Commit c271aaae authored by wxj's avatar wxj
Browse files

Update Llama_pretraining.sh

parent c5369391
Pipeline #2447 passed with stage
......@@ -8,7 +8,7 @@ export OMP_NUM_THREADS=1
export NCCL_P2P_LEVEL=PXB # SYS
#export HIP_ALLOC_INITIALIZE=0
#export GPU_MAX_HW_QUEUES=20
#export GPU_MAX_HW_QUEUES=20 # sglang空泡
export NCCL_ALGO=Ring
export NCCL_NCHANNELS_PER_PEER=16
......@@ -17,54 +17,72 @@ export NCCL_IB_TIMEOUT=22
export CUDA_DEVICE_MAX_CONNECTIONS=1
export NCCL_IB_HCA=mlx5_1,mlx5_2
# export NCCL_IB_HCA=mlx5_0,mlx5_1,mlx5_2,mlx5_3,,mlx5_4,,mlx5_5,,mlx5_6,,mlx5_7
export NCCL_NET_GDR_LEVEL=SYS
export NCCL_NET_GDR_READ=0
export GLOG_minloglevel=3 # 打印error级别的nccl日志
# export TORCH_COMPILE_DEBUG=1 # 查看编译后的图
source /opt/dtk/env.sh
# te调用gemm需要导入hipblaslt库
# 导入hipblaslt库
# export LD_LIBRARY_PATH=/data/hipblaslt-install-0904/lib:$LD_LIBRARY_PATH
# 更新rocblas
export LD_LIBRARY_PATH=/data/rocblas-install/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1211/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1228/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install_0107_trans/lib:$LD_LIBRARY_PATH
# torch控制多流转单流
# export ALLREDUCE_STREAM_WITH_COMPUTE=1
# # prof采集添加同步
# prof采集添加同步, 避免卡顿
# export GPU_FLUSH_ON_EXECUTION=1
# export HIP_DIRECT_DISPATCH=0
# 采集rocblas size
export ROCBLAS_LAYER=3
# 采集 fa size
# export FLASH_ATTENTION_PRINT_PARAM=1
CHECKPOINT_PATH=./tmp_7b #$1 #<Specify path>
TENSORBOARD_LOGS_PATH=./tmp_7b #$2 #<Specify path>
DATA_PATH="/public/home/wangxj3/Downloads/datasets/nemo_pretrain/oscar-1GB/oscar-1GB-llama_text_document" #<Specify path and file prefix>_text_document
# GPT_MODEL_ARGS=(
# --num-layers 32
# --hidden-size 5120
# --ffn-hidden-size 13824
# --num-attention-heads 40
# --seq-length 4096 #4096
# --max-position-embeddings 32768 #4096
# --num-query-groups 40
# --group-query-attention
# )
DATA_PATH="/data/datasets/nemo_pretrain/oscar-1GB/oscar-1GB-llama_text_document"
GPT_MODEL_ARGS=(
--num-layers 6
--num-layers 32
--hidden-size 4096
--ffn-hidden-size 11008
--num-attention-heads 32
--seq-length 4096 #4096
--max-position-embeddings 4096
--normalization RMSNorm
--position-embedding-type rope
--untie-embeddings-and-output-weights # 分开处理embed和输出权重, 增加灵活性
)
# GPT_MODEL_ARGS=(
# --num-layers 40
# --hidden-size 5120
# --ffn-hidden-size 13824
# --num-attention-heads 40
# --max-position-embeddings 4096
# --normalization RMSNorm
# --position-embedding-type rope
# --untie-embeddings-and-output-weights # 分开处理embed和输出权重, 增加灵活性
# )
# export NVTE_FLASH_ATTN=1 # 走cutlass
export NVTE_FLASH_ATTN_TRITON=1 # 走triton_fa
# --transformer-impl transformer_engine
# --transformer-impl transformer_engine # 走core用这两组参数
# --use-mcore-models
# --transformer-impl local
# --transformer-impl local # 走legacy用这两组参数
# --use-legacy-models
TRAINING_ARGS=(
--transformer-impl transformer_engine
--use-mcore-models
--transformer-impl local # 走legacy用这两组参数
--use-legacy-models
--micro-batch-size 1
--global-batch-size 6 #240 #60 #512 #64
--global-batch-size 64 #240 #60 #512 #64
--train-iters 10
--weight-decay 0.1
--adam-beta1 0.9
......@@ -72,34 +90,30 @@ TRAINING_ARGS=(
--init-method-std 0.006
--clip-grad 1.0
--bf16
# --fp16 # 开启fp16需要指定loss-scale
# --loss-scale 1024
--use-distributed-optimizer
--disable-bias-linear
--attention-dropout 0
--hidden-dropout 0
--no-gradient-accumulation-fusion
--add-qkv-bias
--no-gradient-accumulation-fusion # 开启后精度不对, apex更新后可以开启
--swiglu
--lr 3.0e-5
--lr-decay-style cosine
--min-lr 3.0e-6
--lr-warmup-iters 1
--ckpt-format torch
--ddp-average-in-collective
--recompute-granularity full
--recompute-num-layers 5 #0 #
--recompute-method block
--overlap-grad-reduce
--use-flash-attn-triton
--ddp-average-in-collective # 在dp阶段通信中, 梯度或参数将被直接平均, 而不是先求和(到一个设备)再平均
# --recompute-granularity full # 开启重计算降低显存增加耗时
# --recompute-num-layers 5 #0 #
# --recompute-method block
--overlap-grad-reduce # 重叠ddp grad reduce
# --tp-comm-overlap # tensor parallel comm和gemm重叠, 优化项未适配
# --tp-comm-overlap-rs-dgrad # reduce-scatter和dgrad gemm重叠, 优化项未适配
--use-flash-attn-cutlass
)
# --add-qkv-bias # qwen
# --ckpt-format torch
# --ddp-average-in-collective
# --recompute-granularity full
# --recompute-num-layers 5
# --recompute-method block
# --overlap-grad-reduce
# --use-flash-attn-cutlass
# --use-flash-attn-triton
# --use-flash-attn-cutlass # cutlass fa
# --use-flash-attn-triton # triton fa
MODEL_PARALLEL_ARGS=(
--sequence-parallel
......@@ -109,13 +123,10 @@ MODEL_PARALLEL_ARGS=(
DATA_ARGS=(
--data-path $DATA_PATH
--seq-length 4096 #4096
--split 949,50,1
--untie-embeddings-and-output-weights
--use-rotary-position-embeddings
--normalization RMSNorm
--no-position-embedding
--tokenizer-type Llama2Tokenizer
--tokenizer-model /public/home/wangxj3/Downloads/model_weights/llama2_7b_hf/tokenizer.model
--tokenizer-model /data/model_weights/llama2_7b_hf/tokenizer.model
)
EVAL_AND_LOGGING_ARGS=(
......@@ -134,7 +145,7 @@ PROFILE_ARGS=(
--profile-step-start 4
--profile-step-end 5
--use-pytorch-profiler
--profile-ranks 0 3
--profile-ranks 0 1 2 3 4 5 6 7
--profile-dir prof_data
)
......@@ -142,7 +153,7 @@ RANK=$OMPI_COMM_WORLD_RANK
LOCAL_RANK=$OMPI_COMM_WORLD_LOCAL_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE
DIST_URL=${1}
DIST_PORT=34566
DIST_PORT=34567
DISTRIBUTED_ARGS=(
--rank ${RANK}
......@@ -158,33 +169,35 @@ APP="python -u pretrain_gpt.py \
${DATA_ARGS[@]} \
${EVAL_AND_LOGGING_ARGS[@]} \
${DISTRIBUTED_ARGS[@]} \
${PROFILE_ARGS[@]} \
"
# 开启profile
# ${PROFILE_ARGS[@]} \
export HIP_VISIBLE_DEVICES=4,5,6,7 # 0,1,2,3 # 4,5,6,7 #,
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 # # 4,5,6,7 #,
# export CUDA_VISIBLE_DEVICES=4,5,6,7 # 0,1,2,3,
${APP}
# case ${LOCAL_RANK} in
# [0])
# # export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# ${APP}
case ${LOCAL_RANK} in
[0])
# export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
${APP}
# numactl --cpunodebind=0 --membind=0 ${APP}
;;
[1])
# export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
${APP}
# numactl --cpunodebind=0 --membind=0 ${APP}
;;
[2])
# export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
${APP}
# numactl --cpunodebind=0 --membind=0 ${APP}
;;
[3])
# export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
${APP}
# numactl --cpunodebind=0 --membind=0 ${APP}
;;
# # numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# [1])
# # export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# ${APP}
# # numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# [2])
# # export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# ${APP}
# # numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# [3])
# # export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# ${APP}
# # numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# [4])
# export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# ${APP}
......@@ -205,4 +218,4 @@ case ${LOCAL_RANK} in
# ${APP}
# # numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
esac
# esac
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment