format(
torch.cuda.max_memory_allocated() / mega_bytes)
string += ' | cached: {}'.format(torch.cuda.memory_cached() / mega_bytes)
string += ' | max cached: {}'.format(
torch.cuda.max_memory_cached()/ mega_bytes)
print(string, flush=True)
def load_checkpoint(model, optimizer, lr_scheduler, args):
"""Load a model checkpoint."""
checkpoint_path = args.load
model_path = checkpoint_path
model_sd = torch.load(model_path, map_location='cpu')
total_iters = model_sd['total_iters']
epoch = model_sd['epoch']
i = model_sd['mid_epoch_iters']
model.load_state_dict(model_sd['sd'])
checkpoint_path = os.path.dirname(checkpoint_path)
if args.load_optim:
optim_path = os.path.join(checkpoint_path, 'optim.pt')
optim_sd, lr_sd = torch.load(optim_path, map_location='cpu')
optimizer.load_state_dict(optim_sd)
lr_scheduler.load_state_dict(lr_sd)
elif args.fp16:
optimizer._model_params_to_master_params()
rng_path = None
if args.load_rng:
rng_path = os.path.join(checkpoint_path, 'rng.pt')
if args.load_all_rng:
rng_path = os.path.join(checkpoint_path,
'rng.%d.pt'%(torch.distributed.get_rank()))
if rng_path is not None:
rng_state = torch.load(rng_path)
torch.cuda.set_rng_state(rng_state[0])
torch.set_rng_state(rng_state[1])
np.random.set_state(rng_state[2])
random.setstate(rng_state[3])
return epoch, i, total_iters
def save_checkpoint(model_suffix, epoch, i, model, optimizer, lr_scheduler, args):
"""Save a model checkpoint."""
model_path = os.path.join(args.save, model_suffix)
checkpoint_dir = os.path.dirname(model_path)
rng_state = (torch.cuda.get_rng_state(),
torch.get_rng_state(),
np.random.get_state(),
random.getstate())
if not (torch.distributed.is_initialized() and \
torch.distributed.get_rank() > 1):
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
total_iters = args.train_iters * (epoch-1) + i
sd = {'sd': model.state_dict()}
sd['total_iters'] = total_iters
sd['epoch'] = epoch
sd['mid_epoch_iters'] = i
torch.save(sd, model_path)
print('saved', model_path)
if args.save_optim:
optim_path = os.path.join(checkpoint_dir, 'optim.pt')
torch.save((optimizer.state_dict(),
lr_scheduler.state_dict()), optim_path)
print('saved', optim_path)
if args.save_rng:
rng_path = os.path.join(checkpoint_dir, 'rng.pt')
torch.save(rng_state, rng_path)
print('saved', rng_path)
else:
while not os.path.exists(checkpoint_dir):
time.sleep(1)
if args.save_all_rng:
rng_path = os.path.join(checkpoint_dir,
'rng.%d.pt'%(torch.distributed.get_rank()))
torch.save(rng_state, rng_path)
print('saved', rng_path)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment