Commit d520d24f authored by silencealiang's avatar silencealiang
Browse files

Merge branch 'main' into 'main'

megatron升级v0.10

See merge request !3
parents 3aca1415 481609bb
Pipeline #2055 failed with stages
in 0 seconds
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from megatron.core.extensions.transformer_engine import (
TEDotProductAttention,
TELayerNormColumnParallelLinear,
TERowParallelLinear,
)
from megatron.core.fusions.fused_bias_dropout import get_bias_dropout_add
from megatron.core.tensor_parallel.layers import ColumnParallelLinear, RowParallelLinear
from megatron.core.transformer.attention import SelfAttention, SelfAttentionSubmodules
from megatron.core.transformer.dot_product_attention import DotProductAttention
from megatron.core.transformer.enums import AttnMaskType
from megatron.core.transformer.identity_op import IdentityOp
from megatron.core.transformer.mlp import MLP, MLPSubmodules
from megatron.core.transformer.spec_utils import ModuleSpec
from megatron.core.transformer.transformer_layer import TransformerLayer, TransformerLayerSubmodules
try:
import apex # pylint: disable=unused-import
from megatron.core.fusions.fused_layer_norm import FusedLayerNorm
HAVE_APEX = True
LNImpl = FusedLayerNorm
except ImportError:
import warnings
from megatron.core.transformer.torch_norm import WrappedTorchNorm
warnings.warn(f'Apex is not installed. Falling back to Torch Norm')
LNImpl = WrappedTorchNorm
# Use this spec to use lower level Transformer Engine modules (required for fp8 training)
def get_vit_layer_with_transformer_engine_spec() -> ModuleSpec:
'''
Returns ViT layer spec with Transformer Engine layers
'''
mlp = _get_mlp_module_spec(use_te=True)
return ModuleSpec(
module=TransformerLayer,
submodules=TransformerLayerSubmodules(
self_attention=ModuleSpec(
module=SelfAttention,
params={"attn_mask_type": AttnMaskType.no_mask},
submodules=SelfAttentionSubmodules(
linear_qkv=TELayerNormColumnParallelLinear,
core_attention=TEDotProductAttention,
linear_proj=TERowParallelLinear,
),
),
self_attn_bda=get_bias_dropout_add,
pre_mlp_layernorm=IdentityOp,
mlp=mlp,
mlp_bda=get_bias_dropout_add,
),
)
def get_vit_layer_with_local_spec() -> ModuleSpec:
'''
Returns ViT layer spec with Mcore local layers
'''
mlp = _get_mlp_module_spec(use_te=False)
return ModuleSpec(
module=TransformerLayer,
submodules=TransformerLayerSubmodules(
input_layernorm=LNImpl,
self_attention=ModuleSpec(
module=SelfAttention,
params={"attn_mask_type": AttnMaskType.causal},
submodules=SelfAttentionSubmodules(
linear_qkv=ColumnParallelLinear,
core_attention=DotProductAttention,
linear_proj=RowParallelLinear,
),
),
self_attn_bda=get_bias_dropout_add,
pre_mlp_layernorm=LNImpl,
mlp=mlp,
mlp_bda=get_bias_dropout_add,
),
)
# Helper function to get module spec for MLP/MoE
def _get_mlp_module_spec(use_te: bool = True) -> ModuleSpec:
# Dense MLP w/ or w/o TE modules.
return ModuleSpec(
module=MLP,
submodules=MLPSubmodules(
linear_fc1=TELayerNormColumnParallelLinear if use_te else ColumnParallelLinear,
linear_fc2=TERowParallelLinear if use_te else RowParallelLinear,
),
)
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Megatron Core number of microbatches calculators."""
import logging
from abc import ABC, abstractmethod
from typing import List, Optional, Union
logger = logging.getLogger(__name__)
# TODO: global_var merge into mcore?
_GLOBAL_NUM_MICROBATCHES_CALCULATOR: Union[
'ConstantNumMicroBatchesCalculator', 'RampupBatchsizeNumMicroBatchesCalculator'
] = None
def get_num_microbatches() -> int:
"""Get number of microbatches."""
return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get()
def get_current_global_batch_size() -> int:
"""Get current global batch size."""
return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get_current_global_batch_size()
def get_micro_batch_size() -> int:
"""Get micro batch size."""
return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get_micro_batch_size()
def get_current_running_global_batch_size() -> int:
"""Get current running global batch size, taking into account number of DP replicas might be
incompatible with true global batch size if `decrease_batch_size_if_needed` is True."""
return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get_current_running_global_batch_size()
def update_num_microbatches(
consumed_samples: int, consistency_check: bool = True, verbose: bool = False
) -> None:
"""Update number of microbatches.
Args:
consumed_samples (int):
Number of samples consumed.
consistency_check (bool, optional):
Option to check current schedule's consistency. Defaults to True.
verbose (bool, optional):
Option to control logging. Defaults to False.
"""
_GLOBAL_NUM_MICROBATCHES_CALCULATOR.update(consumed_samples, consistency_check, verbose)
def unset_num_microbatches_calculator():
"""Unset microbatches calculator.
Useful for multiple runs. See `tests/unit_tests/ckpt_converter/test_ckpt_converter.py`
for an example.
"""
global _GLOBAL_NUM_MICROBATCHES_CALCULATOR
_GLOBAL_NUM_MICROBATCHES_CALCULATOR = None
def init_num_microbatches_calculator(
rank: int,
rampup_batch_size: Optional[List[int]],
global_batch_size: int,
micro_batch_size: int,
data_parallel_size: int,
decrease_batch_size_if_needed: bool = False,
) -> None:
"""Initialize number of microbatches calculator. Supporting backward compatibility.
Args:
rank (int):
Rank of the GPU, only rank 0 will log the information.
rampup_batch_size (Optional[List[int]]):
Rampup batch size, should be in format of [start_global_batch_size,
batch_size_increment, ramup_samples].
global_batch_size (int):
Global batch size for the model.
micro_batch_size (int):
Micro batch size at initialization.
data_parallel_size (int):
Data parallel size.
decrease_batch_size_if_needed (bool, optional):
If true, scale down batch size to ensure divisibility by DP size * microbatch size.
Defaults to False.
"""
_configure_global_num_microbatches_calculator(
rank,
rampup_batch_size,
global_batch_size,
micro_batch_size,
data_parallel_size,
decrease_batch_size_if_needed,
init=True,
)
def destroy_num_microbatches_calculator():
"""Destroy number of microbatches calculator."""
global _GLOBAL_NUM_MICROBATCHES_CALCULATOR
_GLOBAL_NUM_MICROBATCHES_CALCULATOR = None
def reconfigure_num_microbatches_calculator(
rank: int,
rampup_batch_size: Optional[List[int]],
global_batch_size: int,
micro_batch_size: int,
data_parallel_size: int,
decrease_batch_size_if_needed: bool = False,
) -> None:
"""Reconfigure number of microbatches calculator. Supporting backward compatibility.
Args:
rank (int):
Rank of the GPU, only rank 0 will log the information.
rampup_batch_size (Optional[List[int]]):
Rampup batch size, should be in format of
[start_global_batch_size, batch_size_increment, ramup_samples].
global_batch_size (int):
Global batch size for the model.
micro_batch_size (int):
Micro batch size at initialization.
data_parallel_size (int):
Data parallel size.
decrease_batch_size_if_needed (bool, optional):
If true, scale down batch size to ensure divisibility by DP size * microbatch size.
Defaults to False.
"""
_configure_global_num_microbatches_calculator(
rank,
rampup_batch_size,
global_batch_size,
micro_batch_size,
data_parallel_size,
decrease_batch_size_if_needed,
init=False,
)
def _configure_global_num_microbatches_calculator(
rank: int,
rampup_batch_size: Optional[List[int]],
global_batch_size: int,
micro_batch_size: int,
data_parallel_size: int,
decrease_batch_size_if_needed: bool = False,
init: bool = False,
) -> None:
"""Configure number of microbatches calculator. Can be used for initialization and
reconfiguration.
Args:
rank (int):
Rank of the GPU, only rank 0 will log the information.
rampup_batch_size (Optional[List[int]]):
Rampup batch size, should be in format of
[start_global_batch_size, batch_size_increment, ramup_samples].
global_batch_size (int):
Global batch size for the model.
micro_batch_size (int):
Micro batch size at initialization.
data_parallel_size (int):
Data parallel size.
decrease_batch_size_if_needed (bool, optional):
If true, scale down batch size to ensure divisibility by DP size * microbatch size.
Defaults to False.
init (bool, optional):
If true, initialize the calculator. Defaults to False.
"""
global _GLOBAL_NUM_MICROBATCHES_CALCULATOR
if init:
assert (
_GLOBAL_NUM_MICROBATCHES_CALCULATOR is None
), 'num microbatches calculator is already initialized.'
_GLOBAL_NUM_MICROBATCHES_CALCULATOR = _build_num_microbatches_calculator(
rank,
rampup_batch_size,
global_batch_size,
micro_batch_size,
data_parallel_size,
decrease_batch_size_if_needed,
)
def _build_num_microbatches_calculator(
rank: int,
rampup_batch_size: Optional[List[int]],
global_batch_size: int,
micro_batch_size: int,
data_parallel_size: int,
decrease_batch_size_if_needed: bool,
) -> Union['ConstantNumMicroBatchesCalculator', 'RampupBatchsizeNumMicroBatchesCalculator']:
"""Build number of microbatches calculator. Internal helper method.
Args:
rank (int):
Rank of the GPU, only rank 0 will log the information.
rampup_batch_size (Optional[List[int]]):
Rampup batch size, should be in format of
[start_global_batch_size, batch_size_increment, ramup_samples].
global_batch_size (int):
Global batch size for the model.
micro_batch_size (int):
Micro batch size at initialization.
data_parallel_size (int):
Data parallel size.
decrease_batch_size_if_needed (bool):
If true, scale down batch size to ensure divisibility by DP size * microbatch size.
"""
# Constant batch size.
if rampup_batch_size is None:
num_microbatches_calculator = ConstantNumMicroBatchesCalculator(
global_batch_size,
micro_batch_size,
data_parallel_size,
decrease_batch_size_if_needed,
rank,
)
if rank == 0:
logger.info(
f'setting number of microbatches to constant {num_microbatches_calculator.get()}'
)
# Batch size ramp up.
else:
assert len(rampup_batch_size) == 3, (
'expected the following '
'format: --rampup-batch-size <start batch size> '
'<batch size incerement> <ramp-up samples>'
)
start_global_batch_size = int(rampup_batch_size[0])
batch_size_increment = int(rampup_batch_size[1])
ramup_samples = int(rampup_batch_size[2])
if rank == 0:
logger.info(
f'will use batch size rampup starting from global batch size '
f'{start_global_batch_size} to global batch size {global_batch_size} with batch'
f'size increments {batch_size_increment} over {ramup_samples} samples.'
)
num_microbatches_calculator = RampupBatchsizeNumMicroBatchesCalculator(
global_batch_size,
micro_batch_size,
data_parallel_size,
decrease_batch_size_if_needed,
rank,
start_global_batch_size,
batch_size_increment,
ramup_samples,
)
return num_microbatches_calculator
def _round(batch_size: int, divisor: int) -> int:
"""Round `batch_size` down to nearest batch size divisible by `divisor`."""
return (batch_size // divisor) * divisor
class NumMicroBatchesCalculator(ABC):
"""Base class for number of microbatches calculator."""
def __init__(self) -> None:
self.num_micro_batches = None
self.current_global_batch_size = None
self.micro_batch_size = None
self.current_running_global_batch_size = None
def get(self) -> int:
"""Get number of microbatches."""
return self.num_micro_batches
def get_current_global_batch_size(self) -> int:
"""Get current global batch size."""
return self.current_global_batch_size
def get_micro_batch_size(self) -> int:
"""Get current global batch size."""
return self.micro_batch_size
def get_current_running_global_batch_size(self) -> int:
"""Get current running global batch size. If decrease_batch_size_if_needed is False,
this just equals global batch size."""
return self.current_running_global_batch_size
@abstractmethod
def update(self, consumed_samples, consistency_check, verbose=False) -> None:
"""Update number of microbatches depending on batch size rampup."""
pass
class ConstantNumMicroBatchesCalculator(NumMicroBatchesCalculator):
"""Calculator of number of microbatches with constant global batch size.
Args:
global_batch_size (int):
Global batch size.
micro_batch_size (int):
Micro batch size.
data_parallel_size (int):
Data parallel size.
decrease_batch_size_if_needed (bool):
If true, decrease batch size to ensure divisibility by DP size * microbatch size
(if needed).
rank (int):
Rank (to determine whether logging should be performed).
"""
def __init__(
self,
global_batch_size: int,
micro_batch_size: int,
data_parallel_size: int,
decrease_batch_size_if_needed: bool,
rank: int,
) -> None:
micro_batch_times_data_parallel_size = micro_batch_size * data_parallel_size
if decrease_batch_size_if_needed:
running_global_batch_size = _round(
global_batch_size, micro_batch_times_data_parallel_size
)
assert running_global_batch_size % micro_batch_times_data_parallel_size == 0
if rank == 0:
logger.info(
f'decreasing batch size from {global_batch_size} to {running_global_batch_size}'
f'to keep divisiblity by micro_batch_size={micro_batch_size} * '
f'data_parallel_size={data_parallel_size}'
)
self.num_micro_batches = (
running_global_batch_size // micro_batch_times_data_parallel_size
)
else:
assert global_batch_size % micro_batch_times_data_parallel_size == 0, (
'global batch size ({}) is not divisible by micro batch size ({})'
' times data parallel size ({})'.format(
global_batch_size, micro_batch_size, data_parallel_size
)
)
running_global_batch_size = global_batch_size
self.num_micro_batches = global_batch_size // micro_batch_times_data_parallel_size
assert (
self.num_micro_batches >= 1
), 'number of microbatches should be at least 1, got {}.'.format(self.num_micro_batches)
self.current_global_batch_size = global_batch_size
self.current_running_global_batch_size = running_global_batch_size
self.micro_batch_size = micro_batch_size
def update(self, consumed_samples, consistency_check, verbose=False) -> None:
pass
class RampupBatchsizeNumMicroBatchesCalculator(NumMicroBatchesCalculator):
"""Calculator of number of microbatches with batch size rampup.
Over `steps = (global-batch-size - start-batch-size) / batch_size_increment` increment batch
size from start-batch-size to global-batch-size using rampup-samples / steps
samples.
Args:
global_batch_size (int):
Global batch size post rampup.
micro_batch_size (int):
Micro batch size.
data_parallel_size (int):
Data parallel size.
decrease_batch_size_if_needed (bool):
If true, decrease batch size to ensure divisibility by DP size * microbatch size
(if needed).
rank (int):
Rank (to determine whether logging should be performed).
start_global_batch_size (int):
Global batch size to start with.
batch_size_increment (int):
Global batch size increments.
ramup_samples (int):
Number of samples to use ramp up global
batch size from `start_global_batch_size` to `global_batch_size`.
"""
def __init__(
self,
global_batch_size: int,
micro_batch_size: int,
data_parallel_size: int,
decrease_batch_size_if_needed: bool,
rank: int,
start_global_batch_size: int,
batch_size_increment: int,
ramup_samples: int,
) -> None:
assert global_batch_size > 0, 'global batch size should be positive, got {}.'.format(
global_batch_size
)
assert start_global_batch_size > 0, 'start batch size should be positive, got {}.'.format(
start_global_batch_size
)
assert batch_size_increment > 0, 'batch size increment should be positive, got {}.'.format(
batch_size_increment
)
assert ramup_samples >= 0, 'ramp-up samples should be non-negative, got {}.'.format(
ramup_samples
)
self.global_batch_size = global_batch_size
self.micro_batch_size = micro_batch_size
self.data_parallel_size = data_parallel_size
self.decrease_batch_size_if_needed = decrease_batch_size_if_needed
self.rank = rank
self.start_global_batch_size = start_global_batch_size
self.batch_size_increment = batch_size_increment
self.ramup_samples = ramup_samples
self.micro_batch_times_data_parallel_size = self.micro_batch_size * self.data_parallel_size
assert self.micro_batch_times_data_parallel_size > 0
self.current_global_batch_size = None
diff_batch_size = self.global_batch_size - self.start_global_batch_size
assert diff_batch_size >= 0, (
'expected global batch size to be greater than or equal to start batch size, '
f'got {self.global_batch_size} and {self.start_global_batch_size}'
)
assert diff_batch_size % batch_size_increment == 0, (
'expected '
f'global batch size interval ({diff_batch_size}) to be divisible by global batch '
f'size increment ({batch_size_increment})'
)
num_increments = diff_batch_size // self.batch_size_increment
self.rampup_samples_per_increment = self.ramup_samples / num_increments
# Initialize number of microbatches.
self.update(0, consistency_check=False, verbose=True)
def update(self, consumed_samples: int, consistency_check: bool, verbose: bool = False) -> None:
"""Update number of microbatches.
Args:
consumed_samples (int): Number of samples consumed.
consistency_check (bool): Option to check current schedule's consistency.
verbose (bool, optional): Option to control logging. Defaults to False.
"""
# Update current global batch size.
global_batch_size_changed = False
old_current_global_batch_size = self.current_global_batch_size
if consumed_samples > self.ramup_samples:
self.current_global_batch_size = self.global_batch_size
else:
steps = int(consumed_samples / self.rampup_samples_per_increment)
self.current_global_batch_size = (
self.start_global_batch_size + steps * self.batch_size_increment
)
assert self.current_global_batch_size <= self.global_batch_size
if old_current_global_batch_size != self.current_global_batch_size:
global_batch_size_changed = True
if self.rank == 0 and global_batch_size_changed and verbose:
if old_current_global_batch_size is None:
logger.info(f'setting initial batch size to {self.current_global_batch_size}')
else:
logger.info(
f'ramping up batch size from {old_current_global_batch_size} to '
f'{self.current_global_batch_size}'
)
# Check consistency of the current global batch size.
if consistency_check and not self.decrease_batch_size_if_needed:
assert (
self.current_global_batch_size % self.micro_batch_times_data_parallel_size == 0
), (
'current global '
'batch size ({}) is not divisible by micro-batch-size ({}) times'
'data parallel size ({})'.format(
self.current_global_batch_size, self.micro_batch_size, self.data_parallel_size
)
)
if (
self.decrease_batch_size_if_needed
and self.current_global_batch_size % self.micro_batch_times_data_parallel_size != 0
):
self.current_running_global_batch_size = _round(
self.current_global_batch_size, self.micro_batch_times_data_parallel_size
)
if self.rank == 0 and global_batch_size_changed and verbose:
logger.info(
f'decreasing batch size from {self.current_global_batch_size} to '
f'{self.current_running_global_batch_size} to keep divisiblity by '
f'micro_batch_size={self.micro_batch_size} * '
f'data_parallel_size={self.data_parallel_size}'
)
assert (
self.current_running_global_batch_size % self.micro_batch_times_data_parallel_size
== 0
)
else:
self.current_running_global_batch_size = self.current_global_batch_size
self.num_micro_batches = (
self.current_running_global_batch_size // self.micro_batch_times_data_parallel_size
)
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
import logging
from typing import Callable, Dict, List, Optional, Tuple
import torch
try:
from transformer_engine.pytorch.optimizers import FusedAdam as Adam
from transformer_engine.pytorch.optimizers import FusedSGD as SGD
except ImportError:
try:
from apex.optimizers import FusedAdam as Adam
from apex.optimizers import FusedSGD as SGD
except ImportError:
import warnings
warnings.warn(
f'Transformer Engine and Apex are not installed. Falling back to Torch optimizers.'
)
# Apex's FusedAdam is a drop-in replacement for torch's AdamW.
# pylint: disable-next=line-too-long.
# See https://github.com/NVIDIA/apex/blob/7b73b12361068a10b0f44844534613f252a5ea75/apex/optimizers/fused_adam.py#L16.
from torch.optim import AdamW as Adam, SGD
from megatron.core import mpu
from ..distributed.param_and_grad_buffer import _ParamAndGradBuffer
from ..transformer.module import MegatronModule
from ..utils import log_single_rank
from .distrib_optimizer import DistributedOptimizer
from .grad_scaler import ConstantGradScaler, DynamicGradScaler
from .optimizer import (
ChainedOptimizer,
Float16OptimizerWithFloat16Params,
FP32Optimizer,
MegatronOptimizer,
)
from .optimizer_config import OptimizerConfig
logger = logging.getLogger(__name__)
def _get_param_groups(
model_chunks: List[MegatronModule],
no_weight_decay_cond: Optional[Callable],
scale_lr_cond: Optional[Callable],
lr_mult: float,
lr: float,
min_lr: float,
decoupled_lr: Optional[float],
decoupled_min_lr: Optional[float],
) -> List[Dict]:
"""Create parameter groups for optimizer.
Creates parameter groups based on weight decay condition (regularized vs
non regularized), learning rate scale condition (lr vs lr_mult * lr),
and whether it is expert parameters. scale_lr_cond is used during finetuning
where head of the network requires a scaled version of the base learning rate.
Args:
model_chunks (List[MegatronModule]): model chunks to create parameter
groups for.
no_weight_decay_cond (func, optional): function to determine whether a
parameter should not perform weight decay.
scale_lr_cond (func, optional): function to determine whether a parameter
should have a scaled learning rate.
lr_mult (float): learning rate multiplier for parameters that
satisfy scale_lr_cond.
lr (float): learning rate.
min_lr (float): minimum learning rate.
decoupled_lr (Optional[float]): optional decoupled learning rate.
decoupled_min_lr (Optional[float]): optional decoupled minimum learning rate.
Returns:
List of parameter groups.
"""
use_decoupled_learning_rate = decoupled_lr is not None
# Map (wd_mult, lr_mult, is_expert_parallel, is_decoupled_lr) to params.
params_map = {}
for model_chunk in model_chunks:
for name, param in model_chunk.named_parameters():
if not param.requires_grad:
continue
is_expert_parallel = not getattr(param, 'allreduce', True)
if no_weight_decay_cond is not None:
no_wd = no_weight_decay_cond(name, param)
else:
# Do not regularize biases and norm parameters.
no_wd = name.endswith(".bias") or len(param.shape) == 1
if scale_lr_cond is not None:
scale_lr = scale_lr_cond(name, param)
else:
scale_lr = False
if not no_wd and not scale_lr:
wd_mult, _lr_mult = 1.0, 1.0
elif not no_wd and scale_lr:
wd_mult, _lr_mult = 1.0, lr_mult
elif no_wd and not scale_lr:
wd_mult, _lr_mult = 0.0, 1.0
else:
wd_mult, _lr_mult = 0.0, lr_mult
is_decoupled_lr = False
# For input/embedding and output layer: embedding.word_embeddings.weight /
# output_layer.weight.
if use_decoupled_learning_rate and getattr(
param, 'is_embedding_or_output_parameter', False
):
is_decoupled_lr = True
key = (wd_mult, _lr_mult, is_expert_parallel, is_decoupled_lr)
if key not in params_map:
params_map[key] = []
params_map[key].append(param)
param_groups = []
for (wd_mult, _lr_mult, is_expert_parallel, is_decoupled_lr), params in params_map.items():
assert len(params) > 0
param_group = {
'params': params,
'wd_mult': wd_mult,
'lr_mult': _lr_mult,
'is_expert_parallel': is_expert_parallel,
'is_decoupled_lr': is_decoupled_lr,
}
param_groups.append(param_group)
param_groups = _update_min_and_max_lr_in_param_groups(
param_groups,
lr=lr,
min_lr=min_lr,
decoupled_lr=decoupled_lr,
decoupled_min_lr=decoupled_min_lr,
)
return param_groups
def _update_min_and_max_lr_in_param_groups(
param_groups: List[Dict],
lr: float,
min_lr: float,
decoupled_lr: Optional[float],
decoupled_min_lr: Optional[float],
) -> List[Dict]:
"""
Updates `max_lr` and `min_lr` values in each parameter group, and returns new list.
By default, each group will use `lr` / `min_lr` as `max_lr` / `min_lr`.
If `decoupled_lr` is provided, then `decoupled_lr` / `decoupled_min_lr` will be used
as `max_lr` / `min_lr` for the input and output layer.
Args:
param_groups (List): parameter groups whose 'max_lr' and `min_lr` fields need to
be adjusted.
lr (float): learning rate.
min_lr (float): minimum learning rate.
decoupled_lr (Optional[float]): optional decoupled learning rate.
decoupled_min_lr (Optional[float]): optional decoupled minimum learning rate.
Returns:
List of adjusted parameter groups.
"""
if decoupled_min_lr is None:
decoupled_min_lr = min_lr
for param_group in param_groups:
if param_group['is_decoupled_lr']:
assert decoupled_lr is not None
param_group['max_lr'] = decoupled_lr
param_group['min_lr'] = decoupled_min_lr
else:
param_group['max_lr'] = lr
param_group['min_lr'] = min_lr
return param_groups
def _get_param_groups_and_buffers(
model_chunks: List[MegatronModule],
model_chunk_offset: int,
config: OptimizerConfig,
no_weight_decay_cond: Optional[Callable],
scale_lr_cond: Optional[Callable],
lr_mult: float,
filter_fn: Callable,
buffer_name: str,
) -> Tuple[List[Dict], Dict[int, List[_ParamAndGradBuffer]]]:
"""Returns parameter groups and buffer for optimizer.
Args:
model_chunks (List[MegatronModule]): model chunks to create parameter
groups for.
model_chunk_offset (int): offset of model_chunks in global model_chunks list.
config (OptimizerConfig): optimizer configuration object.
no_weight_decay_cond (func, optional): function to determine whether a
parameter should not perform weight decay.
scale_lr_cond (func, optional): function to determine whether a parameter
should have a scaled learning rate.
lr_mult (float): learning rate multiplier for parameters that
satisfy scale_lr_cond.
lr (float): learning rate.
min_lr (float): minimum learning rate.
filter_fn (callable): filtering function for param_groups.
buffer_name (str): name of buffer.
Returns:
List of parameter groups and dictionary of model chunk IDs to buffers.
"""
param_groups = _get_param_groups(
model_chunks,
no_weight_decay_cond,
scale_lr_cond,
lr_mult,
lr=config.lr,
min_lr=config.min_lr,
decoupled_lr=config.decoupled_lr,
decoupled_min_lr=config.decoupled_min_lr,
)
param_groups = list(filter(filter_fn, param_groups))
buffers = {}
for model_chunk_idx, model_chunk in enumerate(model_chunks):
if hasattr(model_chunk, buffer_name):
buffers[model_chunk_idx + model_chunk_offset] = getattr(model_chunk, buffer_name)
return param_groups, buffers
def _get_megatron_optimizer_based_on_param_groups(
config: OptimizerConfig,
model_chunks: List[MegatronModule],
param_groups: List,
per_model_buffers: Optional[Dict[int, List[_ParamAndGradBuffer]]] = None,
model_parallel_group: Optional[torch.distributed.ProcessGroup] = None,
data_parallel_group: Optional[torch.distributed.ProcessGroup] = None,
data_parallel_group_gloo: Optional[torch.distributed.ProcessGroup] = None,
data_parallel_group_idx: Optional[int] = None,
distributed_optimizer_instance_id: Optional[int] = 0,
) -> MegatronOptimizer:
"""Get Megatron optimizer based on parameter groups.
Args:
config (OptimizerConfig): optimizer configuration object.
model_chunks (list): list of model chunks.
param_groups (list): list of parameter groups.
per_model_buffers (dict, optional): buffers for distributed optimizer. Defaults to None.
data_parallel_group (torch.distributed.ProcessGroup, optional): data-parallel group for
distributed optimizer. Defaults to None.
data_parallel_group_gloo (torch.distributed.ProcessGroup, optional): gloo data-parallel
group for distributed optimizer. Defaults to None.
data_parallel_group_idx (int, optional): data-parallel group index for distributed
optimizer. Defaults to None.
distributed_optimizer_instance_id (int, optional): Distributed optimizer instance. Defaults
0.
Returns:
Instance of MegatronOptimizer.
"""
if config.optimizer == 'adam':
optimizer = Adam(
param_groups,
lr=config.lr,
weight_decay=config.weight_decay,
betas=(config.adam_beta1, config.adam_beta2),
eps=config.adam_eps,
)
def init_state_fn(opt):
for group in opt.param_groups:
for p in group['params']:
if len(opt.state[p]) == 0:
opt.state[p]['exp_avg'] = torch.zeros_like(p.data)
opt.state[p]['exp_avg_sq'] = torch.zeros_like(p.data)
elif config.optimizer == 'sgd':
optimizer = SGD(
param_groups,
lr=config.lr,
weight_decay=config.weight_decay,
momentum=config.sgd_momentum,
)
init_state_fn = None
else:
raise Exception('{} optimizer is not supported.'.format(config.optimizer))
# Mixed precision optimizer.
# - Note: both the Float16Optimizer and the DistributedOptimizer inherit
# from the MixedPrecisionOptimizer, which manages any optimizer where
# the model params and main params are distinct.
if config.fp16 or config.bf16 or config.use_distributed_optimizer:
# Grad scaler:
# if loss-scale is provided, instantiate the constant scaler.
# if we are using fp16 and loss-scale is not present, use a
# dynamic scaler.
# otherwise we are running in bf16 with no loss-scale so
# leave it as None.
grad_scaler = None
# Constant loss scale.
if config.loss_scale:
grad_scaler = ConstantGradScaler(config.loss_scale)
# Dynamic loss scale.
else:
if config.fp16:
grad_scaler = DynamicGradScaler(
initial_scale=config.initial_loss_scale,
min_scale=config.min_loss_scale,
growth_factor=2.0,
backoff_factor=0.5,
growth_interval=config.loss_scale_window,
hysteresis=config.hysteresis,
)
optimizer_args = [optimizer, config, grad_scaler, init_state_fn]
if config.use_distributed_optimizer:
optimizer = DistributedOptimizer(
*optimizer_args,
model_chunks=model_chunks,
per_model_buffers=per_model_buffers,
data_parallel_group=data_parallel_group,
data_parallel_group_gloo=data_parallel_group_gloo,
data_parallel_group_idx=data_parallel_group_idx,
distributed_optimizer_instance_id=distributed_optimizer_instance_id,
)
else:
optimizer = Float16OptimizerWithFloat16Params(*optimizer_args)
setattr(optimizer, 'grad_stats_parallel_group', model_parallel_group)
else:
# FP32 optimizer.
optimizer = FP32Optimizer(optimizer, config, init_state_fn)
setattr(optimizer, 'grad_stats_parallel_group', model_parallel_group)
return optimizer
def get_megatron_optimizer(
config: OptimizerConfig,
model_chunks: List[MegatronModule],
no_weight_decay_cond: Optional[Callable] = None,
scale_lr_cond: Optional[Callable] = None,
lr_mult: float = 1.0,
) -> MegatronOptimizer:
"""Retrieve the Megatron optimizer for model chunks.
We use separate optimizers for expert parameters and non-expert parameters.
Args:
config (OptimizerConfig): optimizer configuration object.
model_chunks (List[MegatronModule]): model chunks to get optimizer for.
no_weight_decay_cond (func, optional): function to determine whether a parameter
should not perform weight decay. Defaults to None.
scale_lr_cond (func, optional): function to determine whether a parameter
should have a scaled learning rate. Defaults to None.
lr_mult (float, optional): learning rate multiplier for parameters that
satisfy scale_lr_cond. Defaults to 1.0.
Returns:
Instance of MegatronOptimizer.
"""
log_single_rank(logger, logging.INFO, f'Setting up optimizer with config {config}')
# Separate out first model chunk if overlapping param AG with optimizer step.
if config.overlap_param_gather_with_optimizer_step:
all_dense_model_chunks = [[model_chunks[0]], model_chunks[1:]]
overlap_param_gather_with_optimizer_step_flags = [True, False]
else:
all_dense_model_chunks = [model_chunks]
overlap_param_gather_with_optimizer_step_flags = [False]
model_parallel_rank = torch.distributed.get_rank(mpu.get_model_parallel_group())
if torch.distributed.get_world_size(
mpu.get_data_parallel_group(with_context_parallel=True, partial_data_parallel=False)
) > torch.distributed.get_world_size(
mpu.get_data_parallel_group(with_context_parallel=True, partial_data_parallel=True)
):
distributed_optimizer_instance_id = torch.distributed.get_rank(
mpu.get_inter_partial_data_parallel_group()
)
else:
distributed_optimizer_instance_id = 0
optimizers = []
model_chunk_offset = 0
for dense_model_chunks, overlap_param_gather_with_optimizer_step in zip(
all_dense_model_chunks, overlap_param_gather_with_optimizer_step_flags
):
param_groups, buffers = _get_param_groups_and_buffers(
dense_model_chunks,
model_chunk_offset=model_chunk_offset,
config=config,
no_weight_decay_cond=no_weight_decay_cond,
scale_lr_cond=scale_lr_cond,
lr_mult=lr_mult,
filter_fn=lambda g: not g['is_expert_parallel'],
buffer_name='buffers',
)
for model_chunk in dense_model_chunks:
model_chunk.overlap_param_gather_with_optimizer_step = (
overlap_param_gather_with_optimizer_step
)
optimizers.append(
_get_megatron_optimizer_based_on_param_groups(
config,
model_chunks=dense_model_chunks,
param_groups=param_groups,
per_model_buffers=buffers,
model_parallel_group=mpu.get_model_parallel_group(),
data_parallel_group=mpu.get_data_parallel_group(
with_context_parallel=True, partial_data_parallel=True
),
data_parallel_group_gloo=mpu.get_data_parallel_group_gloo(
with_context_parallel=True, partial_data_parallel=True
),
data_parallel_group_idx=model_parallel_rank,
distributed_optimizer_instance_id=distributed_optimizer_instance_id,
)
)
model_chunk_offset += 1
moe_param_groups, moe_buffers = _get_param_groups_and_buffers(
model_chunks,
model_chunk_offset=0,
config=config,
no_weight_decay_cond=no_weight_decay_cond,
scale_lr_cond=scale_lr_cond,
lr_mult=lr_mult,
filter_fn=lambda g: g['is_expert_parallel'],
buffer_name='expert_parallel_buffers',
)
if len(moe_param_groups) > 0:
model_parallel_rank = torch.distributed.get_rank(
mpu.get_expert_tensor_model_pipeline_parallel_group()
)
optimizers.append(
_get_megatron_optimizer_based_on_param_groups(
config,
model_chunks=model_chunks,
param_groups=moe_param_groups,
per_model_buffers=moe_buffers,
model_parallel_group=mpu.get_expert_tensor_model_pipeline_parallel_group(),
data_parallel_group=mpu.get_expert_data_parallel_group(),
data_parallel_group_gloo=mpu.get_expert_data_parallel_group_gloo(),
data_parallel_group_idx=model_parallel_rank,
)
)
if len(optimizers) == 1:
return optimizers[0]
return ChainedOptimizer(optimizers)
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
"""Gradient clipping.""" """Gradient clipping."""
from typing import List, Optional, Union
import torch import torch
from torch import inf from torch import inf
from apex.multi_tensor_apply import multi_tensor_applier try:
import amp_C from transformer_engine.pytorch.optimizers import (
multi_tensor_applier,
from megatron.model.module import param_is_not_shared multi_tensor_l2norm,
from megatron.core.tensor_parallel import param_is_not_tensor_parallel_duplicate multi_tensor_scale,
)
def clip_grad_norm_fp32(parameters, grads_for_norm, l2_norm_impl = multi_tensor_l2norm
max_norm, norm_type=2, multi_tensor_scale_impl = multi_tensor_scale
model_parallel_group=None): except ImportError:
"""Clips gradient norm of an iterable of parameters whose gradients try:
are in fp32. import amp_C
from apex.multi_tensor_apply import multi_tensor_applier
l2_norm_impl = amp_C.multi_tensor_l2norm
multi_tensor_scale_impl = amp_C.multi_tensor_scale
except ImportError:
import warnings
warnings.warn(
f'Transformer Engine and Apex are not installed. '
'Falling back to local implementations of multi_tensor_applier, '
'multi_tensor_l2norm, and multi_tensor_scale'
)
from megatron.core.utils import (
local_multi_tensor_applier,
local_multi_tensor_l2_norm,
local_multi_tensor_scale,
)
multi_tensor_applier = local_multi_tensor_applier
l2_norm_impl = local_multi_tensor_l2_norm
multi_tensor_scale_impl = local_multi_tensor_scale
from ..tensor_parallel import param_is_not_tensor_parallel_duplicate
from ..transformer.module import param_is_not_shared
from ..utils import get_data_parallel_group_if_dtensor, to_local_if_dtensor
def get_grad_norm_fp32(
grads_for_norm: Union[List[torch.Tensor], torch.Tensor],
norm_type: Union[int, float] = 2,
grad_stats_parallel_group: Optional[torch.distributed.ProcessGroup] = None,
) -> float:
"""Calculate the norm of gradients in fp32.
This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
added functionality to handle model parallel parameters. Note that added functionality to handle model parallel parameters.
the gradients are modified in place.
Arguments: Arguments:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a grads_for_norm (Iterable[Tensor] or Tensor): an iterable of Tensors or a single
single Tensor that will have gradients normalized
grads_for_norm (Iterable[Tensor]): an iterable of Tensors or a single
Tensor that will be used for calculating the grad norm. Tensor that will be used for calculating the grad norm.
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm. infinity norm.
model_parallel_group (group): given the nature of the distributed grad_stats_parallel_group (group): Process group for reducing the grad norms. This is
optimizer, this is passed as an argument. generally the model-parallel group for non-distributed optimizers, and the entire
world for the distributed optimizer.
Returns: Returns:
Total norm of the parameters (viewed as a single vector). Total norm of the parameters (viewed as a single vector).
""" """
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
if isinstance(grads_for_norm, torch.Tensor): if isinstance(grads_for_norm, torch.Tensor):
grads_for_norm = [grads_for_norm] grads_for_norm = [grads_for_norm]
# Grads. data_parallel_group = None
grads = [] for grad in grads_for_norm:
for param in parameters: data_parallel_group = get_data_parallel_group_if_dtensor(grad, data_parallel_group)
if param.grad is not None:
assert param.grad.type() == 'torch.cuda.FloatTensor' grads_for_norm = [to_local_if_dtensor(grad) for grad in grads_for_norm]
grads.append(param.grad.detach())
# Norm parameters. # Norm parameters.
max_norm = float(max_norm)
norm_type = float(norm_type) norm_type = float(norm_type)
total_norm = 0.0 total_norm = 0.0
# Calculate norm. # Calculate norm.
if norm_type == inf: if norm_type == inf:
total_norm = max(grad.abs().max() for grad in grads_for_norm) total_norm = max(grad.abs().max() for grad in grads_for_norm)
total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)]) total_norm_cuda = torch.tensor([float(total_norm)], dtype=torch.float, device='cuda')
# Take max across all model-parallel GPUs. # Take max across all data-parallel GPUs if using FSDP and then all model-parallel GPUs.
torch.distributed.all_reduce(total_norm_cuda, if data_parallel_group:
op=torch.distributed.ReduceOp.MAX, torch.distributed.all_reduce(
group=model_parallel_group) total_norm_cuda, op=torch.distributed.ReduceOp.MAX, group=data_parallel_group
)
torch.distributed.all_reduce(
total_norm_cuda, op=torch.distributed.ReduceOp.MAX, group=grad_stats_parallel_group
)
total_norm = total_norm_cuda[0].item() total_norm = total_norm_cuda[0].item()
else: else:
if norm_type == 2.0: if norm_type == 2.0:
dummy_overflow_buf = torch.cuda.IntTensor([0]) dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device='cuda')
# Use apex's multi-tensor applier for efficiency reasons. # Use apex's multi-tensor applier for efficiency reasons.
# Multi-tensor applier takes a function and a list of list # Multi-tensor applier takes a function and a list of list
# and performs the operation on that list all in one kernel. # and performs the operation on that list all in one kernel.
if grads_for_norm: if grads_for_norm:
grad_norm, _ = multi_tensor_applier( grad_norm, _ = multi_tensor_applier(
amp_C.multi_tensor_l2norm, l2_norm_impl,
dummy_overflow_buf, dummy_overflow_buf,
[grads_for_norm], [grads_for_norm],
False # no per-parameter norm False, # no per-parameter norm
) )
else: else:
grad_norm = torch.cuda.FloatTensor([0]) grad_norm = torch.tensor([0], dtype=torch.float, device='cuda')
# Since we will be summing across data parallel groups, # Since we will be summing across data parallel groups,
# we need the pow(norm-type). # we need the pow(norm-type).
total_norm = grad_norm ** norm_type total_norm = grad_norm**norm_type
else: else:
for grad in grads_for_norm: for grad in grads_for_norm:
grad_norm = torch.norm(grad, norm_type) grad_norm = torch.norm(grad, norm_type)
total_norm += grad_norm ** norm_type total_norm += grad_norm**norm_type
# Sum across all model-parallel GPUs. # Sum across all data-parallel GPUs if using FSDP and then all model-parallel GPUs.
torch.distributed.all_reduce(total_norm, if data_parallel_group:
op=torch.distributed.ReduceOp.SUM, torch.distributed.all_reduce(
group=model_parallel_group) total_norm, op=torch.distributed.ReduceOp.SUM, group=data_parallel_group
)
torch.distributed.all_reduce(
total_norm, op=torch.distributed.ReduceOp.SUM, group=grad_stats_parallel_group
)
total_norm = total_norm.item() ** (1.0 / norm_type) total_norm = total_norm.item() ** (1.0 / norm_type)
return total_norm
def clip_grad_by_total_norm_fp32(
parameters: Union[List[torch.Tensor], torch.Tensor],
max_norm: Union[int, float],
total_norm: float,
):
"""Clips gradient of an iterable of parameters in fp32 by total norm.
Note that the gradients are modified in place.
Args:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized.
max_norm (float or int): max norm of the gradients.
total_norm (float): total norm of the gradients.
"""
# Grads.
params = []
grads = []
for param in parameters:
if param.grad is not None:
assert param.grad.type() == 'torch.cuda.FloatTensor'
params.append(param)
grads.append(to_local_if_dtensor(param.grad).detach())
# Scale. # Scale.
clip_coeff = max_norm / (total_norm + 1.0e-6) clip_coeff = max_norm / (total_norm + 1.0e-6)
if clip_coeff < 1.0: if clip_coeff < 1.0:
dummy_overflow_buf = torch.cuda.IntTensor([0]) dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device='cuda')
multi_tensor_applier(amp_C.multi_tensor_scale, multi_tensor_applier(
dummy_overflow_buf, multi_tensor_scale_impl, dummy_overflow_buf, [grads, grads], clip_coeff
[grads, grads], )
clip_coeff)
return total_norm
def count_zeros_fp32(
parameters: Union[List[torch.Tensor], torch.Tensor],
grad_stats_parallel_group: torch.distributed.ProcessGroup,
) -> float:
"""Counts the number of zeros in gradients associated with the passed-in list of
parameters.
def count_zeros_fp32(parameters, model_parallel_group): Args:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have the number of zeros in its corresponding
gradient counted.
grad_stats_parallel_group (group): Process group for reducing the num_zeros count. This is
generally the model-parallel group for non-distributed optimizers, and the entire
world for the distributed optimizer.
"""
if isinstance(parameters, torch.Tensor): if isinstance(parameters, torch.Tensor):
parameters = [parameters] parameters = [parameters]
...@@ -115,20 +191,29 @@ def count_zeros_fp32(parameters, model_parallel_group): ...@@ -115,20 +191,29 @@ def count_zeros_fp32(parameters, model_parallel_group):
# - grad should not be none # - grad should not be none
# - parameter should not be shared # - parameter should not be shared
# - should not be a replica due to tensor model parallelism # - should not be a replica due to tensor model parallelism
total_num_zeros = torch.cuda.FloatTensor([0.0]) total_num_zeros = torch.tensor([0.0], dtype=torch.float, device='cuda')
data_parallel_group = None
for param in parameters: for param in parameters:
grad_not_none = param.grad is not None grad_not_none = param.grad is not None
is_not_shared = param_is_not_shared(param) is_not_shared = param_is_not_shared(param)
is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param) is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
if grad_not_none and is_not_shared and is_not_tp_duplicate: if grad_not_none and is_not_shared and is_not_tp_duplicate:
grad = param.grad.detach() data_parallel_group = get_data_parallel_group_if_dtensor(
param.grad, data_parallel_group
)
grad = to_local_if_dtensor(param.grad).detach()
num_zeros = grad.numel() - torch.count_nonzero(grad) num_zeros = grad.numel() - torch.count_nonzero(grad)
total_num_zeros = num_zeros + total_num_zeros total_num_zeros = num_zeros + total_num_zeros
# Sum across all data-parallel GPUs if using FSDP.
if data_parallel_group:
torch.distributed.all_reduce(
total_num_zeros, op=torch.distributed.ReduceOp.SUM, group=data_parallel_group
)
# Sum across all model-parallel GPUs. # Sum across all model-parallel GPUs.
torch.distributed.all_reduce(total_num_zeros, torch.distributed.all_reduce(
op=torch.distributed.ReduceOp.SUM, total_num_zeros, op=torch.distributed.ReduceOp.SUM, group=grad_stats_parallel_group
group=model_parallel_group) )
total_num_zeros = total_num_zeros.item() total_num_zeros = total_num_zeros.item()
......
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
"""Megatron distributed optimizer."""
import itertools
from dataclasses import replace
from logging import getLogger
from typing import Callable, Dict, List, Optional, Tuple
import torch
HAVE_APEX_OR_TE = True
try:
from transformer_engine.pytorch.optimizers import FusedAdam as Adam
except ImportError:
try:
from apex.optimizers import FusedAdam as Adam
except ImportError:
from torch.optim import AdamW as Adam
HAVE_APEX_OR_TE = False
from .. import tensor_parallel
from ..config_logger import has_config_logger_enabled, log_config_to_disk
from ..dist_checkpointing import ShardedTensor
from ..dist_checkpointing.dict_utils import nested_values
from ..dist_checkpointing.mapping import (
LocalNonpersistentObject,
ShardedObject,
ShardedStateDict,
ShardedTensorFactory,
)
from ..dist_checkpointing.utils import extract_sharded_tensors_and_factories
from ..distributed.param_and_grad_buffer import _ParamAndGradBuffer, partition_buckets
from ..transformer.module import MegatronModule
from ..utils import is_float8tensor
from .grad_scaler import MegatronGradScaler
from .optimizer import (
MixedPrecisionOptimizer,
_multi_tensor_copy_this_to_that,
_zero_grad_group_helper,
)
from .optimizer_config import OptimizerConfig
try:
# This will be used when "--fp8-param-gather" is enabled.
# When BF16/FP16 parameters don't exist, we need to cast the FP32 main parameters to
# FP8 directly in the optimizer.
from transformer_engine.pytorch.cpp_extensions import cast_to_fp8
except:
pass
logger = getLogger(__name__)
class Range:
"""
A range represents a start and end points for indexing a shard
from a full tensor.
Args:
start (int): Start index.
end (int): End index.
"""
def __init__(self, start: int, end: int):
self.start = start
self.end = end
self.size = end - start
def normalize(self, start: int = 0):
"""Shift start/end indexes to start at new start index.
Both start and end indexes will be shifted by [new start] - [old start].
Args:
start (int): New start index.
"""
return Range(start, start + self.size)
def __str__(self):
return "%d,%d [%d]" % (self.start, self.end, self.size)
def __len__(self):
return self.end - self.start
class DistributedOptimizer(MixedPrecisionOptimizer):
"""Distributed optimizer, for all data types (fp16, bf16, and fp32).
See __init__() below for argument details.
"""
@classmethod
def _build_model_gbuf_param_range_map(
cls,
param_world_index_map: Dict[torch.nn.Parameter, Tuple],
gbuf_world_range: Range,
bucket_offset: int,
):
"""
Build mapping from param reference to grad buffer shard ranges.
This method builds a mapping from parameter references to grad
buffer shard ranges, specific to each data-parallel (DP) rank's
set of 'owned' parameters. Each grad buffer (padded to be an even
multiple of DP-world-size) is conceptually divided into DP-world-size
contiguous regions, where each DP rank 'owns' a contiguous region.
Ownership in this sense means DP rank is responsible for reducing
the relevant subset of grads, and updating the relevant subset of
params.
This conceptual partitioning of the grad buffer does NOT respect
parameter boundaries, and as such it is assumed that each created
range references a shard (or subset) of the full parameter. It is
easiest to think of each DP rank as operating (i.e., reducing,
gathering) purely on views into the grad buffer, for all model-to-
main & main-to-model operations.
This method creates four ranges:
- The param's range within the entire grad buffer (i.e., world index).
- The param's range within the relevant grad bucket's buffer.
- The param's range within the DP rank's local view of the grad buffer.
- The param's range within itself (i.e., its shard).
"""
# Param range map.
param_range_map = {}
for param, param_world_indexes in param_world_index_map.items():
# Param range.
param_world_start, param_world_end, _ = param_world_indexes
param_local_start = max(0, param_world_start - gbuf_world_range.start)
param_local_end = min(gbuf_world_range.size, param_world_end - gbuf_world_range.start)
# Add param, if within local gbuf range.
if param_local_end > param_local_start:
param_local_range = Range(param_local_start, param_local_end)
param_world_range = param_local_range.normalize(
param_local_start + gbuf_world_range.start
)
param_world_range_in_bucket = Range(
param_world_range.start - bucket_offset, param_world_range.end - bucket_offset
)
sub_param_start = max(0, gbuf_world_range.start - param_world_start)
sub_param_range = param_local_range.normalize(sub_param_start)
param_range_map[param] = {
"gbuf_world": param_world_range,
"gbuf_world_in_bucket": param_world_range_in_bucket,
"gbuf_local": param_local_range,
"param": sub_param_range,
}
return param_range_map
@classmethod
def _build_model_gbuf_range(cls, param_and_grad_buffer: _ParamAndGradBuffer, bucket_index: int):
"""
Build mapping between params and their grad buffers.
This method does the initial setup for the method above. This setup
includes determining the shard ranges into the param_and_grad_buffer
for each data-parallel (DP) rank. Each DP rank keeps range info for
all other DP ranks, for the purpose of creating args for
reduce-scatter and all-gather.
"""
data_parallel_rank = torch.distributed.get_rank(param_and_grad_buffer.data_parallel_group)
data_parallel_world_size = param_and_grad_buffer.data_parallel_group.size()
bucket = param_and_grad_buffer.buckets[bucket_index]
gbuf_size = bucket.grad_data.numel()
assert (
gbuf_size % data_parallel_world_size == 0
), f"Each bucket's buffer size should be divisible by {data_parallel_world_size}"
max_gbuf_range_size = gbuf_size // data_parallel_world_size
# All world ranges (i.e., across all data parallel ranks).
gbuf_world_all_ranges = []
for r in range(data_parallel_world_size):
# Compute start of chunk in this bucket.
gbuf_world_start = r * max_gbuf_range_size
gbuf_world_end = min(gbuf_size, gbuf_world_start + max_gbuf_range_size)
# Add bucket's offset in grad buffer.
gbuf_world_range = Range(
gbuf_world_start + bucket.offset, gbuf_world_end + bucket.offset
)
gbuf_world_all_ranges.append(gbuf_world_range)
# Local DP's ranges.
gbuf_world_range = gbuf_world_all_ranges[data_parallel_rank]
# Get each param's ranges.
param_range_map = cls._build_model_gbuf_param_range_map(
param_and_grad_buffer.param_index_map, gbuf_world_range, bucket.offset
)
# Group into dict.
data = {"param_map": param_range_map}
return data
@classmethod
def _build_gbuf_range_map(cls, param_and_grad_buffer: _ParamAndGradBuffer):
"""
Build mapping between params and their grad buffers. These mappings are
partitioned according to data type.
Iterate through all buckets of grad buffer to construct param ranges
that this rank "owns" (the dp_rank'th shard of each bucket, where each
shard is 1/dp_world_size of the bucket).
Args:
param_and_grad_buffer (_ParamAndGradBuffer): buffer to build mapping for.
"""
return {
(param_and_grad_buffer.param_dtype, param_and_grad_buffer.grad_dtype): [
cls._build_model_gbuf_range(param_and_grad_buffer, bucket_index)
for bucket_index in range(len(param_and_grad_buffer.buckets))
]
}
@classmethod
def _build_model_param_gbuf_map(
cls, gbuf_ranges: List[Dict]
) -> Dict[torch.nn.Parameter, Tuple]:
"""
Create a reverse of the gbuf_ranges, for referencing in opposite direction.
"""
param_gbuf_map = {}
for gbuf_index, gbuf_range_map in enumerate(gbuf_ranges):
for dtype, gbuf_range_map_for_all_buckets in gbuf_range_map.items():
for bucket_index, gbuf_range_map in enumerate(gbuf_range_map_for_all_buckets):
for param, _ in gbuf_range_map["param_map"].items():
assert param not in param_gbuf_map, (
"Param should not be in param_gbuf_map; each param only belongs "
"to a single bucket."
)
param_gbuf_map[param] = (gbuf_index, dtype, bucket_index)
return param_gbuf_map
@classmethod
def _build_optimizer_group_ranges(cls, param_groups: List[Dict], gbuf_ranges: List[Dict]):
"""
Create optimizer groups.
Given the set of parameter shard ranges that are owned by the current
data-parallel (DP) rank, gather the set of parameters that will be
used (in the method below) to create the current DP's optimizer
groups.
"""
# Param group map.
# World param group map.
# - Store a mapping of <model_parameter:group_index> for all parameters
# across all DP ranks. This is necessary because it is our first
# cross reference between the DDP mappings and the optimizer group
# parameters. This mapping only for use in the next step of building
# the local mapping over this DP rank's parameters.
world_param_group_map = {}
for group_index, group in enumerate(param_groups):
for param in group["params"]:
assert param.requires_grad
world_param_group_map[param] = group_index
# Optimizer group ranges & param-group mapping.
# - Build a mapping from groups to their contained parameters, and also
# from parameters to their containing group index and order within
# the group. The group index and order are particularly important for
# saving and loading checkpoints.
local_param_group_map = {}
group_ranges = [{"params": []} for _ in param_groups]
for gbuf_range_map in gbuf_ranges:
for dtype, gbuf_range_map_for_all_buckets in gbuf_range_map.items():
for gbuf_range_map in gbuf_range_map_for_all_buckets:
for param in gbuf_range_map["param_map"]:
group_index = world_param_group_map[param]
group_range = group_ranges[group_index]
group_range["params"].append(param)
local_param_group_map[param] = (group_index, len(group_range["params"]) - 1)
# Squeeze zero-size group ranges.
for group_index, group_range in enumerate(group_ranges):
group_range["orig_group"] = param_groups[group_index]
group_range["orig_group_idx"] = param_groups[group_index]
return local_param_group_map, group_ranges
@classmethod
def _build_model_and_main_param_groups(
cls,
gbuf_ranges: List[Dict],
param_gbuf_map: Dict[torch.nn.Parameter, Tuple],
opt_group_ranges: List,
):
"""
Create main parameter groups needed for the optimizer step.
These groups encompass both: 1) groups used by this class, for
reducing/gather, and 2) groups used by the inner optimizer for the
parameter update. Given that the conceptual grad buffer partitioning
(created in earlier method) doesn't respect parameter boundaries,
the optimizer operates on shards of the model parameters, rather than
the full parameters.
"""
# Parameter groups:
# model_float16_groups: original float16 parameters
# model_fp32_groups: original fp32 parameters
# shard_float16_groups: shards of original float16 parameters
# shard_fp32_groups: shards of original fp32 parameters
# shard_fp32_from_float16_groups: fp32 copy of float16 parameters
model_float16_groups = []
model_fp32_groups = []
shard_float16_groups = []
shard_fp32_groups = []
shard_fp32_from_float16_groups = []
# Allocate (or slice) each group's param shard.
for group_range in opt_group_ranges:
# Params of this group.
model_float16_params_this_group = []
model_fp32_params_this_group = []
shard_float16_params_this_group = []
shard_fp32_params_this_group = []
shard_fp32_from_float16_params_this_group = []
model_float16_groups.append(model_float16_params_this_group)
model_fp32_groups.append(model_fp32_params_this_group)
shard_float16_groups.append(shard_float16_params_this_group)
shard_fp32_groups.append(shard_fp32_params_this_group)
shard_fp32_from_float16_groups.append(shard_fp32_from_float16_params_this_group)
for model_param in group_range["params"]:
assert model_param.requires_grad
gbuf_index, dtype, bucket_index = param_gbuf_map[model_param]
gbuf_range = gbuf_ranges[gbuf_index][dtype][bucket_index]
param_range = gbuf_range["param_map"][model_param]["param"]
# fp16, bf16 params.
if model_param.type() in ['torch.cuda.HalfTensor', 'torch.cuda.BFloat16Tensor']:
# Clone model -> main.
shard_model_param = model_param.detach().view(-1)[
param_range.start : param_range.end
]
# If we use FP8 params to initialize FP32 main params (compared to using the
# bf16/fp16 params to initialize the main params), there will be a loss of
# precision at the beginning of training (this problem will not occur if the
# training is long enough or if the main params are loaded from a checkpoint).
if is_float8tensor(model_param) and hasattr(
model_param, 'get_high_precision_init_val'
):
shard_main_param = (
model_param.get_high_precision_init_val()
.view(-1)[param_range.start : param_range.end]
.clone()
.to(shard_model_param.device)
.float()
)
model_param.clear_high_precision_init_val()
else:
shard_main_param = shard_model_param.clone().float()
tensor_parallel.copy_tensor_model_parallel_attributes(
shard_model_param, model_param
)
tensor_parallel.copy_tensor_model_parallel_attributes(
shard_main_param, model_param
)
if hasattr(model_param, 'shared'):
shard_model_param.shared = model_param.shared
shard_main_param.shared = model_param.shared
# Add to group.
model_float16_params_this_group.append(model_param)
shard_float16_params_this_group.append(shard_model_param)
shard_fp32_from_float16_params_this_group.append(shard_main_param)
# fp32 params.
elif model_param.type() == 'torch.cuda.FloatTensor':
shard_model_param = model_param.view(-1)[param_range.start : param_range.end]
model_fp32_params_this_group.append(model_param)
shard_fp32_params_this_group.append(shard_model_param)
tensor_parallel.copy_tensor_model_parallel_attributes(
shard_model_param, model_param
)
if hasattr(model_param, 'shared'):
shard_model_param.shared = model_param.shared
else:
raise TypeError(
'Wrapped parameters must be one of '
'torch.cuda.FloatTensor, '
'torch.cuda.HalfTensor, or '
'torch.cuda.BFloat16Tensor. '
'Received {}'.format(model_param.type())
)
# Update optimizer's params.
group_range["orig_group"]["params"] = [
*shard_fp32_params_this_group,
*shard_fp32_from_float16_params_this_group,
]
return (
model_float16_groups,
model_fp32_groups,
shard_float16_groups,
shard_fp32_groups,
shard_fp32_from_float16_groups,
)
def __init__(
self,
optimizer: torch.optim.Optimizer,
config: OptimizerConfig,
grad_scaler: MegatronGradScaler,
init_state_fn: Optional[Callable],
model_chunks: List[MegatronModule],
per_model_buffers: Dict[int, List[_ParamAndGradBuffer]],
data_parallel_group: torch.distributed.ProcessGroup,
data_parallel_group_gloo: torch.distributed.ProcessGroup,
data_parallel_group_idx: int,
distributed_optimizer_instance_id: int,
):
"""
Distributed optimizer, for all data types (fp16, bf16, and fp32).
The steps in this method create the core mapping between param and grad buffers,
parameters, and parameter shard ranges, that is needed for converting between model
param indexes and main parameter shard indexes. This method also updates the optimizer
parameter groups with the newly created shards.
Args:
optimizer (torch.optim.Optimizer): base optimizer such as Adam or SGD.
config (OptimizerConfig): configuration object for optimizer.
grad_scaler (MegatronGradScaler): used for scaling gradients. Note that
this can be None. This case happens when `bf16 = True` and we don't
use any loss scale. Note that for `bf16 = True`, we can have
a constant gradient scaler. Also for `bf16 = False`, we
always require a grad scaler.
init_state_fn (Callable, optional): function to initialize state in the optimizer.
model_chunks (List[MegatronModule]): list of model chunks.
per_model_buffers (Dict[int, List[_ParamAndGradBuffer]]): the implementation of the
distributed optimizer is centered on using a contiguous buffer for
communicating grads & params between the model state and the optimizer state.
You can find a more detailed description in
https://github.com/NVIDIA/Megatron-LM/blob/main/docs/source/distrib_optimizer.md.
data_parallel_group (torch.distributed.ProcessGroup): data-parallel group to use to
all-gather params after optimizer.step().
data_parallel_group_gloo (torch.distributed.ProcessGroup): gloo data-parallel group
(used in checkpoint loading and saving).
data_parallel_group_idx (int): index in data-parallel group (used by
distributed checkpointing logic).
distributed_optimizer_instance_id (int): index of the Distributed Optimizer instance.
"""
if has_config_logger_enabled(config):
log_config_to_disk(config, locals(), prefix=type(self).__name__)
super().__init__(optimizer, config, grad_scaler, init_state_fn)
self.model_chunks = model_chunks
self.ddp_config = self.model_chunks[0].ddp_config
for model_chunk in self.model_chunks:
assert self.ddp_config == model_chunk.ddp_config
assert isinstance(
optimizer, Adam
), "Only Adam currently supported, due to checkpointing requirements."
# Model grad buffer ranges.
assert per_model_buffers is not None, "per_model_buffers must be provided"
self.buffers = list(itertools.chain(*per_model_buffers.values()))
self.per_model_buffers = per_model_buffers
self.data_parallel_group = data_parallel_group
self.data_parallel_group_gloo = data_parallel_group_gloo
self.data_parallel_group_idx = data_parallel_group_idx
self.distributed_optimizer_instance_id = distributed_optimizer_instance_id
self.gbuf_idx_to_model_idx_map = {}
gbuf_idx = 0
for model_idx, buffers in self.per_model_buffers.items():
for _ in buffers:
self.gbuf_idx_to_model_idx_map[gbuf_idx] = model_idx
gbuf_idx += 1
self.per_model_bucket_groups = {}
for model_idx, buffers in self.per_model_buffers.items():
self.per_model_bucket_groups[model_idx] = partition_buckets(buffers)
self.gbuf_ranges = []
self.per_bucket_numel = []
self.per_bucket_numel_unpadded = []
for buffer in self.buffers:
self.per_bucket_numel.append(
{
(buffer.param_dtype, buffer.grad_dtype): [
bucket.grad_data.numel() for bucket in buffer.buckets
]
}
)
self.per_bucket_numel_unpadded.append(
{
(buffer.param_dtype, buffer.grad_dtype): [
bucket.numel_unpadded for bucket in buffer.buckets
]
}
)
self.gbuf_ranges.append(self._build_gbuf_range_map(buffer))
self.model_param_gbuf_map = self._build_model_param_gbuf_map(self.gbuf_ranges)
# Optimizer ranges.
(self.model_param_group_index_map, self.opt_group_ranges) = (
self._build_optimizer_group_ranges(self.optimizer.param_groups, self.gbuf_ranges)
)
# Allocate main param shards.
(
self.model_float16_groups,
self.model_fp32_groups,
self.shard_float16_groups,
self.shard_fp32_groups,
self.shard_fp32_from_float16_groups,
) = self._build_model_and_main_param_groups(
self.gbuf_ranges, self.model_param_gbuf_map, self.opt_group_ranges
)
# Update optimizer groups.
# - Also, leverage state_dict() and load_state_dict() to
# recast preexisting per-param state tensors.
self.optimizer.param_groups = [g["orig_group"] for g in self.opt_group_ranges]
self.optimizer.load_state_dict(self.optimizer.state_dict())
def _get_model_param_range_map(self, param: torch.nn.Parameter):
"""
Given a model param, get the index sub-range of the param that this
data-parallel rank owns.
"""
gbuf_index, dtype, bucket_index = self.model_param_gbuf_map[param]
gbuf_range_map = self.gbuf_ranges[gbuf_index][dtype][bucket_index]
param_range_map = gbuf_range_map["param_map"][param]
return param_range_map
def get_grad_stats_parallel_group(self) -> torch.distributed.ProcessGroup:
"""
With the distributed optimizer, gradient statistics (num_zeros & norm) are reduced over
all ranks (versus only the model-parallel ranks with the non-distributed optimizer).
"""
return None
def state_dict(self):
"""
The state dict contains all non-DP-rank-dependent (i.e., non-parameter-
related) optimizer variables. The returned state dict can be stored in
the standard model/RNG checkpoint file. The parameter and dependent
optimizer state (e.g., exp_avg, exp_avg_sq) are stored in a separate
checkpoint file by calling 'save_parameter_state()'.
"""
inner_state_dict = self.optimizer.state_dict()
state_dict = {}
# Extract 'step', for non-Apex/TE support.
if not HAVE_APEX_OR_TE:
steps = list(set([s["step"].item() for s in inner_state_dict["state"].values()]))
assert len(steps) == 1
step = steps[0]
# Optimizer state (do not store parameter state here).
state_dict['optimizer'] = {k: v for k, v in inner_state_dict.items() if k != "state"}
for param_group in state_dict["optimizer"]["param_groups"]:
del param_group["params"]
if not HAVE_APEX_OR_TE:
# Native PyTorch param group requires step (i.e., iteration).
param_group["step"] = step
# Grad scaler state.
if self.grad_scaler:
state_dict['grad_scaler'] = self.grad_scaler.state_dict()
return state_dict
def load_state_dict(self, state_dict):
"""Load the state dict.
As detailed in state_dict(), the state dict contains all non-
parameter-related variables. This method is notably longer than
state_dict(), because the Torch optimizers state has yet to be
allocated at this point, and so we must do a cross referencing between
the optimizers state (and the ordering it expects for parameter state)
and this DP rank's shards. The optimizer at this point does not contain
any tensor dimension information, so we must get these dimensions from
the DP shards mapped during DistributedOptimizer.__init__().
The tensor parameter state is loaded via load_parameter_state(), and
so this method also must populate the loaded state dict with dummy
tensor data (i.e., via torch.empty() below). This will be overwritten
during load_parameter_state().
** Note: Torch optimizer's state structure. **
The Torch optimizer stores its state in two levels. The top level is a
list of groups, where each group contains a list of integer indexes
(corresponding to parameters) that index into a master parameter list
that is shared by all groups. As such, three values are necessary for
maintaining this ordering:
- group_index : The group to which a parameter belongs.
- group_order : The index of a parameter within its group.
- state_order : The index of a parameter within the shared parameter
list.
"""
# Get the Torch optimizer's state dict.
# - This 'inner' optimizer at this point is unallocated, and only
# contains an integer ordering of parameters within each group, and
# the ordering of parameters within its flattened parameter state
# list.
inner_state_dict = self.optimizer.state_dict()
state_dict_param_groups = [
{**group, "params": list(inner_state_dict["param_groups"][idx]["params"])}
for idx, group in enumerate(state_dict["optimizer"]["param_groups"])
]
# Allocate or retrieve optimizer state (i.e., tensors).
if len(self.optimizer.state) == 0:
# Allocate empty optimizer state if not previously initialized.
# - If len(self.optimizer.state) == 0, this means that the optimizer
# state has not been previously initialized. Once it has been
# initialized, we skip this code block to avoid reallocating
# empty tensors (i.e., torch.empty), which in turn reduces memory
# fragmentation.
# - Real data is overwritten during load_parameter_state().
state_dict_state = []
for gbuf_range_maps in self.gbuf_ranges:
for gbuf_range_map_for_all_buckets in gbuf_range_maps.values():
for gbuf_range_map in gbuf_range_map_for_all_buckets:
for model_param, param_range_map in gbuf_range_map["param_map"].items():
# Get parameter ordering information (see method docstring
# for details).
group_index, group_order = self.model_param_group_index_map[model_param]
state_order = inner_state_dict["param_groups"][group_index]["params"][
group_order
]
# Allocate dummy tensors.
numel = len(param_range_map["gbuf_world"])
init_shard = lambda: torch.empty(
(numel,), dtype=torch.float32, device=torch.cuda.current_device()
)
state_dict_state.append(
(state_order, {"exp_avg": init_shard(), "exp_avg_sq": init_shard()})
)
# Sort by state order (see method docstring for details).
state_dict_state.sort(key=lambda s: s[0])
state_dict_state = {s[0]: s[1] for s in state_dict_state}
else:
# Retrieve existing optimizer state.
state_dict_state = inner_state_dict["state"]
# Extract 'step', for non-Apex/TE support.
if not HAVE_APEX_OR_TE:
steps = list(set([g["step"] for g in state_dict["optimizer"]["param_groups"]]))
assert len(steps) == 1
step = torch.tensor(steps[0], dtype=torch.float)
for s in state_dict_state.values():
# Native PyTorch state dict requires step (i.e., iteration).
s["step"] = step
# Optimizer.
self.optimizer.load_state_dict(
{"state": state_dict_state, "param_groups": state_dict_param_groups}
)
# Grad scaler.
if 'grad_scaler' not in state_dict:
if self.config.fp16:
logger.info(
'***WARNING*** found an old checkpoint, will not ' 'load grad scaler ...'
)
else:
if self.grad_scaler:
self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
else:
logger.info(
'***WARNING*** fould the grad scaler in the '
'checkpoint but it is None in the class. '
'Skipping loading grad scaler ...'
)
if 'param_state' in state_dict:
assert 'param_state_sharding_type' in state_dict, state_dict.keys()
param_state = state_dict['param_state']
sharding_type = state_dict['param_state_sharding_type']
logger.info(f'Loading distributed optimizer sharded state of type {sharding_type}')
if sharding_type == 'dp_zero_gather_scatter':
self.load_parameter_state_from_dp_zero(param_state)
elif sharding_type == 'fully_sharded_bucket_space':
self.load_parameter_state_from_fs_bucket_space(param_state)
elif sharding_type == 'fully_sharded_model_space':
self.load_parameter_state_from_fs_model_space(param_state)
else:
raise NotImplementedError(f'Unknown sharding_type: {sharding_type}')
def get_parameter_state_fs_bucket_space(self):
"""Get internal representation of parameter state without any copies and modifications.
This is referred to as "fully sharded bucket space" because the optimizer state is
fully sharded (e.g. no gather involved) and bucket-centric (the state
follows the internal structure of the Distributed Optimizer buckets)
as opposed to model-centric (typical structure of PyT optimizers)
"""
state = {
"per_bucket_numel": self.per_bucket_numel,
"per_bucket_numel_unpadded": self.per_bucket_numel_unpadded,
}
for gbuf_idx, gbuf_range_maps in enumerate(self.gbuf_ranges):
# Iterate grad buffers (by data type).
dtype_state = {}
assert len(gbuf_range_maps) == 1, "single dtype supported, for now."
for dtype, gbuf_range_map_for_all_buckets in gbuf_range_maps.items():
buckets_state = []
for bucket_idx, gbuf_range_map in enumerate(gbuf_range_map_for_all_buckets):
bucket_state = []
for model_param, param_range_map in gbuf_range_map["param_map"].items():
# Main param & optimizer states.
group_index, group_order = self.model_param_group_index_map[model_param]
main_param = self.optimizer.param_groups[group_index]["params"][group_order]
optim_state = self.optimizer.state[main_param]
tensors = {
"param": main_param,
**optim_state,
"gbuf_local_start": param_range_map["gbuf_local"].start,
"gbuf_local_end": param_range_map["gbuf_local"].end,
}
bucket_state.append(tensors)
buckets_state.append(bucket_state)
dtype_state[dtype] = buckets_state
state[gbuf_idx] = dtype_state
return state
def get_parameter_state_dp_zero(self):
"""Get parameter state (i.e., parameter & optimizer tensors).
This method performs two steps:
- For each DP rank, copy param & optimizer shards to contiguous CPU
buffers (e.g., one buffer each for main_param, exp_avg, and
exp_avg_sq).
- Gather contiguous buffers on DP rank 0 and concatenate to world
buffers.
"""
# Data parallelism variables.
data_parallel_world_size = self.data_parallel_group_gloo.size()
data_parallel_rank = torch.distributed.get_rank(self.data_parallel_group_gloo)
data_parallel_group_gloo = self.data_parallel_group_gloo
data_parallel_global_ranks = torch.distributed.get_process_group_ranks(
self.data_parallel_group_gloo
)
# Collect param states.
state = {"buckets_coalesced": True}
for gbuf_idx, gbuf_range_maps in enumerate(self.gbuf_ranges):
# Iterate grad buffers (by data type).
dtype_state = {}
assert len(gbuf_range_maps) == 1, "single dtype supported, for now."
for dtype, gbuf_range_map_for_all_buckets in gbuf_range_maps.items():
buffer_numel_unpadded = self.buffers[gbuf_idx].numel_unpadded
# Create coalesced tensors for all state related to parameters in this buffer.
world_tensors = {}
if data_parallel_rank == 0:
world_tensors = {
key: torch.zeros(
(buffer_numel_unpadded,), dtype=torch.float32, device="cpu"
)
for key in ("param", "exp_avg", "exp_avg_sq")
}
world_tensors["numel_unpadded"] = buffer_numel_unpadded
offset_in_world_tensors = 0
for bucket_idx, gbuf_range_map in enumerate(gbuf_range_map_for_all_buckets):
# Compute local DP contiguous shard's size.
gbuf_world_numel = self.buffers[gbuf_idx].buckets[bucket_idx].grad_data.numel()
assert gbuf_world_numel % data_parallel_world_size == 0
gbuf_local_numel = gbuf_world_numel // data_parallel_world_size
gbuf_world_numel_unpadded = (
self.buffers[gbuf_idx].buckets[bucket_idx].numel_unpadded
)
assert gbuf_world_numel_unpadded <= gbuf_world_numel
local_shards = {
key: torch.zeros((gbuf_local_numel,), dtype=torch.float32, device="cpu")
for key in ("param", "exp_avg", "exp_avg_sq")
}
# Build contiguous DP rank shards (for param + optim states).
for model_param, param_range_map in gbuf_range_map["param_map"].items():
# Main param & optimizer states.
group_index, group_order = self.model_param_group_index_map[model_param]
main_param = self.optimizer.param_groups[group_index]["params"][group_order]
optim_state = self.optimizer.state[main_param]
tensors = {"param": main_param, **optim_state}
# Copy states into contiguous shard.
gbuf_local_start = param_range_map["gbuf_local"].start
gbuf_local_end = param_range_map["gbuf_local"].end
for key in local_shards:
local_shards[key][gbuf_local_start:gbuf_local_end].data.copy_(
tensors[key].detach().cpu()
)
# Gather contiguous shards on DP rank 0.
for key, send_tensor in local_shards.items():
# Gather tensor list.
if data_parallel_rank == 0:
recv_tensors = [
torch.zeros((gbuf_local_numel,), dtype=torch.float32, device="cpu")
for _ in range(data_parallel_world_size)
]
else:
recv_tensors = None
# Gather.
torch.distributed.gather(
send_tensor,
recv_tensors,
data_parallel_global_ranks[0],
data_parallel_group_gloo,
)
# Concatenate.
if data_parallel_rank == 0:
recv_tensors_concatenated = torch.cat(recv_tensors)
# Copy this bucket's collected all-gather tensors into the right place
# in the tensor for the buffer. The tensor for the buffer gets rid of
# the padding between buckets.
start = offset_in_world_tensors
end = offset_in_world_tensors + gbuf_world_numel_unpadded
world_tensors[key][start:end].copy_(
recv_tensors_concatenated[:gbuf_world_numel_unpadded]
)
offset_in_world_tensors += gbuf_world_numel_unpadded
# Collect world state.
dtype_state[dtype] = world_tensors
state[gbuf_idx] = dtype_state
return state
def save_parameter_state(self, filename: str):
"""Save the distributed parameter state on DP rank 0.
Args:
filename (str): path to save parameter state to.
"""
state_dict = self.get_parameter_state_dp_zero()
if torch.distributed.get_rank(self.data_parallel_group) == 0:
torch.save(state_dict, filename)
def sharded_state_dict(
self,
model_sharded_state_dict: ShardedStateDict,
is_loading: bool = False,
sharding_type: str = 'fully_sharded_model_space',
):
"""
Chooses between 3 param state sharding implementations as requested by `sharding_type`.
Regular state dict parameters are saved on DP rank 0 and loaded on all ranks.
"""
if not is_loading and sharding_type == 'fully_sharded_bucket_space':
logger.warning(
'`fully_sharded_bucket_space` sharding for DistributedOptimizer'
' checkpoint is deprecated and will be removed in the future.'
' Please switch to `full_sharded_model_space`.'
)
state_dict = self.state_dict()
if sharding_type != 'fully_sharded_model_space':
# State dict differs between different model parallel groups
state_dict = {
k: ShardedObject(
f'optimizer.distributed.dp_group_idx_{self.data_parallel_group_idx}.{k}',
v,
(1,),
(0,),
replica_id=torch.distributed.get_rank(self.data_parallel_group),
)
for k, v in state_dict.items()
}
if is_loading:
# Call the distributed optimizer's specialized load_state_dict(),
# which conditionally skips re-allocating the optimizer's state if
# already initialized, which in turn reduces memory fragmentation.
self.load_state_dict(self.state_dict())
if sharding_type == 'fully_sharded_bucket_space':
param_state = self.sharded_param_state_fs_bucket_space(
model_sharded_state_dict, is_loading
)
elif sharding_type == 'dp_zero_gather_scatter':
param_state = self.sharded_param_state_dp_zero(model_sharded_state_dict, is_loading)
elif sharding_type == 'fully_sharded_model_space':
param_state = self.sharded_param_state_fs_model_space(
model_sharded_state_dict, is_loading
)
else:
raise NotImplementedError(f'Unknown sharding_type: {sharding_type}')
state_dict['param_state'] = param_state
state_dict['param_state_sharding_type'] = sharding_type
return state_dict
def sharded_param_state_dp_zero(
self, model_sharded_state_dict: ShardedStateDict, is_loading: bool = False
):
"""Naive implementation which reuses gather/scatter from the legacy ckpt format.
During saving, gathers the parameters state on DP rank 0 and saves a ShardedObject
with fixed TPxPP structure. During loading, loads the saved data on DP rank 0
(None on other ranks). Relies on the parameters scatter done in load_state_dict.
"""
if is_loading:
param_state_data = None
else:
if self.distributed_optimizer_instance_id == 0:
# Gather on rank 0
param_state_data = self.get_parameter_state_dp_zero()
if (
torch.distributed.get_rank(self.data_parallel_group) == 0
and self.distributed_optimizer_instance_id == 0
):
# Fixed TPxPP. Save on DP rank 0 only
param_state = ShardedObject(
f'optimizer.distributed.dp_group_idx_{self.data_parallel_group_idx}.param_state',
param_state_data,
(1,),
(0,),
)
else:
# DP ranks > 0 don't save. During loading, the param_state needs to be None.
param_state = LocalNonpersistentObject(None)
return param_state
def sharded_param_state_fs_bucket_space(
self, model_sharded_state_dict: ShardedStateDict, is_loading: bool = False
):
"""Sharded state dict where each noncontiguous buffer is a separate ShardedTensor.
Results in fully parallel save and load without any inter-process
communication or intermediate buffers/copies.
"""
data_parallel_rank = torch.distributed.get_rank(self.data_parallel_group)
data_parallel_world_size = torch.distributed.get_world_size(self.data_parallel_group)
state = self.get_parameter_state_fs_bucket_space()
# per_bucket_numel metadata is saved separately for each TPxPP domain.
for per_bucket_key in ('per_bucket_numel', 'per_bucket_numel_unpadded'):
key = (
f'optimizer.distributed.dp_group_idx_{self.data_parallel_group_idx}'
f'.{per_bucket_key}'
)
state[per_bucket_key] = ShardedObject(
key, state[per_bucket_key], (1,), (0,), replica_id=data_parallel_rank
)
for gbuf_idx, gbuf_range_maps in enumerate(self.gbuf_ranges):
for dtype, gbuf_range_map_for_all_buckets in state[gbuf_idx].items():
for bucket_idx, bucket_state in enumerate(gbuf_range_map_for_all_buckets):
# Compute local DP contiguous shard's size.
gbuf_world_numel = self.buffers[gbuf_idx].buckets[bucket_idx].grad_data.numel()
assert gbuf_world_numel % data_parallel_world_size == 0
gbuf_local_numel = gbuf_world_numel // data_parallel_world_size
sharded_bucket_key = (
f'optimizer.distributed.dp_group_idx_{self.data_parallel_group_idx}'
f'.gbuf_idx_{gbuf_idx}.dtype_{dtype}.bucket_idx_{bucket_idx}'
)
# The global ckpt tensors must be fully covered.
# We add extra empty padding if necessary
assert bucket_state, 'empty bucket encountered'
# Insert padding between parameter tensors to ensure full coverage as needed.
all_pad_tensors = {}
for i in range(len(bucket_state) - 1):
next_param_start = bucket_state[i + 1]['gbuf_local_start']
cur_param_end = bucket_state[i]['gbuf_local_end']
if next_param_start != cur_param_end:
pad_tensors = {
k: torch.empty(
next_param_start - cur_param_end, dtype=v.dtype, device=v.device
)
for k, v in bucket_state[i].items()
if isinstance(v, torch.Tensor)
}
all_pad_tensors[i + 1] = {
**pad_tensors,
'gbuf_local_start': cur_param_end,
'gbuf_local_end': next_param_start,
'padding': True,
}
# Insert from end so that insertion positions are still correct.
indices_to_insert = sorted(list(all_pad_tensors.keys()))
for index_to_insert in reversed(indices_to_insert):
bucket_state.insert(index_to_insert, all_pad_tensors[index_to_insert])
if bucket_state[-1]['gbuf_local_end'] != gbuf_local_numel:
pad_tensors = {
k: torch.empty(
gbuf_local_numel - bucket_state[-1]['gbuf_local_end'],
dtype=v.dtype,
device=v.device,
)
for k, v in bucket_state[-1].items()
if isinstance(v, torch.Tensor)
}
bucket_state.append(
{
**pad_tensors,
'gbuf_local_start': bucket_state[-1]['gbuf_local_end'],
'gbuf_local_end': gbuf_local_numel,
'padding': True,
}
)
# Each tensor is mapped to a slice (`flattened_range`)
# of a DP-local shard of size `gbuf_local_numel`.
for bucket_params_idx in range(len(bucket_state)):
tensors = bucket_state[bucket_params_idx]
gbuf_local_start = tensors.pop('gbuf_local_start')
gbuf_local_end = tensors.pop('gbuf_local_end')
if 'padding' not in tensors:
tensors['padding'] = False
for key in tensors:
if key == 'padding':
tensors[key] = LocalNonpersistentObject(tensors[key])
continue
assert tensors[key].shape == (gbuf_local_end - gbuf_local_start,), (
tensors[key].shape,
gbuf_local_start,
gbuf_local_end,
)
tensors[key] = ShardedTensor(
f'{sharded_bucket_key}.{key}',
tensors[key],
tensors[key].dtype,
(gbuf_local_numel,),
(data_parallel_world_size * gbuf_local_numel,),
(data_parallel_rank * gbuf_local_numel,),
axis_fragmentations=(data_parallel_world_size,),
flattened_range=slice(gbuf_local_start, gbuf_local_end),
allow_shape_mismatch=True,
)
return state
def sharded_param_state_fs_model_space(
self, model_sharded_state_dict: ShardedStateDict, is_loading: bool = False
):
"""Sharded state dict where each buffer is mapped to corresponding model param.
In this approach the optimizer state tensors are directly related to model parameters
by linking them with metadata from `model_sharded_state_dict`.
This will allow changing TP and PP while using DistOpt (as with other optimizers).
"""
param_to_sharded_metadata = {}
model_sharded_state_dict, _ = extract_sharded_tensors_and_factories(
model_sharded_state_dict
)
for sh_base in nested_values(model_sharded_state_dict):
param_to_sharded_metadata[sh_base.data] = sh_base
prefix = 'optimizer.state'
state = {}
# Not stored in the checkpoint, used only to identify params in
# `sharded_param_state_fs_model_space`.
param_idx = 0
for gbuf_range_maps in self.gbuf_ranges:
for gbuf_range_map_for_all_buckets in gbuf_range_maps.values():
for gbuf_range_map in gbuf_range_map_for_all_buckets:
for model_param, param_range_map in gbuf_range_map["param_map"].items():
group_index, group_order = self.model_param_group_index_map[model_param]
param_range = param_range_map['param']
main_param = self.optimizer.param_groups[group_index]["params"][group_order]
optim_state = self.optimizer.state[main_param]
tensors = {"fp32_param": main_param, **optim_state}
# Match optimizer parameter with model ShardedTensor (or
# ShardedTensorFactory).
try:
sharded_metadata = param_to_sharded_metadata[model_param]
except KeyError as e:
raise ValueError(
f'Model param {model_param} not in model_sharded_state_dict'
) from e
# Set DP corresponding replica_id coordinate to 0.
assert (
len(sharded_metadata.replica_id) == 3
), f'Expected replica_id format (PP, TP, DP), got: {sharded_metadata}'
replica_id = (
*sharded_metadata.replica_id[:2],
self.distributed_optimizer_instance_id,
)
# Instantiate ShardedTensor (or ShardedTensorFactory) for optimizer
# params.
for state_key, state_ten in tensors.items():
replace_kwargs = dict(
key=f'{prefix}.{state_key}.{sharded_metadata.key}',
data=state_ten,
dtype=state_ten.dtype,
flattened_range=slice(param_range.start, param_range.end),
replica_id=replica_id,
)
if isinstance(sharded_metadata, ShardedTensorFactory):
replace_kwargs.pop('dtype')
tensors[state_key] = replace(sharded_metadata, **replace_kwargs)
tensors[state_key].validate_metadata_integrity()
state[param_idx] = tensors
param_idx += 1
return state
def load_parameter_state_from_fs_bucket_space(self, state_dict):
"""Loads the parameter state from an internal representation.
Inverse of the `get_parameter_state_fs_bucket_space` method.
"""
logger.warning(
'`fully_sharded_bucket_space` sharding for DistributedOptimizer'
'checkpoint is deprecated. Please switch to `full_sharded_model_space`'
)
if state_dict is not None and "per_bucket_numel_unpadded" in state_dict:
per_bucket_numel_unpadded_in_checkpoint = state_dict["per_bucket_numel_unpadded"]
assert self.per_bucket_numel_unpadded == per_bucket_numel_unpadded_in_checkpoint, (
f"Number of unpadded elements in each bucket need to be the same in current run "
f"({self.per_bucket_numel_unpadded}) and checkpoint "
f"({per_bucket_numel_unpadded_in_checkpoint})"
)
for gbuf_idx, gbuf_range_maps in enumerate(self.gbuf_ranges):
assert len(gbuf_range_maps) == 1, "single dtype supported, for now."
for dtype, gbuf_range_map_for_all_buckets in gbuf_range_maps.items():
for bucket_idx, gbuf_range_map in enumerate(gbuf_range_map_for_all_buckets):
bucket_state = state_dict[gbuf_idx][dtype][bucket_idx]
bucket_state = [
bucket_state_elem
for bucket_state_elem in bucket_state
if not bucket_state_elem['padding']
]
assert len(bucket_state) == len(gbuf_range_map["param_map"]), (
len(bucket_state),
len(gbuf_range_map["param_map"]),
)
for src_tensors, (model_param, param_range_map) in zip(
bucket_state, gbuf_range_map["param_map"].items()
):
# Main param & optimizer states.
group_index, group_order = self.model_param_group_index_map[model_param]
main_param = self.optimizer.param_groups[group_index]["params"][group_order]
optim_state = self.optimizer.state[main_param]
dst_tensors = {"param": main_param, **optim_state}
for key in dst_tensors:
dst_tensors[key].copy_(src_tensors[key])
@torch.no_grad()
def load_parameter_state_from_fs_model_space(self, state_dict):
"""Loads the parameter state from a "model space" representation.
Inverse of the `sharded_param_state_fs_model_space` method.
"""
param_idx = 0 # matching order with `sharded_param_state_fs_model_space`
for gbuf_range_maps in self.gbuf_ranges:
for gbuf_range_map_for_all_buckets in gbuf_range_maps.values():
for gbuf_range_map in gbuf_range_map_for_all_buckets:
for model_param, param_range_map in gbuf_range_map["param_map"].items():
group_index, group_order = self.model_param_group_index_map[model_param]
main_param = self.optimizer.param_groups[group_index]["params"][group_order]
optim_state = self.optimizer.state[main_param]
src_tensors = state_dict[param_idx]
dst_tensors = {"fp32_param": main_param, **optim_state}
for key in dst_tensors:
dst_tensors[key].copy_(src_tensors[key])
param_idx += 1
@classmethod
def _update_legacy_world_tensors(cls, old_tensors, new_numels):
'''Reshard buckets (where each bucket is a tensor) to new target
numels, where the total numel remains the same.'''
old_total = sum([t.numel() for t in old_tensors])
new_total = sum(new_numels)
assert old_total == new_total
unified_tensor = torch.cat(old_tensors, dim=0)
new_tensors = []
start_idx = 0
for new_numel in new_numels:
new_tensors.append(unified_tensor[start_idx : (start_idx + new_numel)])
start_idx += new_numel
return new_tensors
def load_parameter_state_from_dp_zero_legacy(self, state_dict):
"""Load parameter state (i.e., parameter & optimizer tensors) from DP 0 rank,
using the legacy checkpoint format as described below.
The difference between this method and `load_parameter_state_from_dp_zero_modern()`
is that this method is used for updating the format of checkpoints that
were saved using code from before Feb 13, 2024. Starting on this date, a
new format was used (i.e., different format for the parameter mapping and
bucket sharding).
Use arg `--ckpt-convert-update-legacy-dist-opt-format` to call this
method, along with `--ckpt-convert-format` and `--ckpt-convert-save` to
update a legacy-format checkpoint to the modern format.
"""
# Data parallelism variables.
data_parallel_world_size = self.data_parallel_group_gloo.size()
data_parallel_rank = torch.distributed.get_rank(self.data_parallel_group_gloo)
data_parallel_group_gloo = self.data_parallel_group_gloo
data_parallel_global_ranks = torch.distributed.get_process_group_ranks(
self.data_parallel_group_gloo
)
# Scatter tensors to all DP ranks.
for gbuf_idx, gbuf_range_maps in enumerate(self.gbuf_ranges):
for dtype, gbuf_range_map_for_all_buckets in gbuf_range_maps.items():
if data_parallel_rank == 0:
buffer_numel_unpadded = self.buffers[gbuf_idx].numel_unpadded
model_numels = [b.numel_unpadded for b in self.buffers[gbuf_idx].buckets]
checkpoint_numels = [
t.numel() for t in state_dict[gbuf_idx][torch.float32]["param"]
]
assert sum(model_numels) == sum(checkpoint_numels)
for key in ("param", "exp_avg", "exp_avg_sq"):
legacy_world_tensors = self._update_legacy_world_tensors(
state_dict[gbuf_idx][torch.float32][key],
[
self.buffers[gbuf_idx].buckets[bi].numel_unpadded
for bi in range(len(gbuf_range_map_for_all_buckets))
],
)
offset_in_world_tensors = 0
for bucket_idx, gbuf_range_map in enumerate(gbuf_range_map_for_all_buckets):
# Compute local DP contiguous shard's size.
gbuf_world_numel = (
self.buffers[gbuf_idx].buckets[bucket_idx].grad_data.numel()
)
assert gbuf_world_numel % data_parallel_world_size == 0
gbuf_local_numel = gbuf_world_numel // data_parallel_world_size
gbuf_world_numel_unpadded = (
self.buffers[gbuf_idx].buckets[bucket_idx].numel_unpadded
)
assert gbuf_world_numel_unpadded <= gbuf_world_numel
# Contiguous local shards (received from DP rank 0).
recv_tensor = torch.empty(
(gbuf_local_numel,), dtype=torch.float32, device="cpu"
)
# Scatter tensor list.
if data_parallel_rank == 0:
start = offset_in_world_tensors
end = offset_in_world_tensors + gbuf_world_numel_unpadded
world_tensor = legacy_world_tensors[bucket_idx]
assert (
world_tensor.numel() == gbuf_world_numel_unpadded
), "%d vs. %d." % (world_tensor.numel(), gbuf_world_numel_unpadded)
offset_in_world_tensors += gbuf_world_numel_unpadded
# Pad world_tensor to gbuf_world_numel. Don't pad at the front,
# pad at the back.
world_tensor = torch.nn.functional.pad(
world_tensor, (0, gbuf_world_numel - gbuf_world_numel_unpadded)
)
assert world_tensor.numel() == gbuf_world_numel
gbuf_start_idxs = list(range(0, gbuf_world_numel, gbuf_local_numel))
send_tensors = [
world_tensor[i : (i + gbuf_local_numel)] for i in gbuf_start_idxs
]
else:
send_tensors = None
# Scatter.
torch.distributed.scatter(
recv_tensor,
send_tensors,
data_parallel_global_ranks[0],
data_parallel_group_gloo,
)
# Copy local contiguous shards to param/optim shards.
for model_param, param_range_map in gbuf_range_map["param_map"].items():
# Main param & optimizer states.
group_index, group_order = self.model_param_group_index_map[model_param]
main_param = self.optimizer.param_groups[group_index]["params"][
group_order
]
if key == "param":
tensor_to_copy_into = main_param
else:
optim_state = self.optimizer.state[main_param]
tensor_to_copy_into = optim_state[key]
# Copy states into contiguous shard.
gbuf_local_start = param_range_map["gbuf_local"].start
gbuf_local_end = param_range_map["gbuf_local"].end
tensor_to_copy_into.data.copy_(
recv_tensor[gbuf_local_start:gbuf_local_end]
)
def load_parameter_state_from_dp_zero(self, state_dict, *, update_legacy_format=False):
"""Load parameter state (i.e., parameter & optimizer tensors) from DP 0 rank,
using the new checkpoint format with coalesced state across buckets.
This method performs the reverse of get_parameter_state_dp_zero():
- Scatter contiguous buffers from DP rank 0 to each DP rank (each DP
rank receives its relevant subset of the world buffers).
- For each DP rank, copy param & optimizer shards from contiguous CPU
buffers. (e.g., one buffer each for main_param, exp_avg, and
exp_avg_sq).
"""
# Selectively load from a legacy checkpoint. The legacy format was used
# prior to Feb 13, 2024.
if update_legacy_format:
return self.load_parameter_state_from_dp_zero_legacy(state_dict)
# Data parallelism variables.
data_parallel_world_size = self.data_parallel_group_gloo.size()
data_parallel_rank = torch.distributed.get_rank(self.data_parallel_group_gloo)
data_parallel_group_gloo = self.data_parallel_group_gloo
data_parallel_global_ranks = torch.distributed.get_process_group_ranks(
self.data_parallel_group_gloo
)
if data_parallel_rank == 0:
# Do nothing if "--fp8-param-gather" is not used.
self.split_state_dict_if_needed(state_dict)
# Scatter tensors to all DP ranks.
for gbuf_idx, gbuf_range_maps in enumerate(self.gbuf_ranges):
for dtype, gbuf_range_map_for_all_buckets in gbuf_range_maps.items():
if data_parallel_rank == 0:
buffer_numel_unpadded = self.buffers[gbuf_idx].numel_unpadded
checkpoint_numel_unpadded = state_dict[gbuf_idx][dtype]["numel_unpadded"]
assert buffer_numel_unpadded == checkpoint_numel_unpadded, (
f"Number of unpadded elements must be same in current run "
f"({buffer_numel_unpadded}) and checkpoint ({checkpoint_numel_unpadded})"
)
for key in ("param", "exp_avg", "exp_avg_sq"):
offset_in_world_tensors = 0
for bucket_idx, gbuf_range_map in enumerate(gbuf_range_map_for_all_buckets):
# Compute local DP contiguous shard's size.
gbuf_world_numel = (
self.buffers[gbuf_idx].buckets[bucket_idx].grad_data.numel()
)
assert gbuf_world_numel % data_parallel_world_size == 0
gbuf_local_numel = gbuf_world_numel // data_parallel_world_size
gbuf_world_numel_unpadded = (
self.buffers[gbuf_idx].buckets[bucket_idx].numel_unpadded
)
assert gbuf_world_numel_unpadded <= gbuf_world_numel
# Contiguous local shards (received from DP rank 0).
recv_tensor = torch.zeros(
(gbuf_local_numel,), dtype=torch.float32, device="cpu"
)
# Scatter tensor list.
if data_parallel_rank == 0:
world_tensors = state_dict[gbuf_idx][dtype][key]
start = offset_in_world_tensors
end = offset_in_world_tensors + gbuf_world_numel_unpadded
assert 0 <= start < end <= world_tensors.numel()
world_tensor = world_tensors[start:end]
offset_in_world_tensors += gbuf_world_numel_unpadded
# Pad world_tensor to gbuf_world_numel. Don't pad at the front,
# pad at the back.
world_tensor = torch.nn.functional.pad(
world_tensor, (0, gbuf_world_numel - gbuf_world_numel_unpadded)
)
assert world_tensor.numel() == gbuf_world_numel
gbuf_start_idxs = list(range(0, gbuf_world_numel, gbuf_local_numel))
send_tensors = [
world_tensor[i : (i + gbuf_local_numel)] for i in gbuf_start_idxs
]
else:
send_tensors = None
# Scatter.
torch.distributed.scatter(
recv_tensor,
send_tensors,
data_parallel_global_ranks[0],
data_parallel_group_gloo,
)
# Copy local contiguous shards to param/optim shards.
for model_param, param_range_map in gbuf_range_map["param_map"].items():
# Main param & optimizer states.
group_index, group_order = self.model_param_group_index_map[model_param]
main_param = self.optimizer.param_groups[group_index]["params"][
group_order
]
if key == "param":
tensor_to_copy_into = main_param
else:
optim_state = self.optimizer.state[main_param]
tensor_to_copy_into = optim_state[key]
# Copy states into contiguous shard.
gbuf_local_start = param_range_map["gbuf_local"].start
gbuf_local_end = param_range_map["gbuf_local"].end
tensor_to_copy_into.data.copy_(
recv_tensor[gbuf_local_start:gbuf_local_end]
)
def split_state_dict_if_needed(self, state_dict):
"""
When "--fp8-param-gather" is disabled, weights and biases are stored in the same
`_ParamAndGradBuffer`. So, when saving a checkpoint, the optimizer's main parameters are
saved in a single continuous tensor (this also applies to "exp_avg" and "exp_avg_sq").
However, when "--fp8-param-gather" is enabled, weights(in fp8 dtype) and biases(in bf16/fp16
dtype) are stored in separate `_ParamAndGradBuffer`. Therefore, when we enabled
"--fp8-param-gather", and want to load a checkpoint saved without "--fp8-param-gather", we
need to split the weights(fp8) and biases(bf16/fp16) in the static_dict into two separate
tensors.
"""
# Skip if there is no fp8 buffers.
fp8_gbuf_indices = []
for gbuf_idx, gbuf_range_maps in enumerate(self.gbuf_ranges):
for dtype, _ in gbuf_range_maps.items():
if is_float8tensor(self.buffers[gbuf_idx].params[0]):
fp8_gbuf_indices.append(gbuf_idx)
if len(fp8_gbuf_indices) == 0:
return
dtype_to_gbuf_idx = {}
for key in state_dict.keys():
if key != 'buckets_coalesced':
for dtype in state_dict[key].keys():
assert dtype not in dtype_to_gbuf_idx
if dtype[0] == torch.uint8:
# If the `state_dict`` already contains a torch.uint8 buffer, we assumed
# that the fp8 weights and fp16/bf16 biases in the checkpoint are already
# separated. In this case, no action is required, so we can return directly.
return
dtype_to_gbuf_idx[dtype] = key
# 1. Replace the gbuf_idx in the checkpoint with the new gbuf_idx.
# 2. Copy the non-tensor data (i.e., the "buckets_coalesced") to `new_state_dict`.
new_state_dict = {'buckets_coalesced': state_dict['buckets_coalesced']}
for gbuf_idx, gbuf_range_maps in enumerate(self.gbuf_ranges):
for dtype, _ in gbuf_range_maps.items():
if not is_float8tensor(self.buffers[gbuf_idx].params[0]):
new_state_dict[gbuf_idx] = state_dict[dtype_to_gbuf_idx[dtype]]
for fp8_gbuf_idx in fp8_gbuf_indices:
# Note that `self.buffers[fp8_gbuf_idx].params[0].dtype` is the dummy dtype of
# `Float8Tensor`, not torch.uint8.
non_fp8_param_and_grad_dtype = (
self.buffers[fp8_gbuf_idx].params[0].dtype,
self.buffers[fp8_gbuf_idx].grad_dtype,
)
# Iterate through all buffers to find the one that needs to be split.
non_fp8_gbuf_idx = None
for gbuf_idx, gbuf_range_maps in enumerate(self.gbuf_ranges):
for dtype, _ in gbuf_range_maps.items():
if dtype == non_fp8_param_and_grad_dtype:
non_fp8_gbuf_idx = gbuf_idx
assert non_fp8_gbuf_idx is not None
# We need the fp8_flags to determine the order of weight (fp8) and bias (fp16/bf16) in
# the buffer.
index_to_fp8_map = {}
for index in self.buffers[fp8_gbuf_idx].param_indices:
assert index not in index_to_fp8_map
index_to_fp8_map[index] = True
for index in self.buffers[non_fp8_gbuf_idx].param_indices:
assert index not in index_to_fp8_map
index_to_fp8_map[index] = False
param_indices = (
self.buffers[fp8_gbuf_idx].param_indices
+ self.buffers[non_fp8_gbuf_idx].param_indices
)
assert min(param_indices) == 0
assert max(param_indices) == len(param_indices) - 1
fp8_flags = []
for i in range(len(param_indices)):
fp8_flag.append(index_to_fp8_map[i])
fp8_buffer = self.buffers[fp8_gbuf_idx]
non_fp8_buffer = self.buffers[non_fp8_gbuf_idx]
fp8_idx = len(fp8_buffer.params) - 1
non_fp8_idx = len(non_fp8_buffer.params) - 1
offsets, fp8_offsets, non_fp8_offsets = [0], [0], [0]
# Because the parameters in `_ParamAndGradBuffer` are traversed in reverse order, the
# flag here also needs to be traversed in reverse order.
for fp8_flag in fp8_flags[::-1]:
if fp8_flag:
numel = fp8_buffer.params[fp8_idx].nelement()
fp8_idx -= 1
offsets.append(offsets[-1] + numel)
fp8_offsets.append(fp8_offsets[-1] + numel)
else:
numel = non_fp8_buffer.params[non_fp8_idx].nelement()
non_fp8_idx -= 1
offsets.append(offsets[-1] + numel)
non_fp8_offsets.append(non_fp8_offsets[-1] + numel)
# Split the target buffer into two separate buffers.
fp8_state_dict, non_fp8_state_dict = {}, {}
for key in ['param', 'exp_avg', 'exp_avg_sq']:
tensor = state_dict[non_fp8_gbuf_idx][non_fp8_param_and_grad_dtype][key]
fp8_tensor = torch.empty([fp8_offsets[-1]], dtype=tensor.dtype)
non_fp8_tensor = torch.empty([non_fp8_offsets[-1]], dtype=tensor.dtype)
fp8_idx, non_fp8_idx = 0, 0
for i in range(len(offsets) - 1):
if fp8_flags[-(i + 1)]:
fp8_tensor[fp8_offsets[fp8_idx] : fp8_offsets[fp8_idx + 1]].copy_(
tensor[offsets[i] : offsets[i + 1]]
)
fp8_idx += 1
else:
non_fp8_tensor[
non_fp8_offsets[non_fp8_idx] : non_fp8_offsets[non_fp8_idx + 1]
].copy_(tensor[offsets[i] : offsets[i + 1]])
non_fp8_idx += 1
fp8_state_dict[key] = fp8_tensor
non_fp8_state_dict[key] = non_fp8_tensor
fp8_state_dict['numel_unpadded'] = fp8_offsets[-1]
non_fp8_state_dict['numel_unpadded'] = non_fp8_offsets[-1]
# Add the two separate buffers into `new_state_dict`.
new_state_dict[fp8_gbuf_idx] = {}
new_state_dict[fp8_gbuf_idx][(torch.uint8, fp8_buffer.grad_dtype)] = fp8_state_dict
new_state_dict[non_fp8_gbuf_idx][non_fp8_param_and_grad_dtype] = non_fp8_state_dict
# Inplace update state_dict
state_dict.clear()
for key, value in new_state_dict.items():
state_dict[key] = value
def load_parameter_state(self, filename: str, *, update_legacy_format=False):
"""Load the distributed parameter state from disk.
Args:
filename (str): path to load parameter state from.
"""
state_dict = None
if torch.distributed.get_rank(self.data_parallel_group) == 0:
state_dict = torch.load(filename)
self.load_parameter_state_from_dp_zero(
state_dict, update_legacy_format=update_legacy_format
)
def zero_grad(self, set_to_none: bool = True):
"""
Zeroes grads for the model related parameters, i.e., model_float16_groups
and model_fp32_groups. We additionally zero the remaining groups as a
memory optimization to reduce fragmentation; in the case of
set_to_none==True, the space used by this field can be safely deallocated.
Args:
set_to_none (bool): if true, set grads to None.
"""
for groups in (
self.model_float16_groups,
self.model_fp32_groups,
self.shard_float16_groups, # grad empty/unused here?
self.shard_fp32_groups, # throws grad-access warning
self.shard_fp32_from_float16_groups,
):
for group in groups:
_zero_grad_group_helper(group, set_to_none)
def _collect_main_grad_data_for_unscaling(self):
"""
Note: this should be equivalent to the float-16 optimizer's method,
but written differently, so the two should be combined.
"""
return [
param.grad.data for group in self.optimizer.param_groups for param in group["params"]
]
def _get_model_and_main_params_data_float16(self):
"""
Get aligned list of model and main params.
"""
model_data = []
main_data = []
for model_group, main_group in zip(
self.shard_float16_groups, self.shard_fp32_from_float16_groups
):
for model_param, main_param in zip(model_group, main_group):
model_data.append(model_param.data)
main_data.append(main_param.data)
return model_data, main_data
def _copy_model_grads_to_main_grads(self):
"""
Copy model grads to main grads.
Since this step follows a reduce-scatter through the DDP's grad
buffer, this method is responsible for copying the updated grads
from the grad buffer to the main shard's grad field.
"""
# Utility method for copying group grads.
def copy_group_grads(model_groups, shard_main_groups):
for model_group, shard_main_group in zip(model_groups, shard_main_groups):
for model_param, shard_main_param in zip(model_group, shard_main_group):
param_range_map = self._get_model_param_range_map(model_param)
param_range = param_range_map["param"]
assert param_range.size == shard_main_param.nelement()
model_grad = model_param.main_grad
shard_model_grad = model_grad.view(-1)[param_range.start : param_range.end]
shard_main_param.grad = shard_model_grad.float()
# Copy model groups to shard groups.
copy_group_grads(self.model_float16_groups, self.shard_fp32_from_float16_groups)
copy_group_grads(self.model_fp32_groups, self.shard_fp32_groups)
def _copy_main_params_to_model_params(self):
"""
Copy main params to model params.
Since this step is followed by an all-gather through the DDP's grad
buffer, this method is responsible for copying the updated params
from the main shards into the correct position in the grad buffer.
"""
# Utility method for copying group params.
def copy_group_params(shard_main_groups, model_groups):
for shard_main_group, model_group in zip(shard_main_groups, model_groups):
for shard_main_param, model_param in zip(shard_main_group, model_group):
param_range_map = self._get_model_param_range_map(model_param)
world_range = param_range_map["gbuf_world_in_bucket"]
assert world_range.size == shard_main_param.nelement()
gbuf_index, _, bucket_id = self.model_param_gbuf_map[model_param]
model_param_buffer = self.buffers[gbuf_index].buckets[bucket_id].param_data
shard_model_param = model_param_buffer.view(-1)[
world_range.start : world_range.end
]
if is_float8tensor(model_param):
# 1. When "--fp8-param-gather" is disabled, the main param is first cast to
# BF16/FP16, and then cast to FP8, so the amax_history is calculated
# using BF16/FP16 param.
# 2. When "--fp8-param-gather" is enabled, we can cast the FP32 main param
# to FP8 directly, which results in slightly different results with
# higher speed. In theory, this does not affect convergence.
# TODO: The following code maintains the logic of the point-1 above. It can
# be deleted if it is not necessary.
shard_main_param = shard_main_param.to(model_param.dtype)
cast_to_fp8(
shard_main_param.view(1, -1),
model_param._fp8_meta['scaling_fwd'],
model_param._fp8_meta_index,
model_param._fp8_dtype,
out=shard_model_param.view(1, -1),
)
else:
shard_model_param.data.copy_(shard_main_param)
# Copy shard groups to model groups.
copy_group_params(self.shard_fp32_from_float16_groups, self.model_float16_groups)
copy_group_params(self.shard_fp32_groups, self.model_fp32_groups)
def _copy_model_params_to_main_params(self):
"""
Copy model params to main params.
During finetuning, this method is used to reload the main params from
the model params. This copy does not make use of the grad buffer as
an intermediary.
"""
# Utility method for copying group params.
def copy_group_params(model_groups, shard_main_groups):
for model_group, shard_main_group in zip(model_groups, shard_main_groups):
for model_param, shard_main_param in zip(model_group, shard_main_group):
param_range_map = self._get_model_param_range_map(model_param)
param_range = param_range_map["param"]
assert param_range.size == shard_main_param.nelement()
shard_model_param = model_param.view(-1)[param_range.start : param_range.end]
shard_main_param.data.copy_(shard_model_param)
# Copy model groups to shard groups.
copy_group_params(self.model_float16_groups, self.shard_fp32_from_float16_groups)
copy_group_params(self.model_fp32_groups, self.shard_fp32_groups)
def _update_fp8_scale_inv_and_amax(self):
"""
If detect FP8 parameters, update their `_scale_inv` and do reduce-max for their
`amax_history`.
"""
amaxes = []
scales = []
scale_invs = []
# Iterate over all parameters inside this optimizer to find FP8 parameters.
for buffer in self.buffers:
for bucket in buffer.buckets:
for param in bucket.params_list:
if is_float8tensor(param):
fp8_meta = param._fp8_meta['scaling_fwd']
fp8_meta_index = param._fp8_meta_index
amaxes.append(fp8_meta.amax_history[0][fp8_meta_index].view(1))
scales.append(fp8_meta.scale[fp8_meta_index].view(1))
scale_invs.append(param._scale_inv.view(1))
# Reset transpose cache
param._reset_caches()
# If there is no FP8 parameters, skip all operations.
if len(scales) > 0:
dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device='cuda')
# Update scaling factors.
packed_scales = torch.empty(len(scales), dtype=torch.float32, device=scales[0].device)
packed_scale_views = [packed_scales[i].view(1) for i in range(len(scales))]
_multi_tensor_copy_this_to_that(scales, packed_scale_views, dummy_overflow_buf)
torch.reciprocal(packed_scales, out=packed_scales)
_multi_tensor_copy_this_to_that(packed_scale_views, scale_invs, dummy_overflow_buf)
# Reduce amaxes.
# Note: Assume each param has a separate amax.
packed_amaxes = torch.empty(len(amaxes), dtype=torch.float32, device=amaxes[0].device)
packed_amax_views = [packed_amaxes[i].view(1) for i in range(len(amaxes))]
_multi_tensor_copy_this_to_that(amaxes, packed_amax_views, dummy_overflow_buf)
torch.distributed.all_reduce(
packed_amaxes, op=torch.distributed.ReduceOp.MAX, group=self.data_parallel_group
)
_multi_tensor_copy_this_to_that(packed_amax_views, amaxes, dummy_overflow_buf)
@torch.no_grad()
def step_with_ready_grads(self) -> bool:
"""Step the optimizer with ready gradients, return successful.
Under the hood, either launch synchronous param all-gathers or get ready to launch
asynchorous all-gathers that get overlapped with the next forward pass.
"""
update_successful = super().step_with_ready_grads()
# If there is no FP8 parameters, this will do nothing.
self._update_fp8_scale_inv_and_amax()
timers = self.config.timers
if timers is not None:
timers('params-all-gather', log_level=1).start(barrier=self.config.barrier_with_L1_time)
# If not overlapping all-gather for parameters, launch synchronous all-gather
# communication calls here. If overlapping all-gather for parameters, the following
# the first all-gather is launched asynchronously in the next optimizer.zero_grad()
# call and subsequent all-gathers are launched in the forward pre-hook.
if not self.ddp_config.overlap_param_gather:
for model_chunk in self.model_chunks:
model_chunk.start_param_sync()
if timers is not None:
timers('params-all-gather').stop()
return update_successful
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
"""Megatron grad scaler.""" """Megatron grad scaler."""
from abc import ABC from abc import ABC, abstractmethod
from abc import abstractmethod from typing import Dict
import torch import torch
class MegatronGradScaler(ABC): class MegatronGradScaler(ABC):
def __init__(self, initial_scale: float):
def __init__(self, initial_scale):
"""Initialize scale value with the input initial scale.""" """Initialize scale value with the input initial scale."""
assert initial_scale > 0.0 assert initial_scale > 0.0
self._scale = torch.cuda.FloatTensor([initial_scale]) self._scale = torch.tensor([initial_scale], dtype=torch.float, device='cuda')
@property @property
def scale(self): def scale(self):
...@@ -24,7 +23,7 @@ class MegatronGradScaler(ABC): ...@@ -24,7 +23,7 @@ class MegatronGradScaler(ABC):
return self._scale.double().reciprocal().float() return self._scale.double().reciprocal().float()
@abstractmethod @abstractmethod
def update(self, found_inf): def update(self, found_inf: bool):
pass pass
@abstractmethod @abstractmethod
...@@ -32,14 +31,16 @@ class MegatronGradScaler(ABC): ...@@ -32,14 +31,16 @@ class MegatronGradScaler(ABC):
pass pass
@abstractmethod @abstractmethod
def load_state_dict(self, state_dict): def load_state_dict(self, state_dict: Dict):
pass pass
class ConstantGradScaler(MegatronGradScaler): class ConstantGradScaler(MegatronGradScaler):
"""
Constant grad scaler (loss scale is never adjusted regardless of NaNs seen in gradients).
"""
def update(self, found_inf): def update(self, found_inf: bool):
pass pass
def state_dict(self): def state_dict(self):
...@@ -49,26 +50,48 @@ class ConstantGradScaler(MegatronGradScaler): ...@@ -49,26 +50,48 @@ class ConstantGradScaler(MegatronGradScaler):
pass pass
class DynamicGradScaler(MegatronGradScaler): class DynamicGradScaler(MegatronGradScaler):
"""
def __init__(self, initial_scale, min_scale, Grad scaler with dynamic scale that gets adjusted during training.
growth_factor, backoff_factor,
growth_interval, hysteresis): Reduces loss scale by `backoff_factor` if `hysteresis` number of NaNs are seen in a row. Increases
""""Grad scaler with dynamic scale that gets adjusted loss scale by `growth_factor` if NaNs are not seen for `growth_interval` iterations.
during training.""" """
def __init__(
self,
initial_scale: float,
min_scale: float,
growth_factor: float,
backoff_factor: float,
growth_interval: int,
hysteresis: int,
):
"""
Grad scaler with dynamic scale that gets adjusted during training.
Args:
initial_scale (float): Initial loss scale value.
min_scale (float): Minimum loss scale value.
growth_factor (float): Factor to grow loss scale by if NaNs are not seen in `growth_interval`
training iterations. Must be greater than 1.
backoff_factor (float): Factor to decrease loss scale by if NaNs are seen in `hysteresis`
consecutive training iterations. Must be between 0 and 1.
growth_interval (int): Number of training iterations of no NaNs before loss scale is increased.
hysteresis (int): Number of training iterations of consecutive NaNs before loss scale is decreased.
"""
super(DynamicGradScaler, self).__init__(initial_scale) super(DynamicGradScaler, self).__init__(initial_scale)
# Lower bound on the scale. # Lower bound on the scale.
assert min_scale > 0.0 assert min_scale > 0.0
assert min_scale <= initial_scale assert min_scale <= initial_scale
self.min_scale = torch.cuda.FloatTensor([min_scale]) self.min_scale = torch.tensor([min_scale], dtype=torch.float, device='cuda')
# Growth and backoff factors for the scale. # Growth and backoff factors for the scale.
assert growth_factor > 1.0 assert growth_factor > 1.0
self.growth_factor = torch.cuda.FloatTensor([growth_factor]) self.growth_factor = torch.tensor([growth_factor], dtype=torch.float, device='cuda')
assert backoff_factor < 1.0 assert backoff_factor < 1.0
assert backoff_factor > 0.0 assert backoff_factor > 0.0
self.backoff_factor = torch.cuda.FloatTensor([backoff_factor]) self.backoff_factor = torch.tensor([backoff_factor], dtype=torch.float, device='cuda')
# Interval over which if we don't see any inf/nan, # Interval over which if we don't see any inf/nan,
# we will scale the grad scale by the growth factor. # we will scale the grad scale by the growth factor.
assert growth_interval > 0 assert growth_interval > 0
...@@ -82,8 +105,10 @@ class DynamicGradScaler(MegatronGradScaler): ...@@ -82,8 +105,10 @@ class DynamicGradScaler(MegatronGradScaler):
self._growth_tracker = 0 self._growth_tracker = 0
self._hysteresis_tracker = self.hysteresis self._hysteresis_tracker = self.hysteresis
def update(self, found_inf: bool):
def update(self, found_inf): """
Updates internal state in grad scaler based on whether NaNs are seen in grads or not.
"""
# If we have an inf/nan, growth tracker is set to 0 # If we have an inf/nan, growth tracker is set to 0
# and hysterisis tracker is reduced by 1. # and hysterisis tracker is reduced by 1.
...@@ -92,8 +117,7 @@ class DynamicGradScaler(MegatronGradScaler): ...@@ -92,8 +117,7 @@ class DynamicGradScaler(MegatronGradScaler):
self._hysteresis_tracker -= 1 self._hysteresis_tracker -= 1
# Now if we are out of hysteresis count, scale down the loss. # Now if we are out of hysteresis count, scale down the loss.
if self._hysteresis_tracker <= 0: if self._hysteresis_tracker <= 0:
self._scale = torch.max(self._scale * self.backoff_factor, self._scale = torch.max(self._scale * self.backoff_factor, self.min_scale)
self.min_scale)
else: else:
# If there is no nan/inf, increment the growth tracker. # If there is no nan/inf, increment the growth tracker.
self._growth_tracker += 1 self._growth_tracker += 1
...@@ -105,7 +129,6 @@ class DynamicGradScaler(MegatronGradScaler): ...@@ -105,7 +129,6 @@ class DynamicGradScaler(MegatronGradScaler):
# and scale up the loss scale. # and scale up the loss scale.
self._scale = self._scale * self.growth_factor self._scale = self._scale * self.growth_factor
def state_dict(self): def state_dict(self):
state_dict = {} state_dict = {}
state_dict['scale'] = self._scale state_dict['scale'] = self._scale
...@@ -113,8 +136,7 @@ class DynamicGradScaler(MegatronGradScaler): ...@@ -113,8 +136,7 @@ class DynamicGradScaler(MegatronGradScaler):
state_dict['hysteresis_tracker'] = self._hysteresis_tracker state_dict['hysteresis_tracker'] = self._hysteresis_tracker
return state_dict return state_dict
def load_state_dict(self, state_dict: Dict):
def load_state_dict(self, state_dict):
self._scale = state_dict['scale'].cuda(torch.cuda.current_device()) self._scale = state_dict['scale'].cuda(torch.cuda.current_device())
self._growth_tracker = state_dict['growth_tracker'] self._growth_tracker = state_dict['growth_tracker']
self._hysteresis_tracker = state_dict['hysteresis_tracker'] self._hysteresis_tracker = state_dict['hysteresis_tracker']
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
"""Megatron optimizer.""" """Megatron optimizer."""
from abc import ABC import copy
from abc import abstractmethod import math
from apex.multi_tensor_apply import multi_tensor_applier from abc import ABC, abstractmethod
import amp_C from itertools import chain
from logging import getLogger
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from megatron import get_timers try:
from megatron import print_rank_0 from transformer_engine.pytorch.optimizers import multi_tensor_applier, multi_tensor_scale
from megatron.core import mpu, tensor_parallel
from megatron.model import DistributedDataParallel as LocalDDP multi_tensor_scale_impl = multi_tensor_scale
from megatron.model import Float16Module except ImportError:
from megatron.model.module import param_is_not_shared try:
from megatron.utils import unwrap_model import amp_C
from apex.multi_tensor_apply import multi_tensor_applier
multi_tensor_scale_impl = amp_C.multi_tensor_scale
except ImportError:
import warnings
warnings.warn(
'Transformer Engine and Apex are not installed. '
'Falling back to local implementations of '
'multi_tensor_applier and multi_tensor_scale'
)
from megatron.core.utils import local_multi_tensor_applier, local_multi_tensor_scale
multi_tensor_applier = local_multi_tensor_applier
multi_tensor_scale_impl = local_multi_tensor_scale
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32 from .. import parallel_state, tensor_parallel
from ..config_logger import has_config_logger_enabled, log_config_to_disk
from ..dist_checkpointing.mapping import ShardedStateDict
from ..dist_checkpointing.optimizer import (
get_param_id_to_sharded_param_map,
make_sharded_optimizer_tensor,
optim_state_to_sharding_state,
)
from ..dist_checkpointing.utils import add_prefix_for_sharding
from ..transformer.module import param_is_not_shared
from .clip_grads import clip_grad_by_total_norm_fp32, count_zeros_fp32, get_grad_norm_fp32
from .grad_scaler import MegatronGradScaler
from .optimizer_config import OptimizerConfig
logger = getLogger(__name__)
def _zero_grad_group_helper(group, set_to_none):
"""Zero out the gradient for a group of parameters. def _zero_grad_group_helper(group: List[torch.nn.Parameter], set_to_none: bool):
Note: copied from torch.optim.optimizer.""" """
Zero out the gradient for a group of parameters.
Note: copied from torch.optim.optimizer.
"""
for param in group: for param in group:
if param.grad is not None: if param.grad is not None:
if set_to_none: if set_to_none:
...@@ -36,65 +69,65 @@ def _zero_grad_group_helper(group, set_to_none): ...@@ -36,65 +69,65 @@ def _zero_grad_group_helper(group, set_to_none):
param.grad.zero_() param.grad.zero_()
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None): def _multi_tensor_copy_this_to_that(
"""Use multi-tensor-applier to copy values from one list to another. this: List[torch.Tensor], that: List[torch.Tensor], overflow_buf: Optional[torch.Tensor] = None
We don't have a blfoat16 implementation so for now if the overflow_buf ):
"""
Use multi-tensor-applier to copy values from one list to another.
We don't have a bfloat16 implementation so for now if the overflow_buf
is not provided, we default back to simple loop copy to be compatible is not provided, we default back to simple loop copy to be compatible
with bfloat16.""" with bfloat16.
if overflow_buf: """
if overflow_buf is not None:
overflow_buf.fill_(0) overflow_buf.fill_(0)
# Scaling with factor `1.0` is equivalent to copy. # Scaling with factor `1.0` is equivalent to copy.
multi_tensor_applier(amp_C.multi_tensor_scale, multi_tensor_applier(multi_tensor_scale_impl, overflow_buf, [this, that], 1.0)
overflow_buf,
[this, that],
1.0)
else: else:
for this_, that_ in zip(this, that): for this_, that_ in zip(this, that):
that_.copy_(this_) that_.copy_(this_)
class MegatronOptimizer(ABC): class MegatronOptimizer(ABC):
"""
Base class for all Megatron optimizers.
Args:
optimizer (torch.optim.Optimizer): base optimizer such as Adam or SGD.
config (OptimizerConfig): configuration object for optimizer.
init_state_fn (Callable, optional): function to initialize state in the optimizer.
"""
def __init__(self, optimizer, clip_grad, def __init__(
log_num_zeros_in_grad, self,
params_have_main_grad, optimizer: torch.optim.Optimizer,
use_contiguous_buffers_in_local_ddp, config: OptimizerConfig,
models): init_state_fn: Callable = lambda x: None,
):
"""Input optimizer is the base optimizer for example Adam.""" """Input optimizer is the base optimizer (e.g., Adam)."""
self.optimizer = optimizer self.optimizer = optimizer
assert self.optimizer, 'no optimizer is provided.' assert self.optimizer, 'no optimizer is provided.'
# Set gradient clipping and logging params. self.config = config
self.clip_grad = clip_grad self.init_state_fn = init_state_fn
self.log_num_zeros_in_grad = log_num_zeros_in_grad
self.params_have_main_grad = params_have_main_grad
self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
# 'models' are retained for access to the contiguous grad buffers.
# (see distributed optimizer)
self.models = models
if self.use_contiguous_buffers_in_local_ddp: def get_parameters(self) -> List[torch.nn.Parameter]:
assert self.params_have_main_grad, \ """
"use of contiguous buffer requires that params have main grad" Get list of parameters wrapped in optimizer.
"""
def get_parameters(self):
params = [] params = []
for param_group in self.optimizer.param_groups: for param_group in self.optimizer.param_groups:
for param in param_group['params']: for param in param_group['params']:
params.append(param) params.append(param)
return params return params
def get_main_grads_for_grad_norm(self) -> List[torch.Tensor]:
def get_main_grads_for_grad_norm(self): """
Get main_grads that should be taken into account to compute the grad norm.
# Filter parameters based on: Filter parameters based on:
# - grad should not be none - grad should not be None.
# - parameter should not be shared - parameter should not be shared (i.e., grads shouldn't be double counted while
# - should not be a replica due to tensor model parallelism computing norms).
- should not be a replica due to tensor model parallelism.
"""
params = self.get_parameters() params = self.get_parameters()
grads_for_norm = [] grads_for_norm = []
for param in params: for param in params:
...@@ -107,41 +140,85 @@ class MegatronOptimizer(ABC): ...@@ -107,41 +140,85 @@ class MegatronOptimizer(ABC):
return grads_for_norm return grads_for_norm
def get_grad_stats_parallel_group(self) -> torch.distributed.ProcessGroup:
"""Process group for reducing gradient statistics (num_zeros & norm).
def get_model_parallel_group(self): The two most common cases are:
"""Default returned here, but the distributed optimizer overrides this.""" - Non-distributed optimizer (default): Return the model-parallel group.
return mpu.get_model_parallel_group() - Distributed optimizer (overridden in distrib_optimizer.py): Return the entire world.
"""
if hasattr(self, 'model_parallel_group'):
warnings.warn(
"WARNING: `optimizer.model_parallel_group` deprecated and renamed to "
"`optimizer.grad_stats_parallel_group`. The previous name will be "
"removed in a future release."
)
self.grad_stats_parallel_group = self.model_parallel_group
delattr(self, "model_parallel_group")
return self.grad_stats_parallel_group
if hasattr(self, 'grad_stats_parallel_group'):
return self.grad_stats_parallel_group
return parallel_state.get_model_parallel_group()
@abstractmethod
def prepare_grads(self) -> bool:
"""Pre-processing gradients before the optimizer step, returns whether inf/nan is found."""
return False
def clip_grad_norm(self, clip_grad): @abstractmethod
params = self.get_parameters() def step_with_ready_grads(self) -> bool:
grads_for_norm = self.get_main_grads_for_grad_norm() """Step the optimizer with ready gradients, return successful."""
return clip_grad_norm_fp32( return True
params, grads_for_norm, clip_grad,
model_parallel_group=self.get_model_parallel_group())
@torch.no_grad()
def get_grad_norm(self):
"""Compute and return grad norm."""
grads_for_norm = self.get_main_grads_for_grad_norm()
total_norm = get_grad_norm_fp32(
grads_for_norm, grad_stats_parallel_group=self.get_grad_stats_parallel_group()
)
return total_norm
def count_zeros(self): def clip_grad_norm(self, clip_grad: float) -> float:
"""Compute and return grad norm, also clip grads."""
params = self.get_parameters() params = self.get_parameters()
return count_zeros_fp32(params, grads_for_norm = self.get_main_grads_for_grad_norm()
model_parallel_group=self.get_model_parallel_group()) grad_norm = get_grad_norm_fp32(
grads_for_norm, grad_stats_parallel_group=self.get_grad_stats_parallel_group()
)
clip_grad_by_total_norm_fp32(params, clip_grad, grad_norm)
return grad_norm
def count_zeros(self) -> float:
"""Count number of zeros in model's gradients."""
params = self.get_parameters()
return count_zeros_fp32(
params, grad_stats_parallel_group=self.get_grad_stats_parallel_group()
)
@abstractmethod @abstractmethod
def zero_grad(self, set_to_none=True): def zero_grad(self, set_to_none: bool = True):
"""Zero gradients and prepare for next forward pass."""
pass pass
@abstractmethod @abstractmethod
def get_loss_scale(self): def get_loss_scale(self) -> torch.Tensor:
"""The output should be a cuda tensor of size 1.""" """
Get current loss scale factor.
NOTE: The output should be a CUDA tensor of size 1.
"""
pass pass
def scale_loss(self, loss: torch.Tensor) -> torch.Tensor:
def scale_loss(self, loss):
"""Simple scaling.""" """Simple scaling."""
return self.get_loss_scale() * loss return self.get_loss_scale() * loss
def start_param_sync(self, model_index: int, *unused):
"""
Start parameter synchronization for all optimizers.
This is a no-op for all non-distributed optimizers.
"""
pass
@abstractmethod @abstractmethod
def reload_model_params(self): def reload_model_params(self):
...@@ -152,17 +229,16 @@ class MegatronOptimizer(ABC): ...@@ -152,17 +229,16 @@ class MegatronOptimizer(ABC):
with main parameters, the main parameters need to also be updated.""" with main parameters, the main parameters need to also be updated."""
pass pass
@abstractmethod @abstractmethod
def state_dict(self): def state_dict(self):
"""Return state_dict."""
pass pass
@abstractmethod @abstractmethod
def load_state_dict(self, state_dict): def load_state_dict(self, state_dict):
"""Load pass-in `state_dict`."""
pass pass
# Promote state so it can be retrieved or set via # Promote state so it can be retrieved or set via
# "optimizer_instance.state" # "optimizer_instance.state"
def _get_state(self): def _get_state(self):
...@@ -173,7 +249,6 @@ class MegatronOptimizer(ABC): ...@@ -173,7 +249,6 @@ class MegatronOptimizer(ABC):
state = property(_get_state, _set_state) state = property(_get_state, _set_state)
# Promote param_groups so it can be retrieved or set via # Promote param_groups so it can be retrieved or set via
# "optimizer_instance.param_groups" # "optimizer_instance.param_groups"
# (for example, to adjust the learning rate) # (for example, to adjust the learning rate)
...@@ -185,200 +260,104 @@ class MegatronOptimizer(ABC): ...@@ -185,200 +260,104 @@ class MegatronOptimizer(ABC):
param_groups = property(_get_param_groups, _set_param_groups) param_groups = property(_get_param_groups, _set_param_groups)
@abstractmethod @abstractmethod
def step(self, args, timers): def step(self):
pass """Step the optimizer."""
def gather_model_params(self, args, timers):
"""
For the case of a non-distributed-optimizer, there is nothing to
do here.
"""
pass pass
@abstractmethod
def sharded_state_dict(
self, model_sharded_state_dict: ShardedStateDict, is_loading: bool = False
) -> ShardedStateDict:
"""Builds sharded state dict for the optimizer, based on model's sharded state dict.
def allreduce_word_embedding_grads(self, args): Args:
""" model_sharded_state_dict (ShardedStateDict): sharded state dict of the model
All-reduce word embedding grads. is_loading (bool, optional): flag indicating whether the state dict will be
used to save or load the optimizer state. Defaults to False.
Reduce grads across first and last stages to ensure that word_embeddings Returns: optimizer sharded state dict
parameters stay in sync. This should only run for models that support
pipelined model parallelism (BERT and GPT-2).
""" """
if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \ @staticmethod
mpu.get_pipeline_model_parallel_world_size() > 1: def _extract_common_per_param_step(state_dict) -> Union[int, torch.Tensor]:
if mpu.is_pipeline_first_stage(ignore_virtual=True): common_step = None
unwrapped_model = self.models[0] for param_idx, param_state in state_dict['state'].items():
elif mpu.is_pipeline_last_stage(ignore_virtual=True): param_step = param_state.get('step', None)
unwrapped_model = self.models[-1] if param_step is not None:
else: # We do not support the interleaved schedule for T5 yet. if common_step is None:
unwrapped_model = self.models[0] common_step = param_step
unwrapped_model = unwrap_model( elif common_step != param_step:
unwrapped_model, (torchDDP, LocalDDP, Float16Module)) raise ValueError(
"The optimizer step differs per parameter. Mcore only supports "
if unwrapped_model.share_embeddings_and_output_weights: "optimizers whose step is shared across all parameters."
weight = unwrapped_model.shared_embedding_or_output_weight() )
if args.DDP_impl == 'local': return common_step
grad = weight.main_grad
else: @staticmethod
grad = weight.grad def _restore_common_per_param_step(state_dict: Dict, step: Union[int, torch.Tensor]):
torch.distributed.all_reduce(grad, group=mpu.get_embedding_group()) for param_idx, param_state in state_dict['state'].items():
param_state['step'] = copy.deepcopy(step)
def allreduce_position_embedding_grads(self, args):
"""
All-reduce position_embeddings grad across first (encoder) and
split (decoder) stages to ensure that position embeddings parameters
stay in sync. This should only run for T5 models with pipeline
parallelism.
"""
if mpu.is_rank_in_position_embedding_group() and \
mpu.get_pipeline_model_parallel_world_size() > 1 and \
args.pipeline_model_parallel_split_rank is not None:
unwrapped_model = self.models[0]
unwrapped_model = unwrap_model(
unwrapped_model, (torchDDP, LocalDDP, Float16Module))
assert args.DDP_impl == 'local', \
'T5 model is only supported with local DDP mode'
grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
def allreduce_embedding_grads(self, args):
"""All-reduce both word and position embeddings."""
self.allreduce_word_embedding_grads(args)
self.allreduce_position_embedding_grads(args)
def allreduce_layernorm_grads(self, args):
"""All-reduce layernorm grads (for sequence parallelism)."""
# All-reduce layernorm parameters across model parallel nodes
# when sequence parallelism is used
if mpu.get_tensor_model_parallel_world_size() > 1 and \
args.sequence_parallel:
grads = []
for model_module in self.models:
unwrapped_model = unwrap_model(
model_module, (torchDDP, LocalDDP, Float16Module))
for param in unwrapped_model.parameters():
if getattr(param, 'sequence_parallel', False):
grad = param.main_grad if args.DDP_impl == 'local' else param.grad
grads.append(grad.data)
coalesced = _flatten_dense_tensors(grads)
torch.distributed.all_reduce(
coalesced, group=mpu.get_tensor_model_parallel_group())
for buf, synced in zip(grads, _unflatten_dense_tensors(
coalesced, grads)):
buf.copy_(synced)
def reduce_model_grads(self, args, timers):
"""All-reduce all grads, and all-reduce embeddings."""
# All-reduce layer-norm grads (for sequence parallelism).
timers('layernorm-grads-all-reduce', log_level=1).start(
barrier=args.barrier_with_L1_time)
self.allreduce_layernorm_grads(args)
timers('layernorm-grads-all-reduce').stop()
# All-reduce if needed.
if args.DDP_impl == 'local':
timers('grads-all-reduce', log_level=1).start(
barrier=args.barrier_with_L1_time)
for model in self.models:
model.allreduce_gradients()
timers('grads-all-reduce').stop()
# All-reduce embedding grads.
timers('embedding-grads-all-reduce', log_level=1).start(
barrier=args.barrier_with_L1_time)
self.allreduce_embedding_grads(args)
timers('embedding-grads-all-reduce').stop()
class MixedPrecisionOptimizer(MegatronOptimizer): class MixedPrecisionOptimizer(MegatronOptimizer):
"""Base class for both the float-16 and the distributed optimizer. """Base class for both the float-16 and the distributed optimizer.
Arguments: Args:
optimizer: base optimizer such as Adam or SGD optimizer (torch.optim.Optimizer): base optimizer such as Adam or SGD.
clip_grad: clip gradeints with this global L2 norm. Note config (OptimizerConfig): configuration object for optimizer.
that clipping is ignored if clip_grad == 0 grad_scaler (MegatronGradScaler): used for scaling gradients. Note that
log_num_zeros_in_grad: return number of zeros in the gradients. this can be None. This case happens when `bf16 = True` and we don't
params_have_main_grad: flag indicating if parameters have
a `main_grad` field. If this is set, we are assuming
that the model parameters are store in the `main_grad`
field instead of the typical `grad` field. This happens
for the DDP cases where there is a continuous buffer
holding the gradients. For example for bfloat16, we want
to do gradient accumulation and all-reduces in float32
and as a result we store those gradients in the main_grad.
Note that main grad is not necessarily in float32.
use_contiguous_buffers_in_local_ddp: if true, the local DDP model
is using a contiguous buffer to hold the model grads.
fp16: if true, the model is running in fp16.
bf16: if true, the model is running in bfloat16.
params_dtype: used by distributed optimizer.
grad_scaler: used for scaling gradients. Note that this can be
None. This case happens when `bf16 = True` and we don't
use any loss scale. Note that for `bf16 = True`, we can have use any loss scale. Note that for `bf16 = True`, we can have
a constnat gradient scaler. Also for `bf16 = False`, we a constant gradient scaler. Also for `bf16 = False`, we
always require a grad scaler. always require a grad scaler.
models: list of models (i.e., the virtual pipelining models). This init_state_fn (Callable, optional): function to initialize state in the optimizer.
is used by the distributed optimizer for mapping parameters.
""" """
def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad, def __init__(
params_have_main_grad, use_contiguous_buffers_in_local_ddp, self,
fp16, bf16, params_dtype, grad_scaler, optimizer: torch.optim.Optimizer,
models): config: OptimizerConfig,
grad_scaler: Optional[MegatronGradScaler],
super().__init__( init_state_fn: Callable,
optimizer, clip_grad, log_num_zeros_in_grad, ):
params_have_main_grad, use_contiguous_buffers_in_local_ddp, if has_config_logger_enabled(config):
models) log_config_to_disk(config, locals(), prefix=type(self).__name__)
self.fp16 = fp16 super().__init__(optimizer, config, init_state_fn)
self.bf16 = bf16
self.params_dtype = params_dtype
self.grad_scaler = grad_scaler self.grad_scaler = grad_scaler
# None grad scaler is only supported for bf16. # None grad scaler is only supported for bf16.
if self.grad_scaler is None: if self.grad_scaler is None:
assert not self.fp16, 'fp16 expects a grad scaler.' assert not self.config.fp16, 'fp16 expects a grad scaler.'
# Tensor used to determine if a nan/if has happend. # Tensor used to determine if a nan/if has happend.
# Any non-zero value indicates inf/nan. # Any non-zero value indicates inf/nan.
# Note that we keep this for the cases that grad scaler is none. # Note that we keep this for the cases that grad scaler is none.
# We still record nan/inf if we have a bfloat16 with a grad scaler. # We still record nan/inf if we have a bfloat16 with a grad scaler.
if self.grad_scaler: if self.grad_scaler:
self.found_inf = torch.cuda.FloatTensor([0.0]) self.found_inf = torch.tensor([0.0], dtype=torch.float, device='cuda')
# Dummy tensor needed for apex multi-apply tensor. # Dummy tensor needed for apex multi-apply tensor.
# For bfloat, we don't have multi-tensor apply and for now # For bfloat, we don't have multi-tensor apply and for now
# we set it to none so the multi-tensor apply gets ignored. # we set it to none so the multi-tensor apply gets ignored.
if bf16: if self.config.bf16:
self._dummy_overflow_buf = None self._dummy_overflow_buf = None
else: else:
self._dummy_overflow_buf = torch.cuda.IntTensor([0]) self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device='cuda')
# In case grad scaler is not passed, define the unity scale. # In case grad scaler is not passed, define the unity scale.
if self.grad_scaler is None: if self.grad_scaler is None:
self._scale_one = torch.cuda.FloatTensor([1.0]) self._scale_one = torch.tensor([1.0], dtype=torch.float, device='cuda')
def get_loss_scale(self): def get_loss_scale(self):
if self.grad_scaler is None: if self.grad_scaler is None:
return self._scale_one return self._scale_one
return self.grad_scaler.scale return self.grad_scaler.scale
def reload_model_params(self): def reload_model_params(self):
self._copy_model_params_to_main_params() self._copy_model_params_to_main_params()
def _unscale_main_grads_and_check_for_nan(self): def _unscale_main_grads_and_check_for_nan(self):
# Collect main grads. # Collect main grads.
...@@ -389,119 +368,139 @@ class MixedPrecisionOptimizer(MegatronOptimizer): ...@@ -389,119 +368,139 @@ class MixedPrecisionOptimizer(MegatronOptimizer):
# Unscale and set found inf/nan # Unscale and set found inf/nan
torch._amp_foreach_non_finite_check_and_unscale_( torch._amp_foreach_non_finite_check_and_unscale_(
main_grads, self.found_inf, self.grad_scaler.inv_scale) main_grads, self.found_inf, self.grad_scaler.inv_scale
)
# Update across all model parallel instances. # Update across all model parallel instances.
torch.distributed.all_reduce(self.found_inf, torch.distributed.all_reduce(
op=torch.distributed.ReduceOp.MAX, self.found_inf,
group=self.get_model_parallel_group()) op=torch.distributed.ReduceOp.MAX,
group=self.get_grad_stats_parallel_group(),
)
# Check for nan. # Check for nan.
found_inf_flag = (self.found_inf.item() > 0) found_inf_flag = self.found_inf.item() > 0
return found_inf_flag return found_inf_flag
@torch.no_grad() @torch.no_grad()
def step(self, args, timers): def prepare_grads(self) -> bool:
"""Pre-processing gradients before the optimizer step, returns whether inf/nan is found."""
timers = self.config.timers
# Copy gradients from model params to main params. # Copy gradients from model params to main params.
timers('optimizer-copy-to-main-grad', log_level=1).start( if timers is not None:
barrier=args.barrier_with_L1_time) timers('optimizer-copy-to-main-grad', log_level=1).start(
barrier=self.config.barrier_with_L1_time
)
self._copy_model_grads_to_main_grads() self._copy_model_grads_to_main_grads()
timers('optimizer-copy-to-main-grad').stop() if timers is not None:
timers('optimizer-copy-to-main-grad').stop()
# Do unscale, check for inf, and update grad scaler only for # Do unscale, check for inf, and update grad scaler only for
# the case that grad scaler is provided. # the case that grad scaler is provided.
if self.grad_scaler: if self.grad_scaler:
# Unscale and check for inf/nan. # Unscale and check for inf/nan.
timers('optimizer-unscale-and-check-inf', log_level=1).start( if timers is not None:
barrier=args.barrier_with_L1_time) timers('optimizer-unscale-and-check-inf', log_level=1).start(
barrier=self.config.barrier_with_L1_time
)
found_inf_flag = self._unscale_main_grads_and_check_for_nan() found_inf_flag = self._unscale_main_grads_and_check_for_nan()
timers('optimizer-unscale-and-check-inf').stop() if timers is not None:
timers('optimizer-unscale-and-check-inf').stop()
# We are done with scaling gradients # We are done with scaling gradients
# so we can update the loss scale. # so we can update the loss scale.
self.grad_scaler.update(found_inf_flag) self.grad_scaler.update(found_inf_flag)
# If we found inf/nan, skip the update. return found_inf_flag
if found_inf_flag:
return False, None, None
# Clip the main gradients. return False
timers('optimizer-clip-main-grad', log_level=1).start(
barrier=args.barrier_with_L1_time)
grad_norm = None
if self.clip_grad > 0.0:
grad_norm = self.clip_grad_norm(self.clip_grad)
timers('optimizer-clip-main-grad').stop()
# Count the zeros in the grads.
timers('optimizer-count-zeros', log_level=1).start(
barrier=args.barrier_with_L1_time)
num_zeros_in_grad = self.count_zeros() if \
self.log_num_zeros_in_grad else None
timers('optimizer-count-zeros').stop()
@torch.no_grad()
def step_with_ready_grads(self) -> bool:
"""Step the optimizer with ready gradients, return successful."""
timers = self.config.timers
# Step the optimizer. # Step the optimizer.
timers('optimizer-inner-step', log_level=1).start( if timers is not None:
barrier=args.barrier_with_L1_time) timers('optimizer-inner-step', log_level=1).start(
barrier=self.config.barrier_with_L1_time
)
self.optimizer.step() self.optimizer.step()
timers('optimizer-inner-step').stop() if timers is not None:
timers('optimizer-inner-step').stop()
# Update params from main params. # Update params from main params.
timers('optimizer-copy-main-to-model-params', log_level=1).start( if timers is not None:
barrier=args.barrier_with_L1_time) timers('optimizer-copy-main-to-model-params', log_level=1).start(
barrier=self.config.barrier_with_L1_time
)
self._copy_main_params_to_model_params() self._copy_main_params_to_model_params()
timers('optimizer-copy-main-to-model-params').stop() if timers is not None:
timers('optimizer-copy-main-to-model-params').stop()
return True
@torch.no_grad()
def step(self):
timers = self.config.timers
found_inf_flag = self.prepare_grads()
if found_inf_flag:
return False, None, None
# Clip the main gradients.
if timers is not None:
timers('optimizer-clip-main-grad', log_level=1).start(
barrier=self.config.barrier_with_L1_time
)
grad_norm = None
if self.config.clip_grad > 0.0:
grad_norm = self.clip_grad_norm(self.config.clip_grad)
if timers is not None:
timers('optimizer-clip-main-grad').stop()
# Count the zeros in the grads.
if timers is not None:
timers('optimizer-count-zeros', log_level=1).start(
barrier=self.config.barrier_with_L1_time
)
num_zeros_in_grad = self.count_zeros() if self.config.log_num_zeros_in_grad else None
if timers is not None:
timers('optimizer-count-zeros').stop()
success = self.step_with_ready_grads()
# Successful update. # Successful update.
return True, grad_norm, num_zeros_in_grad return success, grad_norm, num_zeros_in_grad
class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer): class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
"""Float16 optimizer for fp16 and bf16 data types. """Float16 optimizer for fp16 and bf16 data types.
Arguments: Args:
optimizer: base optimizer such as Adam or SGD optimizer (torch.optim.Optimizer): base optimizer such as Adam or SGD.
clip_grad: clip gradeints with this global L2 norm. Note config (OptimizerConfig): configuration object for optimizer.
that clipping is ignored if clip_grad == 0 grad_scaler (MegatronGradScaler): used for scaling gradients. Note that
log_num_zeros_in_grad: return number of zeros in the gradients. this can be None. This case happens when `bf16 = True` and we don't
params_have_main_grad: flag indicating if parameters have
a `main_grad` field. If this is set, we are assuming
that the model parameters are store in the `main_grad`
field instead of the typical `grad` field. This happens
for the DDP cases where there is a continuous buffer
holding the gradients. For example for bfloat16, we want
to do gradient accumulation and all-reduces in float32
and as a result we store those gradients in the main_grad.
Note that main grad is not necessarily in float32.
use_contiguous_buffers_in_local_ddp: if true, the local DDP model
is using a contiguous buffer to hold the model grads.
fp16: if true, the model is running in fp16.
bf16: if true, the model is running in bfloat16.
grad_scaler: used for scaling gradients. Note that this can be
None. This case happens when `bf16 = True` and we don't
use any loss scale. Note that for `bf16 = True`, we can have use any loss scale. Note that for `bf16 = True`, we can have
a constnat gradient scaler. Also for `bf16 = False`, we a constant gradient scaler. Also for `bf16 = False`, we
always require a grad scaler. always require a grad scaler.
models: list of models (i.e., the virtual pipelining models). This init_state_fn (Callable, optional): function to initialize state in the optimizer.
is used by the distributed optimizer for mapping parameters.
""" """
def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad, def __init__(
params_have_main_grad, use_contiguous_buffers_in_local_ddp, self,
fp16, bf16, params_dtype, grad_scaler, models): optimizer: torch.optim.Optimizer,
config: OptimizerConfig,
grad_scaler: MegatronGradScaler,
init_state_fn: Callable,
):
super().__init__( super().__init__(optimizer, config, grad_scaler, init_state_fn)
optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp,
fp16, bf16, params_dtype, grad_scaler, models)
# ====================== # Handle main parameters.
# main parameter stuff
# ======================
# Three groups of parameters: # Three groups of parameters:
# float16_groups: original float16 parameters # float16_groups: original float16 parameters
...@@ -521,14 +520,12 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer): ...@@ -521,14 +520,12 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
if param.requires_grad: if param.requires_grad:
# float16 params: # float16 params:
if param.type() in ['torch.cuda.HalfTensor', if param.type() in ['torch.cuda.HalfTensor', 'torch.cuda.BFloat16Tensor']:
'torch.cuda.BFloat16Tensor']:
float16_params_this_group.append(param) float16_params_this_group.append(param)
# Create a copy # Create a copy
main_param = param.detach().clone().float() main_param = param.detach().clone().float()
# Copy tensor model parallel attributes. # Copy tensor model parallel attributes.
tensor_parallel.copy_tensor_model_parallel_attributes(main_param, tensor_parallel.copy_tensor_model_parallel_attributes(main_param, param)
param)
if hasattr(param, 'shared'): if hasattr(param, 'shared'):
main_param.shared = param.shared main_param.shared = param.shared
# Replace the optimizer params with the new fp32 copy. # Replace the optimizer params with the new fp32 copy.
...@@ -537,26 +534,25 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer): ...@@ -537,26 +534,25 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
fp32_from_float16_params_this_group.append(main_param) fp32_from_float16_params_this_group.append(main_param)
# Reset existing state dict key to the new main param. # Reset existing state dict key to the new main param.
if param in self.optimizer.state: if param in self.optimizer.state:
self.optimizer.state[main_param] \ self.optimizer.state[main_param] = self.optimizer.state.pop(param)
= self.optimizer.state.pop(param)
# fp32 params. # fp32 params.
elif param.type() == 'torch.cuda.FloatTensor': elif param.type() == 'torch.cuda.FloatTensor':
fp32_params_this_group.append(param) fp32_params_this_group.append(param)
param_group['params'][i] = param param_group['params'][i] = param
else: else:
raise TypeError('Wrapped parameters must be one of ' raise TypeError(
'torch.cuda.FloatTensor, ' 'Wrapped parameters must be one of '
'torch.cuda.HalfTensor, or ' 'torch.cuda.FloatTensor, '
'torch.cuda.BFloat16Tensor. ' 'torch.cuda.HalfTensor, or '
'Received {}'.format(param.type())) 'torch.cuda.BFloat16Tensor. '
'Received {}'.format(param.type())
)
self.float16_groups.append(float16_params_this_group) self.float16_groups.append(float16_params_this_group)
self.fp32_from_float16_groups.append( self.fp32_from_float16_groups.append(fp32_from_float16_params_this_group)
fp32_from_float16_params_this_group)
self.fp32_from_fp32_groups.append(fp32_params_this_group) self.fp32_from_fp32_groups.append(fp32_params_this_group)
def zero_grad(self, set_to_none=True): def zero_grad(self, set_to_none=True):
"""We only need to zero the model related parameters, i.e., """We only need to zero the model related parameters, i.e.,
float16_groups & fp32_from_fp32_groups. We additionally zero float16_groups & fp32_from_fp32_groups. We additionally zero
...@@ -570,7 +566,6 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer): ...@@ -570,7 +566,6 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
for group in self.fp32_from_fp32_groups: for group in self.fp32_from_fp32_groups:
_zero_grad_group_helper(group, set_to_none) _zero_grad_group_helper(group, set_to_none)
def _collect_main_grad_data_for_unscaling(self): def _collect_main_grad_data_for_unscaling(self):
main_grads = [] main_grads = []
...@@ -586,27 +581,23 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer): ...@@ -586,27 +581,23 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
for main_param in main_group: for main_param in main_group:
if main_param.grad is not None: if main_param.grad is not None:
main_grads.append(main_param.grad.data) main_grads.append(main_param.grad.data)
return main_grads
return main_grads
def _get_model_and_main_params_data_float16(self): def _get_model_and_main_params_data_float16(self):
model_data = [] model_data = []
main_data = [] main_data = []
for model_group, main_group in zip(self.float16_groups, for model_group, main_group in zip(self.float16_groups, self.fp32_from_float16_groups):
self.fp32_from_float16_groups):
for model_param, main_param in zip(model_group, main_group): for model_param, main_param in zip(model_group, main_group):
model_data.append(model_param.data) model_data.append(model_param.data)
main_data.append(main_param.data) main_data.append(main_param.data)
return model_data, main_data return model_data, main_data
def _copy_model_grads_to_main_grads(self): def _copy_model_grads_to_main_grads(self):
# This only needs to be done for the float16 group. # This only needs to be done for the float16 group.
for model_group, main_group in zip(self.float16_groups, for model_group, main_group in zip(self.float16_groups, self.fp32_from_float16_groups):
self.fp32_from_float16_groups):
for model_param, main_param in zip(model_group, main_group): for model_param, main_param in zip(model_group, main_group):
if self.params_have_main_grad and hasattr(model_param, 'main_grad'): if hasattr(model_param, 'main_grad'):
main_param.grad = model_param.main_grad.float() main_param.grad = model_param.main_grad.float()
else: else:
if model_param.grad is not None: if model_param.grad is not None:
...@@ -616,36 +607,25 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer): ...@@ -616,36 +607,25 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
# (If using contiguous buffers, main_grad's memory should # (If using contiguous buffers, main_grad's memory should
# persist and therefore should not be deallocated.) # persist and therefore should not be deallocated.)
model_param.grad = None model_param.grad = None
if self.params_have_main_grad and \
not self.use_contiguous_buffers_in_local_ddp:
model_param.main_grad = None
# For fp32 grads, we need to reset the grads to main grad. # For fp32 grads, we need to reset the grads to main grad.
if self.params_have_main_grad: for model_group in self.fp32_from_fp32_groups:
for model_group in self.fp32_from_fp32_groups: for model_param in model_group:
for model_param in model_group: model_param.grad = model_param.main_grad
model_param.grad = model_param.main_grad
# Safe to de-reference model's main_grad after copying.
# (If using contiguous buffers, main_grad's memory should
# persist and therefore should not be deallocated.)
if not self.use_contiguous_buffers_in_local_ddp:
model_param.main_grad = None
def _copy_main_params_to_model_params(self): def _copy_main_params_to_model_params(self):
# Only needed for the float16 params. # Only needed for the float16 params.
model_data, main_data = self._get_model_and_main_params_data_float16() model_data, main_data = self._get_model_and_main_params_data_float16()
_multi_tensor_copy_this_to_that(this=main_data, that=model_data, _multi_tensor_copy_this_to_that(
overflow_buf=self._dummy_overflow_buf) this=main_data, that=model_data, overflow_buf=self._dummy_overflow_buf
)
def _copy_model_params_to_main_params(self): def _copy_model_params_to_main_params(self):
# Only needed for the float16 params. # Only needed for the float16 params.
model_data, main_data = self._get_model_and_main_params_data_float16() model_data, main_data = self._get_model_and_main_params_data_float16()
_multi_tensor_copy_this_to_that(this=model_data, that=main_data, _multi_tensor_copy_this_to_that(
overflow_buf=self._dummy_overflow_buf) this=model_data, that=main_data, overflow_buf=self._dummy_overflow_buf
)
def state_dict(self): def state_dict(self):
state_dict = {} state_dict = {}
...@@ -655,119 +635,435 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer): ...@@ -655,119 +635,435 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
return state_dict return state_dict
def sharded_state_dict(
self, model_sharded_state_dict: ShardedStateDict, is_loading: bool = False
):
if is_loading:
self.init_state_fn(self.optimizer)
state_dict = self.state_dict()
id_to_sharded_param_map = get_param_id_to_sharded_param_map(
model_sharded_state_dict, chain.from_iterable(g for g in self.float16_groups)
)
# Convert fp32_from_fp16_params
assert len(state_dict['fp32_from_fp16_params']) == len(
state_dict['optimizer']['param_groups']
)
state_dict['fp32_from_fp16_params'] = [
[
make_sharded_optimizer_tensor(
id_to_sharded_param_map[param_id],
fp32_param,
prefix=f'optimizer.state.fp32_param',
)
for param_id, fp32_param in zip(state_group['params'], fp32_group)
]
for fp32_group, state_group in zip(
state_dict['fp32_from_fp16_params'], state_dict['optimizer']['param_groups']
)
]
step = self._extract_common_per_param_step(state_dict['optimizer'])
# Convert regular optimizer state
# all optimizer parameters passed to optim_state_to_sharding_state are
# expected to have the same shape as the model parameters,
# so we save the step separately and ignore it here
optim_state_to_sharding_state(
state_dict['optimizer'], id_to_sharded_param_map, exclude_keys="step"
)
# save step as a shared step among all parameters. Separate per-parameter
# steps are not supported
state_dict['optimizer']['state']['common_step'] = step
return state_dict
def load_state_dict(self, state_dict): def load_state_dict(self, state_dict):
pipeline_parallel_size = parallel_state.get_pipeline_model_parallel_world_size()
# Optimizer. # Optimizer.
optimizer_key = 'optimizer' optimizer_key = 'optimizer'
if optimizer_key not in state_dict: if optimizer_key not in state_dict:
optimizer_key = 'optimizer_state_dict' optimizer_key = 'optimizer_state_dict'
print_rank_0('***WARNING*** loading optimizer from ' logger.info('***WARNING*** loading optimizer from an old checkpoint ...')
'an old checkpoint ...') if 'common_step' in state_dict[optimizer_key]['state']:
common_step = state_dict[optimizer_key]['state'].pop('common_step')
self._restore_common_per_param_step(state_dict[optimizer_key], common_step)
self.optimizer.load_state_dict(state_dict[optimizer_key]) self.optimizer.load_state_dict(state_dict[optimizer_key])
# Grad scaler. # Grad scaler.
if 'grad_scaler' not in state_dict: if 'grad_scaler' not in state_dict:
if self.fp16: if self.config.fp16:
print_rank_0('***WARNING*** found an old checkpoint, will not ' logger.info('***WARNING*** found an old checkpoint, will not load grad scaler ...')
'load grad scaler ...')
else: else:
if self.grad_scaler: if self.grad_scaler:
self.grad_scaler.load_state_dict(state_dict['grad_scaler']) self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
else: else:
print_rank_0('***WARNING*** fould the grad scaler in the ' logger.info(
'checkpoint but it is None in the class. ' '***WARNING*** fould the grad scaler in the '
'Skipping loading grad scaler ...') 'checkpoint but it is None in the class. '
'Skipping loading grad scaler ...'
)
# Copy data for the main params. # Copy data for the main params.
fp32_from_float16_params_key = 'fp32_from_fp16_params' fp32_from_float16_params_key = 'fp32_from_fp16_params'
if fp32_from_float16_params_key not in state_dict: if fp32_from_float16_params_key not in state_dict:
fp32_from_float16_params_key = 'fp32_from_fp16' fp32_from_float16_params_key = 'fp32_from_fp16'
for current_group, saved_group in zip( for current_group, saved_group in zip(
self.fp32_from_float16_groups, self.fp32_from_float16_groups, state_dict[fp32_from_float16_params_key]
state_dict[fp32_from_float16_params_key]): ):
for current_param, saved_param in zip(current_group, saved_group): for current_param, saved_param in zip(current_group, saved_group):
current_param.data.copy_(saved_param.data) current_param.data.copy_(saved_param.data)
class FP32Optimizer(MegatronOptimizer): class FP32Optimizer(MegatronOptimizer):
"""Float32 optimizer.
def __init__(self, optimizer, clip_grad, Args:
log_num_zeros_in_grad, optimizer (torch.optim.Optimizer): base optimizer such as Adam or SGD.
params_have_main_grad, config (OptimizerConfig): configuration object for optimizer.
use_contiguous_buffers_in_local_ddp, init_state_fn (Callable, optional): function to initialize state in the optimizer.
models): """
super(FP32Optimizer, self).__init__( def __init__(
optimizer, clip_grad, log_num_zeros_in_grad, self, optimizer: torch.optim.Optimizer, config: OptimizerConfig, init_state_fn: Callable
params_have_main_grad, use_contiguous_buffers_in_local_ddp, ):
models) if has_config_logger_enabled(config):
log_config_to_disk(config, locals(), prefix=type(self).__name__)
self._scale = torch.cuda.FloatTensor([1.0]) super(FP32Optimizer, self).__init__(optimizer, config, init_state_fn)
self._scale = torch.tensor([1.0], dtype=torch.float, device='cuda')
def zero_grad(self, set_to_none=True): def zero_grad(self, set_to_none=True):
"""Copied from torch.optim.optimizer""" """Copied from torch.optim.optimizer"""
for group in self.optimizer.param_groups: for group in self.optimizer.param_groups:
_zero_grad_group_helper(group['params'], set_to_none) _zero_grad_group_helper(group['params'], set_to_none)
def get_loss_scale(self): def get_loss_scale(self):
"""FP32 optimizer does not do any scaling.""" """FP32 optimizer does not do any scaling."""
return self._scale return self._scale
@torch.no_grad() @torch.no_grad()
def step(self, args, timers): def prepare_grads(self) -> bool:
"""Clip gradients (if needed) and step the base optimizer. """Pre-processing gradients before the optimizer step, returns whether inf/nan is found."""
Always return successful since there is no overflow.""" timers = self.config.timers
# Copy main_grads to grads. # Copy main_grads to grads.
timers('optimizer-copy-to-main-grad', log_level=1).start( if timers is not None:
barrier=args.barrier_with_L1_time) timers('optimizer-copy-to-main-grad', log_level=1).start(
if self.params_have_main_grad: barrier=self.config.barrier_with_L1_time
for param_group in self.optimizer.param_groups: )
for param in param_group['params']: for param_group in self.optimizer.param_groups:
for param in param_group['params']:
if hasattr(param, 'main_grad'):
param.grad = param.main_grad param.grad = param.main_grad
if timers is not None:
timers('optimizer-copy-to-main-grad').stop()
return False
@torch.no_grad()
def step_with_ready_grads(self) -> bool:
"""Step the optimizer with ready gradients, return successful."""
timers = self.config.timers
# Update parameters.
if timers is not None:
timers('optimizer-inner-step', log_level=1).start(
barrier=self.config.barrier_with_L1_time
)
self.optimizer.step()
if timers is not None:
timers('optimizer-inner-step').stop()
return True
# Safe to de-reference model's main_grad after copying. @torch.no_grad()
# (If using contiguous buffers, main_grad's memory should def step(self):
# persist and therefore should not be deallocated.) """Clip gradients (if needed) and step the base optimizer.
if not self.use_contiguous_buffers_in_local_ddp: Always return successful since there is no overflow."""
param.main_grad = None timers = self.config.timers
timers('optimizer-copy-to-main-grad').stop()
found_inf_flag = self.prepare_grads()
if found_inf_flag:
return False, None, None
# Clip gradients. # Clip gradients.
timers('optimizer-clip-main-grad', log_level=1).start( if timers is not None:
barrier=args.barrier_with_L1_time) timers('optimizer-clip-main-grad', log_level=1).start(
barrier=self.config.barrier_with_L1_time
)
grad_norm = None grad_norm = None
if self.clip_grad > 0.0: if self.config.clip_grad > 0.0:
grad_norm = self.clip_grad_norm(self.clip_grad) grad_norm = self.clip_grad_norm(self.config.clip_grad)
timers('optimizer-clip-main-grad').stop() if timers is not None:
timers('optimizer-clip-main-grad').stop()
# count the zeros in the grads # Count the zeros in the grads.
timers('optimizer-count-zeros', log_level=1).start( if timers is not None:
barrier=args.barrier_with_L1_time) timers('optimizer-count-zeros', log_level=1).start(
num_zeros_in_grad = self.count_zeros() if \ barrier=self.config.barrier_with_L1_time
self.log_num_zeros_in_grad else None )
timers('optimizer-count-zeros').stop() num_zeros_in_grad = self.count_zeros() if self.config.log_num_zeros_in_grad else None
if timers is not None:
timers('optimizer-count-zeros').stop()
# Update parameters. success = self.step_with_ready_grads()
timers('optimizer-inner-step', log_level=1).start(
barrier=args.barrier_with_L1_time)
self.optimizer.step()
timers('optimizer-inner-step').stop()
# No overflow for FP32 optimizer. # No overflow for FP32 optimizer.
return True, grad_norm, num_zeros_in_grad return success, grad_norm, num_zeros_in_grad
def reload_model_params(self): def reload_model_params(self):
pass pass
def state_dict(self): def state_dict(self):
return self.optimizer.state_dict() return self.optimizer.state_dict()
def load_state_dict(self, state_dict): def load_state_dict(self, state_dict):
pipeline_parallel_size = parallel_state.get_pipeline_model_parallel_world_size()
if 'common_step' in state_dict['state']:
common_step = state_dict['state'].pop('common_step')
self._restore_common_per_param_step(state_dict, common_step)
self.optimizer.load_state_dict(state_dict) self.optimizer.load_state_dict(state_dict)
def sharded_state_dict(
self, model_sharded_state_dict: ShardedStateDict, is_loading: bool = False
):
if is_loading:
self.init_state_fn(self.optimizer)
state_dict = self.state_dict()
id_to_sharded_param_map = get_param_id_to_sharded_param_map(
model_sharded_state_dict, self.get_parameters()
)
step = self._extract_common_per_param_step(state_dict)
# all optimizer parameters passed to optim_state_to_sharding_state are
# expected to have the same shape as the model parameters,
# so we save the step separately and ignore it here
optim_state_to_sharding_state(state_dict, id_to_sharded_param_map, exclude_keys="step")
# save step as a shared step among all parameters. Separate per-parameter
# steps are not supported
state_dict['state']['common_step'] = step
return state_dict
class ProxyDict:
"""
A dictionary-like object that proxies to a list of dictionaries.
e.g., ProxyDict([{'a': 1}, {'b': 2}]) behaves like:
{
(0, 'a'): 1,
(1, 'b'): 2,
}
We use tuples as keys to avoid ambiguity with the keys of the inner dicts.
"""
def __init__(self, inner_dicts: List[dict]):
self._inner_dicts = inner_dicts
def __getitem__(self, key: Tuple[int, str]):
idx, inner_key = key
return self._inner_dicts[idx].get(inner_key)
def __setitem__(self, key: Tuple[int, str], value: Any):
idx, inner_key = key
self._inner_dicts[idx][inner_key] = value
def __len__(self) -> int:
return sum([len(inner_dict) for inner_dict in self._inner_dicts])
def __iter__(self):
for idx, inner_dict in enumerate(self._inner_dicts):
for inner_key in inner_dict:
yield (idx, inner_key)
def items(self):
"""Return generator over underlying items."""
for idx, inner_dict in enumerate(self._inner_dicts):
for inner_key, value in inner_dict.items():
yield (idx, inner_key), value
class ChainedOptimizer(MegatronOptimizer):
"""ChainedOptimizer is designed for a collection of optimizers.
These optimizers are responsible for different parts of multiple models for
a training task and will be executed one-by-one when the model is updated.
Args:
chained_optimizers: a list of optimizers.
"""
def __init__(self, chained_optimizers: List[MegatronOptimizer]):
self.model_chunks = []
self.config = getattr(chained_optimizers[0], 'config', None)
for optimizer in chained_optimizers:
if hasattr(optimizer, 'model_chunks'):
for model_chunk in optimizer.model_chunks:
if model_chunk not in self.model_chunks:
self.model_chunks.append(model_chunk)
assert self.config == getattr(optimizer, 'config', None)
self.chained_optimizers = chained_optimizers
@property
def param_groups(self) -> List[dict]:
"""Get param_groups aggregated over underlying optimizers."""
param_groups = []
for optimizer in self.chained_optimizers:
param_groups += optimizer.param_groups
return param_groups
@property
def state(self) -> ProxyDict:
"""
Return optimizer state with tuple keys, where the first element is the
index of the optimizer in the list of chained optimizers.
"""
return ProxyDict([opt.state for opt in self.chained_optimizers])
def zero_grad(self, set_to_none=True):
for optimizer in self.chained_optimizers:
optimizer.zero_grad(set_to_none)
def get_loss_scale(self):
return self.chained_optimizers[0].get_loss_scale()
def reload_model_params(self):
for optimizer in self.chained_optimizers:
optimizer.reload_model_params()
def state_dict(self):
return [optimizer.state_dict() for optimizer in self.chained_optimizers]
def sharded_state_dict(
self, model_sharded_state_dict: ShardedStateDict, is_loading: bool = False, **kwargs
):
sharded_state_dict = {}
for optimizer_idx, optimizer in enumerate(self.chained_optimizers):
optim_state_dict = optimizer.sharded_state_dict(
model_sharded_state_dict, is_loading, **kwargs
)
add_prefix_for_sharding(optim_state_dict, f'chained_{optimizer_idx}.')
sharded_state_dict[optimizer_idx] = optim_state_dict
return sharded_state_dict
def load_state_dict(self, state_dict):
if len(self.chained_optimizers) != len(state_dict):
raise RuntimeError(
f'Expected {len(self.chained_optimizers)} entries'
f' in state dict, but got {len(state_dict)}.'
)
if isinstance(state_dict, dict):
state_dict = (v for k, v in sorted(state_dict.items()))
for optimizer, state in zip(self.chained_optimizers, state_dict):
optimizer.load_state_dict(state)
@torch.no_grad()
def prepare_grads(self) -> bool:
"""Pre-processing gradients before the optimizer step, returns whether inf/nan is found."""
found_inf_flag = False
for optimizer in self.chained_optimizers:
found_inf_flag |= optimizer.prepare_grads()
return found_inf_flag
@torch.no_grad()
def step_with_ready_grads(self) -> bool:
"""Step the optimizer with ready gradients, return successful."""
success = True
for optimizer_idx, optimizer in enumerate(self.chained_optimizers):
success &= optimizer.step_with_ready_grads()
if self.config.overlap_param_gather_with_optimizer_step and optimizer_idx == 0:
assert success
assert len(optimizer.model_chunks) == 1
optimizer.model_chunks[0].start_param_sync(force_dispatch=True)
return success
@torch.no_grad()
def step(self):
"""ChainedOptimizer will step all optimizers one by one."""
found_inf_flag = self.prepare_grads()
if found_inf_flag:
return False, None, None
# Get grad norm.
grad_norms = []
for optimizer in self.chained_optimizers:
_grad_norm = optimizer.get_grad_norm()
grad_norms += [_grad_norm if _grad_norm else 0.0]
grad_norm = math.sqrt(sum([x**2 for x in grad_norms]))
# Clip gradients.
for optimizer in self.chained_optimizers:
if optimizer.config.clip_grad > 0.0:
clip_grad_by_total_norm_fp32(
optimizer.get_parameters(),
max_norm=optimizer.config.clip_grad,
total_norm=grad_norm,
)
# Count the zeros in the grads.
num_zeros_in_grad = 0
for optimizer in self.chained_optimizers:
num_zeros_in_grad += (
optimizer.count_zeros() if optimizer.config.log_num_zeros_in_grad else 0
)
update_successful = self.step_with_ready_grads()
return update_successful, grad_norm, num_zeros_in_grad
def save_parameter_state(self, filename: str):
"""Save the distributed parameter states of all optimizers to a file.
Args:
filename (str): path to save parameter state to.
"""
save_states = False
states = []
for optimizer in self.chained_optimizers:
if hasattr(optimizer, 'get_parameter_state_dp_zero'):
state_dict = optimizer.get_parameter_state_dp_zero()
# Save checkpoint economically, only when DP rank = 0, state dict
# needs to be saved.
if torch.distributed.get_rank(optimizer.data_parallel_group) == 0:
states.append(state_dict)
save_states = True
else:
states.append(None)
else:
states.append(None)
if save_states:
torch.save(states, filename)
def load_parameter_state(self, filename: str, *, update_legacy_format: bool = False):
"""Load the distributed parameter states of all optimizers from a file.
Args:
filename (str): path to load parameter state from.
"""
states = None
for idx, optimizer in enumerate(self.chained_optimizers):
if not hasattr(optimizer, 'load_parameter_state_from_dp_zero'):
continue
# Lazy loading checkpoint, state dict is needed only when DP rank = 0.
if torch.distributed.get_rank(optimizer.data_parallel_group) == 0 and states is None:
states = torch.load(filename)
state_dict = states[idx] if states else None
optimizer.load_parameter_state_from_dp_zero(
state_dict, update_legacy_format=update_legacy_format
)
def start_param_sync(self, model_index: int, *unused):
"""Start parameter synchronization for all optimizers."""
for optimizer in self.chained_optimizers:
optimizer.start_param_sync(model_index, *unused)
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from dataclasses import dataclass
from typing import Callable, Optional
import torch
@dataclass
class OptimizerConfig:
"""Configuration for optimizer."""
##############
# General
##############
optimizer: str = 'adam'
"""Optimizer to use (one of Adam or SGD)."""
lr: Optional[float] = None
"""Initial learning rate. Depending on decay style and initial warmup, the learning rate at each
iteration would be different.
"""
min_lr: Optional[float] = None
"""Minumum value for learning rate. The scheduler clip values below this threshold."""
decoupled_lr: Optional[float] = None
"""Separate learning rate for the input and output layer."""
decoupled_min_lr: Optional[float] = None
"""Minimum value for learning rate for the input and output layer. The scheduler clip values
below this threshold.
"""
weight_decay: float = 0.01
"""Weight decay coefficient for L2 regularization."""
##############
# Precision
##############
fp16: bool = False
"""If true, train with fp16 mixed precision training. Defaults to False."""
bf16: bool = False
"""If true, train with bf16 mixed precision training. Defaults to False."""
params_dtype: torch.dtype = torch.float32
"""dtype used when intializing the weights. Defaults to torch.float32."""
###############
# Loss scaling
###############
loss_scale: Optional[float] = None
"""Static loss scaling, positive power of 2 values can improve fp16 convergence. If None,
dynamic loss scaling is used.
"""
initial_loss_scale: float = 2**32
"""Initial loss-scale for dynamic loss scaling."""
min_loss_scale: float = 1.0
"""Minimum loss scale for dynamic loss scaling."""
loss_scale_window: float = 1000
"""Window over which to raise/lower dynamic scale."""
hysteresis: int = 2
"""Hysteresis for dynamic loss scaling."""
##############
# Optimizer
##############
# Adam
adam_beta1: float = 0.9
"""First coefficient for computing running averages of gradient and its square in Adam
optimizer.
"""
adam_beta2: float = 0.999
"""Second coefficient for computing running averages of gradient and its square in Adam
optimizer.
"""
adam_eps: float = 1e-08
"""Term added to the denominator to improve numerical stability in Adam optimizer."""
# SGD.
sgd_momentum: float = 0.9
"""Momentum factor for SGD optimizer."""
#######################
# Distributed optimizer
#######################
use_distributed_optimizer: bool = False
"""Distribute optimizer state over data-parallel replicas."""
overlap_param_gather_with_optimizer_step: bool = False
"""If true, overlap param all-gather of first bucket with optimizer step."""
################
# Miscellaneous
################
clip_grad: float = 1.0
"""Gradient clipping based on global L2 norm."""
log_num_zeros_in_grad: bool = False
"""If true, calculate and log the number of zeros in gradient."""
barrier_with_L1_time: bool = False
"""If true, use barrier with level 1 time measurements."""
timers: Callable = None
"""Function to get timers."""
config_logger_dir: str = ""
"""When non-empty, dumps entry-point configs to config_logger_dir"""
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Learning rate decay and weight decay incr functions.""" """Learning rate decay and weight decay incr functions."""
import logging
import math import math
from typing import Optional
from megatron import print_rank_0
from megatron.core.optimizer import MegatronOptimizer
class OptimizerParamScheduler(object): from megatron.core.utils import log_single_rank
"""Anneals learning rate and weight decay"""
logger = logging.getLogger(__name__)
def __init__(self, optimizer, init_lr, max_lr, min_lr,
lr_warmup_steps, lr_decay_steps, lr_decay_style,
start_wd, end_wd, wd_incr_steps, wd_incr_style, class OptimizerParamScheduler:
use_checkpoint_opt_param_scheduler=True, """Anneals learning rate and weight decay
override_opt_param_scheduler=False):
Args:
optimizer (MegatronOptimizer): the optimizer to be used
init_lr (float): initial learning rate
max_lr (float): maximum learning rate
min_lr (float): minimum learning rate
lr_warmup_steps (int): number of warmup steps
lr_decay_steps (int): number of decay steps
lr_decay_style (str): decay style for learning rate
start_wd (float): initial weight decay
end_wd (float): final weight decay
wd_incr_steps (int): number of weight decay increment steps
wd_incr_style (str): weight decay increment style
use_checkpoint_opt_param_scheduler (bool, optional): whether to use the checkpoint values
for the optimizer param scheduler
override_opt_param_scheduler (bool, optional): whether to override the optimizer param
scheduler values with the class values
wsd_decay_steps (int, optional): number of weight decay decay steps
lr_wsd_decay_style (str, optional): decay style for learning rate during weight decay decay
steps
"""
def __init__(
self,
optimizer: MegatronOptimizer,
init_lr: float,
max_lr: float,
min_lr: float,
lr_warmup_steps: int,
lr_decay_steps: int,
lr_decay_style: str,
start_wd: float,
end_wd: float,
wd_incr_steps: int,
wd_incr_style: str,
use_checkpoint_opt_param_scheduler: Optional[bool] = True,
override_opt_param_scheduler: Optional[bool] = False,
wsd_decay_steps: Optional[int] = None,
lr_wsd_decay_style: Optional[str] = None,
) -> None:
# Class values. # Class values.
self.optimizer = optimizer self.optimizer = optimizer
...@@ -28,10 +68,14 @@ class OptimizerParamScheduler(object): ...@@ -28,10 +68,14 @@ class OptimizerParamScheduler(object):
self.lr_warmup_steps = lr_warmup_steps self.lr_warmup_steps = lr_warmup_steps
self.num_steps = 0 self.num_steps = 0
self.lr_decay_steps = lr_decay_steps self.lr_decay_steps = lr_decay_steps
self.wsd_decay_steps = wsd_decay_steps
self.lr_wsd_decay_style = lr_wsd_decay_style
assert self.lr_decay_steps > 0 assert self.lr_decay_steps > 0
assert self.lr_warmup_steps < self.lr_decay_steps assert self.lr_warmup_steps < self.lr_decay_steps
self.lr_decay_style = lr_decay_style self.lr_decay_style = lr_decay_style
if self.lr_decay_style == "WSD":
assert self.wsd_decay_steps is not None
self.start_wd = start_wd self.start_wd = start_wd
self.end_wd = end_wd self.end_wd = end_wd
...@@ -43,16 +87,16 @@ class OptimizerParamScheduler(object): ...@@ -43,16 +87,16 @@ class OptimizerParamScheduler(object):
self.override_opt_param_scheduler = override_opt_param_scheduler self.override_opt_param_scheduler = override_opt_param_scheduler
self.use_checkpoint_opt_param_scheduler = use_checkpoint_opt_param_scheduler self.use_checkpoint_opt_param_scheduler = use_checkpoint_opt_param_scheduler
if self.override_opt_param_scheduler: if self.override_opt_param_scheduler:
assert not self.use_checkpoint_opt_param_scheduler, 'both override and '\ assert not self.use_checkpoint_opt_param_scheduler, (
'use-checkpoint are set.' 'both override and ' 'use-checkpoint are set.'
)
# Set the learning rate # Set the learning rate
self.step(0) self.step(0)
print_rank_0('> learning rate decay style: {}'.format(self.lr_decay_style)) log_single_rank(logger, logging.INFO, f"> learning rate decay style: {self.lr_decay_style}")
def get_wd(self): def get_wd(self) -> float:
""" Weight decay incr functions""" """Weight decay incr functions"""
if self.num_steps > self.wd_incr_steps: if self.num_steps > self.wd_incr_steps:
return self.end_wd return self.end_wd
...@@ -70,71 +114,86 @@ class OptimizerParamScheduler(object): ...@@ -70,71 +114,86 @@ class OptimizerParamScheduler(object):
elif self.wd_incr_style == 'cosine': elif self.wd_incr_style == 'cosine':
coeff = 0.5 * (math.cos(math.pi * (1 - incr_ratio)) + 1.0) coeff = 0.5 * (math.cos(math.pi * (1 - incr_ratio)) + 1.0)
else: else:
raise Exception('{} weight decay increment style is not supported.'.format( raise Exception(f'{self.wd_incr_style} weight decay increment style is not supported.')
self.wd_incr_style))
return self.start_wd + coeff * delta_wd return self.start_wd + coeff * delta_wd
def get_lr(self, param_group: dict) -> float:
def get_lr(self):
"""Learning rate decay functions from: """Learning rate decay functions from:
https://openreview.net/pdf?id=BJYwwY9ll pg. 4""" https://openreview.net/pdf?id=BJYwwY9ll pg. 4
Args:
param_group (dict): parameter group from the optimizer.
"""
max_lr = param_group.get('max_lr', self.max_lr)
min_lr = param_group.get('min_lr', self.min_lr)
# Use linear warmup for the initial part. # Use linear warmup for the initial part.
if self.lr_warmup_steps > 0 and self.num_steps <= self.lr_warmup_steps: if self.lr_warmup_steps > 0 and self.num_steps <= self.lr_warmup_steps:
return ( return self.init_lr + (
self.init_lr (max_lr - self.init_lr) * float(self.num_steps) / float(self.lr_warmup_steps)
+ (
(self.max_lr - self.init_lr)
* float(self.num_steps)
/ float(self.lr_warmup_steps)
)
) )
# If the learning rate is constant, just return the initial value. # If the learning rate is constant, just return the initial value.
if self.lr_decay_style == 'constant': if self.lr_decay_style == 'constant':
return self.max_lr return max_lr
# For any steps larger than `self.lr_decay_steps`, use `self.min_lr`. # For any steps larger than `self.lr_decay_steps`, use `min_lr`.
if self.num_steps > self.lr_decay_steps: if self.num_steps > self.lr_decay_steps:
return self.min_lr return min_lr
# If we are done with the warmup period, use the decay style. # If we are done with the warmup period, use the decay style.
if self.lr_decay_style == 'inverse-square-root': if self.lr_decay_style == 'inverse-square-root':
warmup_steps = max(self.lr_warmup_steps, 1) warmup_steps = max(self.lr_warmup_steps, 1)
num_steps = max(self.num_steps, 1) num_steps = max(self.num_steps, 1)
lr = self.max_lr * warmup_steps ** 0.5 / (num_steps ** 0.5) lr = max_lr * warmup_steps**0.5 / (num_steps**0.5)
return max(self.min_lr, lr) return max(min_lr, lr)
num_steps_ = self.num_steps - self.lr_warmup_steps num_steps_ = self.num_steps - self.lr_warmup_steps
decay_steps_ = self.lr_decay_steps - self.lr_warmup_steps decay_steps_ = self.lr_decay_steps - self.lr_warmup_steps
decay_ratio = float(num_steps_) / float(decay_steps_) decay_ratio = float(num_steps_) / float(decay_steps_)
assert decay_ratio >= 0.0 assert decay_ratio >= 0.0
assert decay_ratio <= 1.0 assert decay_ratio <= 1.0
delta_lr = self.max_lr - self.min_lr delta_lr = max_lr - min_lr
if self.lr_decay_style == 'linear': if self.lr_decay_style == 'linear':
coeff = (1.0 - decay_ratio) coeff = 1.0 - decay_ratio
elif self.lr_decay_style == 'cosine': elif self.lr_decay_style == 'cosine':
coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0) coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
elif self.lr_decay_style == 'WSD':
wsd_anneal_start_ = self.lr_decay_steps - self.wsd_decay_steps
if self.num_steps <= wsd_anneal_start_:
coeff = 1.0
else:
wsd_steps = self.num_steps - wsd_anneal_start_
wsd_decay_ratio = float(wsd_steps) / float(self.wsd_decay_steps)
if self.lr_wsd_decay_style == "linear":
coeff = 1.0 - wsd_decay_ratio
elif self.lr_wsd_decay_style == "cosine":
coeff = 0.5 * (math.cos(math.pi * wsd_decay_ratio) + 1.0)
elif self.lr_wsd_decay_style == "exponential":
coeff = (2.0 * math.pow(0.5, wsd_decay_ratio)) - 1.0
else: else:
raise Exception('{} decay style is not supported.'.format( raise Exception(f'{self.lr_decay_style} decay style is not supported.')
self.lr_decay_style))
return self.min_lr + coeff * delta_lr return min_lr + coeff * delta_lr
def step(self, increment: int) -> None:
"""Set lr for all parameters groups.
def step(self, increment): Args:
"""Set lr for all parameters groups.""" increment (int): number of steps to increment
"""
self.num_steps += increment self.num_steps += increment
new_lr = self.get_lr()
new_wd = self.get_wd() new_wd = self.get_wd()
for group in self.optimizer.param_groups: for param_group in self.optimizer.param_groups:
group['lr'] = new_lr * group.get('lr_mult', 1.0) new_lr = self.get_lr(param_group)
group['weight_decay'] = new_wd * group.get('wd_mult', 1.0) param_group['lr'] = new_lr * param_group.get('lr_mult', 1.0)
param_group['weight_decay'] = new_wd * param_group.get('wd_mult', 1.0)
def state_dict(self) -> dict:
def state_dict(self): """Return the state dict."""
state_dict = { state_dict = {
'max_lr': self.max_lr, 'max_lr': self.max_lr,
'lr_warmup_steps': self.lr_warmup_steps, 'lr_warmup_steps': self.lr_warmup_steps,
...@@ -145,91 +204,94 @@ class OptimizerParamScheduler(object): ...@@ -145,91 +204,94 @@ class OptimizerParamScheduler(object):
'start_wd': self.start_wd, 'start_wd': self.start_wd,
'end_wd': self.end_wd, 'end_wd': self.end_wd,
'wd_incr_style': self.wd_incr_style, 'wd_incr_style': self.wd_incr_style,
'wd_incr_steps': self.wd_incr_steps 'wd_incr_steps': self.wd_incr_steps,
} }
return state_dict return state_dict
def _check_and_set(self, cls_value: float, sd_value: float, name: str) -> float:
def _check_and_set(self, cls_value, sd_value, name):
"""Auxiliary function for checking the values in the checkpoint and """Auxiliary function for checking the values in the checkpoint and
setting them.""" setting them.
Args:
cls_value (float): class value
sd_value (float): checkpoint value
name (str): name of the parameter
"""
if self.override_opt_param_scheduler: if self.override_opt_param_scheduler:
print_rank_0(' > overriding {} value to {}'.format(name, cls_value)) log_single_rank(logger, logging.INFO, f" > overriding {name} value to {cls_value}")
return cls_value return cls_value
if not self.use_checkpoint_opt_param_scheduler: if not self.use_checkpoint_opt_param_scheduler:
assert cls_value == sd_value, \ assert cls_value == sd_value, (
f'OptimizerParamScheduler: class input value {cls_value} and checkpoint' \ f'OptimizerParamScheduler: class input value {cls_value} and checkpoint'
f'value {sd_value} for {name} do not match' f'value {sd_value} for {name} do not match'
print_rank_0(' > using checkpoint value {} for {}'.format(sd_value, )
name))
log_single_rank(logger, logging.INFO, f" > using checkpoint value {sd_value} for {name}")
return sd_value return sd_value
def load_state_dict(self, state_dict: dict) -> None:
"""Load the state dict.
def load_state_dict(self, sd): Args:
state_dict (dict): state dict to be load
"""
if 'start_lr' in sd: if 'start_lr' in state_dict:
max_lr_ = sd['start_lr'] max_lr_ = state_dict['start_lr']
else: else:
max_lr_ = sd['max_lr'] max_lr_ = state_dict['max_lr']
self.max_lr = self._check_and_set(self.max_lr, max_lr_, self.max_lr = self._check_and_set(self.max_lr, max_lr_, 'learning rate')
'learning rate')
self.min_lr = self._check_and_set(
self.min_lr = self._check_and_set(self.min_lr, sd['min_lr'], self.min_lr, state_dict['min_lr'], 'minimum learning rate'
'minimum learning rate') )
if 'warmup_iter' in sd: if 'warmup_iter' in state_dict:
lr_warmup_steps_ = sd['warmup_iter'] lr_warmup_steps_ = state_dict['warmup_iter']
elif 'warmup_steps' in sd: elif 'warmup_steps' in state_dict:
lr_warmup_steps_ = sd['warmup_steps'] lr_warmup_steps_ = state_dict['warmup_steps']
else: else:
lr_warmup_steps_ = sd['lr_warmup_steps'] lr_warmup_steps_ = state_dict['lr_warmup_steps']
self.lr_warmup_steps = self._check_and_set(self.lr_warmup_steps, self.lr_warmup_steps = self._check_and_set(
lr_warmup_steps_, self.lr_warmup_steps, lr_warmup_steps_, 'warmup iterations'
'warmup iterations') )
if 'end_iter' in sd: if 'end_iter' in state_dict:
lr_decay_steps_ = sd['end_iter'] lr_decay_steps_ = state_dict['end_iter']
elif 'decay_steps' in sd: elif 'decay_steps' in state_dict:
lr_decay_steps_ = sd['decay_steps'] lr_decay_steps_ = state_dict['decay_steps']
else: else:
lr_decay_steps_ = sd['lr_decay_steps'] lr_decay_steps_ = state_dict['lr_decay_steps']
self.lr_decay_steps = self._check_and_set(self.lr_decay_steps, lr_decay_steps_, self.lr_decay_steps = self._check_and_set(
'total number of iterations') self.lr_decay_steps, lr_decay_steps_, 'total number of iterations'
)
if 'decay_style' in sd: if 'decay_style' in state_dict:
lr_decay_style_ = sd['decay_style'] lr_decay_style_ = state_dict['decay_style']
else: else:
lr_decay_style_ = sd['lr_decay_style'] lr_decay_style_ = state_dict['lr_decay_style']
self.lr_decay_style = self._check_and_set(self.lr_decay_style, self.lr_decay_style = self._check_and_set(
lr_decay_style_, self.lr_decay_style, lr_decay_style_, 'learning rate decay style'
'learning rate decay style') )
if 'num_iters' in sd: if 'num_iters' in state_dict:
num_steps = sd['num_iters'] num_steps = state_dict['num_iters']
else: else:
num_steps = sd['num_steps'] num_steps = state_dict['num_steps']
self.step(increment=num_steps) self.step(increment=num_steps)
if 'start_wd' in state_dict:
if 'start_wd' in sd: self.start_wd = self._check_and_set(
self.start_wd = self._check_and_set(self.start_wd, self.start_wd, state_dict['start_wd'], "start weight decay"
sd['start_wd'], )
"start weight decay") self.end_wd = self._check_and_set(self.end_wd, state_dict['end_wd'], "end weight decay")
self.end_wd = self._check_and_set(self.end_wd, self.wd_incr_steps = self._check_and_set(
sd['end_wd'], self.wd_incr_steps,
"end weight decay") state_dict['wd_incr_steps'],
self.wd_incr_steps = self._check_and_set(self.wd_incr_steps, "total number of weight decay iterations",
sd['wd_incr_steps'], )
"total number of weight decay iterations") self.wd_incr_style = self._check_and_set(
self.wd_incr_style = self._check_and_set(self.wd_incr_style, self.wd_incr_style, state_dict['wd_incr_style'], "weight decay incr style"
sd['wd_incr_style'], )
"weight decay incr style")
...@@ -2,9 +2,9 @@ ...@@ -2,9 +2,9 @@
MAJOR = 0 MAJOR = 0
MINOR = 3 MINOR = 10
PATCH = 0 PATCH = 0
PRE_RELEASE = '' PRE_RELEASE = 'rc0'
# Use the following formatting: (major, minor, patch, pre-release) # Use the following formatting: (major, minor, patch, pre-release)
VERSION = (MAJOR, MINOR, PATCH, PRE_RELEASE) VERSION = (MAJOR, MINOR, PATCH, PRE_RELEASE)
......
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from dataclasses import dataclass
from torch import Tensor
@dataclass
class PackedSeqParams:
'''
parameters to TEDotProductAttention and fused rope kernels for the
`thd` (packed) sequence format
'''
qkv_format: str = None
cu_seqlens_q: Tensor = None
cu_seqlens_kv: Tensor = None
cu_seqlens_q_padded: Tensor = None
cu_seqlens_kv_padded: Tensor = None
max_seqlen_q: Tensor = None
max_seqlen_kv: Tensor = None
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment