"vscode:/vscode.git/clone" did not exist on "ef29b24fda25ce2637d90e6077d85b4cf3d6c701"
Commit 8e922d5b authored by Deepak Narayanan's avatar Deepak Narayanan
Browse files

Put in barriers in appropriate places to measure length of pipeline stall

parent dd889062
...@@ -95,6 +95,7 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat ...@@ -95,6 +95,7 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat
output_tensor_grads = [[] for _ in range(len(model))] output_tensor_grads = [[] for _ in range(len(model))]
pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size() pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
# Compute number of warmup and remaining microbatches. # Compute number of warmup and remaining microbatches.
num_model_chunks = len(model) num_model_chunks = len(model)
...@@ -108,8 +109,7 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat ...@@ -108,8 +109,7 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat
all_warmup_microbatches = True all_warmup_microbatches = True
else: else:
num_warmup_microbatches = \ num_warmup_microbatches = \
(pipeline_parallel_size - (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
mpu.get_pipeline_model_parallel_rank() - 1) * 2
num_warmup_microbatches += (num_model_chunks - 1) * pipeline_parallel_size num_warmup_microbatches += (num_model_chunks - 1) * pipeline_parallel_size
num_warmup_microbatches = min(num_warmup_microbatches, num_microbatches) num_warmup_microbatches = min(num_warmup_microbatches, num_microbatches)
num_microbatches_remaining = \ num_microbatches_remaining = \
...@@ -272,6 +272,8 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat ...@@ -272,6 +272,8 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat
def forward_backward_pipelining(forward_step_func, data_iterator, model, def forward_backward_pipelining(forward_step_func, data_iterator, model,
optimizer, timers, forward_only): optimizer, timers, forward_only):
"""Run 1F1B schedule, with communication and warmup + cooldown microbatches as needed.""" """Run 1F1B schedule, with communication and warmup + cooldown microbatches as needed."""
timers = get_timers()
assert len(model) == 1 assert len(model) == 1
model = model[0] model = model[0]
...@@ -295,11 +297,22 @@ def forward_backward_pipelining(forward_step_func, data_iterator, model, ...@@ -295,11 +297,22 @@ def forward_backward_pipelining(forward_step_func, data_iterator, model,
input_tensor = recv_forward(timers) input_tensor = recv_forward(timers)
output_tensor = forward_step(forward_step_func, data_iterator, model, output_tensor = forward_step(forward_step_func, data_iterator, model,
input_tensor, losses_reduced) input_tensor, losses_reduced)
# Barrier before first receive to measure forward stall.
if i == (num_warmup_microbatches - 1):
timers('forward-pipeline-stall').start()
torch.distributed.barrier(group=mpu.get_pipeline_model_parallel_group())
timers('forward-pipeline-stall').stop()
send_forward(output_tensor, timers) send_forward(output_tensor, timers)
input_tensors.append(input_tensor) input_tensors.append(input_tensor)
output_tensors.append(output_tensor) output_tensors.append(output_tensor)
# Barrier before first receive to measure forward stall.
if num_warmup_microbatches == 0:
timers('forward-pipeline-stall').start()
torch.distributed.barrier(group=mpu.get_pipeline_model_parallel_group())
timers('forward-pipeline-stall').stop()
# Before running 1F1B, need to receive first forward tensor. # Before running 1F1B, need to receive first forward tensor.
# If all microbatches are run in warmup / cooldown phase, then no need to # If all microbatches are run in warmup / cooldown phase, then no need to
# receive this tensor here. # receive this tensor here.
......
...@@ -354,6 +354,11 @@ def train_step(forward_step_func, data_iterator, ...@@ -354,6 +354,11 @@ def train_step(forward_step_func, data_iterator,
fp32_allreduce=args.fp32_allreduce) fp32_allreduce=args.fp32_allreduce)
timers('backward-params-all-reduce').stop() timers('backward-params-all-reduce').stop()
# Barrier to measure backward stall.
timers('backward-pipeline-stall').start()
torch.distributed.barrier(group=mpu.get_pipeline_model_parallel_group())
timers('backward-pipeline-stall').stop()
# All-reduce word_embeddings' grad across first and last stages to ensure # All-reduce word_embeddings' grad across first and last stages to ensure
# that word_embeddings parameters stay in sync. # that word_embeddings parameters stay in sync.
# This should only run for models that support pipelined model parallelism # This should only run for models that support pipelined model parallelism
...@@ -443,10 +448,12 @@ def training_log(loss_dict, total_loss_dict, learning_rate, iteration, ...@@ -443,10 +448,12 @@ def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
if name in timers.timers: if name in timers.timers:
timers_to_log.append(name) timers_to_log.append(name)
add_to_logging('forward-compute') add_to_logging('forward-compute')
add_to_logging('forward-pipeline-stall')
add_to_logging('forward-recv') add_to_logging('forward-recv')
add_to_logging('forward-send') add_to_logging('forward-send')
add_to_logging('forward-backward-send-forward-backward-recv') add_to_logging('forward-backward-send-forward-backward-recv')
add_to_logging('backward-compute') add_to_logging('backward-compute')
add_to_logging('backward-pipeline-stall')
add_to_logging('backward-recv') add_to_logging('backward-recv')
add_to_logging('backward-send') add_to_logging('backward-send')
add_to_logging('backward-send-forward-recv') add_to_logging('backward-send-forward-recv')
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment