Commit 80389ef6 authored by Jared Casper's avatar Jared Casper
Browse files

Merge branch 'main' into checkpoint_util

parents 1b2db724 d07d29df
...@@ -32,20 +32,26 @@ def post_language_model_processing(lm_output, labels, logit_weights, ...@@ -32,20 +32,26 @@ def post_language_model_processing(lm_output, labels, logit_weights,
parallel_output, parallel_output,
fp16_lm_cross_entropy): fp16_lm_cross_entropy):
# Output. # Output. Format [s b h]
output = parallel_lm_logits( output = parallel_lm_logits(
lm_output, lm_output,
logit_weights, logit_weights,
parallel_output) parallel_output)
if labels is None: if labels is None:
return output # [s b h] => [b s h]
return output.transpose(0,1).contiguous()
else: else:
# [b s] => [s b]
labels = labels.transpose(0,1).contiguous()
if fp16_lm_cross_entropy: if fp16_lm_cross_entropy:
assert output.dtype == torch.half assert output.dtype == torch.half
loss = mpu.vocab_parallel_cross_entropy(output, labels) loss = mpu.vocab_parallel_cross_entropy(output, labels)
else: else:
loss = mpu.vocab_parallel_cross_entropy(output.float(), labels) loss = mpu.vocab_parallel_cross_entropy(output.float(), labels)
# [s b] => [b, s]
loss = loss.transpose(0,1).contiguous()
return loss return loss
......
...@@ -26,17 +26,29 @@ from megatron.model.transformer import ParallelTransformer ...@@ -26,17 +26,29 @@ from megatron.model.transformer import ParallelTransformer
from megatron.model.utils import get_linear_layer from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal, scaled_init_method_normal from megatron.model.utils import init_method_normal, scaled_init_method_normal
def parallel_lm_logits(input_, word_embeddings_weight, parallel_output, def parallel_lm_logits(input_, word_embeddings_weight, parallel_output,
bias=None): bias=None):
"""LM logits using word embedding weights.""" """LM logits using word embedding weights."""
args = get_args()
# Parallel logits. # Parallel logits.
input_parallel = mpu.copy_to_tensor_model_parallel_region(input_) if args.async_tensor_model_parallel_allreduce or\
# Matrix multiply. args.sequence_parallel:
if bias is None: input_parallel = input_
logits_parallel = F.linear(input_parallel, word_embeddings_weight) model_parallel = mpu.get_tensor_model_parallel_world_size() > 1
async_grad_allreduce = args.async_tensor_model_parallel_allreduce and \
model_parallel and not args.sequence_parallel
else: else:
logits_parallel = F.linear(input_parallel, word_embeddings_weight, bias) input_parallel = mpu.copy_to_tensor_model_parallel_region(input_)
async_grad_allreduce = False
# Matrix multiply.
logits_parallel = mpu.LinearWithGradAccumulationAndAsyncCommunication.apply(
input_parallel, word_embeddings_weight, bias,
args.gradient_accumulation_fusion,
async_grad_allreduce, args.sequence_parallel)
# Gather if needed. # Gather if needed.
if parallel_output: if parallel_output:
return logits_parallel return logits_parallel
...@@ -92,12 +104,23 @@ class Pooler(MegatronModule): ...@@ -92,12 +104,23 @@ class Pooler(MegatronModule):
def __init__(self, hidden_size, init_method): def __init__(self, hidden_size, init_method):
super(Pooler, self).__init__() super(Pooler, self).__init__()
args = get_args()
self.dense = get_linear_layer(hidden_size, hidden_size, init_method) self.dense = get_linear_layer(hidden_size, hidden_size, init_method)
self.sequence_parallel = args.sequence_parallel
def forward(self, hidden_states, sequence_index=0): def forward(self, hidden_states, sequence_index=0):
# hidden_states: [b, s, h] # hidden_states: [s, b, h]
# sequence_index: index of the token to pool. # sequence_index: index of the token to pool.
pooled = hidden_states[:, sequence_index, :]
# gather data along sequence dimensions
# same pooler is run on all tensor parallel nodes
if self.sequence_parallel:
hidden_states = mpu.gather_from_sequence_parallel_region(
hidden_states,
tensor_parallel_output_grad=False)
pooled = hidden_states[sequence_index, :, :]
pooled = self.dense(pooled) pooled = self.dense(pooled)
pooled = torch.tanh(pooled) pooled = torch.tanh(pooled)
return pooled return pooled
...@@ -160,6 +183,8 @@ class Embedding(MegatronModule): ...@@ -160,6 +183,8 @@ class Embedding(MegatronModule):
else: else:
self.tokentype_embeddings = None self.tokentype_embeddings = None
self.fp32_residual_connection = args.fp32_residual_connection
self.sequence_parallel = args.sequence_parallel
# Embeddings dropout # Embeddings dropout
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob) self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
...@@ -201,8 +226,20 @@ class Embedding(MegatronModule): ...@@ -201,8 +226,20 @@ class Embedding(MegatronModule):
else: else:
assert self.tokentype_embeddings is None assert self.tokentype_embeddings is None
# Data format change to avoid explicit tranposes : [b s h] --> [s b h].
embeddings = embeddings.transpose(0, 1).contiguous()
# If the input flag for fp32 residual connection is set, convert for float.
if self.fp32_residual_connection:
embeddings = embeddings.float()
# Dropout. # Dropout.
embeddings = self.embedding_dropout(embeddings) if self.sequence_parallel:
embeddings = mpu.scatter_to_sequence_parallel_region(embeddings)
with mpu.get_cuda_rng_tracker().fork():
embeddings = self.embedding_dropout(embeddings)
else:
embeddings = self.embedding_dropout(embeddings)
return embeddings return embeddings
......
...@@ -152,19 +152,24 @@ class T5Model(MegatronModule): ...@@ -152,19 +152,24 @@ class T5Model(MegatronModule):
if self.post_process and self.add_decoder: if self.post_process and self.add_decoder:
decoder_output, encoder_output = lm_output decoder_output, encoder_output = lm_output
# Output. # Output. [s, b, h]
lm_logits = self.lm_head(decoder_output, lm_logits = self.lm_head(decoder_output,
self.word_embeddings_weight()) self.word_embeddings_weight())
if lm_labels is None: if lm_labels is None:
return lm_logits # [s b h] => [b s h]
return lm_logits.transpose(0,1).contiguous()
else: else:
# [b s] => [s b]
lm_labels = lm_labels.transpose(0,1).contiguous()
if self.fp16_lm_cross_entropy: if self.fp16_lm_cross_entropy:
assert lm_logits.dtype == torch.half assert lm_logits.dtype == torch.half
lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits, lm_labels) lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits, lm_labels)
else: else:
lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits.float(), lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits.float(),
lm_labels) lm_labels)
# [s b] => [b s]
lm_loss = lm_loss.transpose(0,1).contiguous()
return lm_loss return lm_loss
elif self.add_decoder and not self.add_encoder: elif self.add_decoder and not self.add_encoder:
decoder_output, encoder_output = lm_output decoder_output, encoder_output = lm_output
......
...@@ -15,10 +15,11 @@ ...@@ -15,10 +15,11 @@
"""Transformer.""" """Transformer."""
import math import math
from contextlib import nullcontext
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
from megatron import get_args from megatron import get_timers, get_args, get_global_memory_buffer
from megatron import mpu from megatron import mpu
from .module import MegatronModule from .module import MegatronModule
from megatron.model.enums import AttnMaskType, ModelType, LayerType, AttnType from megatron.model.enums import AttnMaskType, ModelType, LayerType, AttnType
...@@ -27,6 +28,7 @@ from megatron.model.fused_softmax import FusedScaleMaskSoftmax ...@@ -27,6 +28,7 @@ from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl from megatron.model.fused_bias_gelu import bias_gelu_impl
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
""" We use the following notation throughout this file: """ We use the following notation throughout this file:
h: hidden size h: hidden size
n: number of attention heads n: number of attention heads
...@@ -42,7 +44,6 @@ from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu ...@@ -42,7 +44,6 @@ from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
hyperparameters: transformer hyperparameters hyperparameters: transformer hyperparameters
""" """
class DropPath(MegatronModule): class DropPath(MegatronModule):
"""Drop paths (Stochastic Depth) per sample """Drop paths (Stochastic Depth) per sample
(when applied in main path of residual blocks). (when applied in main path of residual blocks).
...@@ -116,11 +117,196 @@ class ParallelMLP(MegatronModule): ...@@ -116,11 +117,196 @@ class ParallelMLP(MegatronModule):
output, output_bias = self.dense_4h_to_h(intermediate_parallel) output, output_bias = self.dense_4h_to_h(intermediate_parallel)
return output, output_bias return output, output_bias
class SwitchMLP(MegatronModule):
"""
Routes input to one of N MLP "experts"
"""
def __init__(self, init_method, output_layer_init_method):
super(SwitchMLP, self).__init__()
args = get_args()
self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
self.experts = torch.nn.ModuleList()
for i in range(args.num_experts):
self.experts.append(ParallelMLP(init_method, output_layer_init_method))
def forward(self, hidden_states):
# hidden_states: [s, b, h]
s = hidden_states.size(0)
b = hidden_states.size(1)
h = hidden_states.size(2)
route = self.router(hidden_states)
route = torch.nn.functional.softmax(route, dim=2)
max_prob, max_ind = torch.max(route, dim=2)
max_prob = torch.unsqueeze(max_prob, 2) # [s b 1]
# TODO (rprenger) TODO this could be made easier to read
# Converting [s, b, h] to [s*b, h].
# Each vector could be routed differently
hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [s*b h]
max_prob = max_prob.view(-1, max_prob.size(2)) # [s*b 1]
max_ind = max_ind.view(-1) # [s*b]
output_total = torch.empty_like(hidden_states)
output_bias_total = torch.empty_like(hidden_states)
#TODO (rprenger) This does each expert in serial, but it could be parallelized
for expert_num, expert in enumerate(self.experts):
local_indices = (max_ind == expert_num).nonzero()
hidden = hidden_states[local_indices,:]
output, output_bias = expert(hidden)
output_bias = output_bias.expand_as(output)
output_total[local_indices,:] = output
output_bias_total[local_indices,:] = output_bias
output_total = output_total*max_prob
output_bias_total = output_bias_total*max_prob
output_total = output_total.view(s, b, h)
output_bias_total = output_bias_total.view(s, b, h)
return output_total, output_bias_total
class CoreAttention(MegatronModule):
def __init__(self, layer_number,
attn_mask_type=AttnMaskType.padding):
super(CoreAttention, self).__init__()
args = get_args()
self.fp16 = args.fp16
self.bf16 = args.bf16
self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
if self.apply_query_key_layer_scaling:
self.attention_softmax_in_fp32 = True
self.layer_number = max(1, layer_number)
self.attn_mask_type = attn_mask_type
self.sequence_parallel = args.sequence_parallel
projection_size = args.kv_channels * args.num_attention_heads
# Per attention head and per partition values.
world_size = mpu.get_tensor_model_parallel_world_size()
self.hidden_size_per_partition = mpu.divide(projection_size,
world_size)
self.hidden_size_per_attention_head = mpu.divide(
projection_size, args.num_attention_heads)
self.num_attention_heads_per_partition = mpu.divide(
args.num_attention_heads, world_size)
coeff = None
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
if self.apply_query_key_layer_scaling:
coeff = self.layer_number
self.norm_factor *= coeff
self.scale_mask_softmax = FusedScaleMaskSoftmax(
self.fp16, self.bf16,
self.attn_mask_type,
args.masked_softmax_fusion,
attention_mask_func,
self.attention_softmax_in_fp32,
coeff)
# Dropout. Note that for a single iteration, this layer will generate
# different outputs on different number of parallel partitions but
# on average it should not be partition dependent.
self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
def forward(self, query_layer, key_layer,
value_layer, attention_mask):
# ===================================
# Raw attention scores. [b, np, s, s]
# ===================================
# [b, np, sq, sk]
output_size = (query_layer.size(1),
query_layer.size(2),
query_layer.size(0),
key_layer.size(0))
# [sq, b, np, hn] -> [sq, b * np, hn]
query_layer = query_layer.view(output_size[2],
output_size[0] * output_size[1], -1)
# [sk, b, np, hn] -> [sk, b * np, hn]
key_layer = key_layer.view(output_size[3],
output_size[0] * output_size[1], -1)
# preallocting input tensor: [b * np, sq, sk]
matmul_input_buffer = get_global_memory_buffer().get_tensor(
(output_size[0]*output_size[1], output_size[2], output_size[3]),
query_layer.dtype, "mpu")
# Raw attention scores. [b * np, sq, sk]
matmul_result = torch.baddbmm(
matmul_input_buffer,
query_layer.transpose(0, 1), # [b * np, sq, hn]
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
beta=0.0, alpha=(1.0/self.norm_factor))
# change view to [b, np, sq, sk]
attention_scores = matmul_result.view(*output_size)
# ===========================
# Attention probs and dropout
# ===========================
# attention scores and attention mask [b, np, sq, sk]
attention_probs = self.scale_mask_softmax(attention_scores,
attention_mask)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
if not self.sequence_parallel:
with mpu.get_cuda_rng_tracker().fork():
attention_probs = self.attention_dropout(attention_probs)
else:
attention_probs = self.attention_dropout(attention_probs)
# =========================
# Context layer. [sq, b, hp]
# =========================
# value_layer -> context layer.
# [sk, b, np, hn] --> [b, np, sq, hn]
# context layer shape: [b, np, sq, hn]
output_size = (value_layer.size(1),
value_layer.size(2),
query_layer.size(0),
value_layer.size(3))
# change view [sk, b * np, hn]
value_layer = value_layer.view(value_layer.size(0),
output_size[0] * output_size[1], -1)
# change view [b * np, sq, sk]
attention_probs = attention_probs.view(output_size[0] * output_size[1],
output_size[2], -1)
# matmul: [b * np, sq, hn]
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
# change view [b, np, sq, hn]
context_layer = context_layer.view(*output_size)
# [b, np, sq, hn] --> [sq, b, np, hn]
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
# [sq, b, np, hn] --> [sq, b, hp]
new_context_layer_shape = context_layer.size()[:-2] + \
(self.hidden_size_per_partition,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class ParallelAttention(MegatronModule): class ParallelAttention(MegatronModule):
"""Parallel self-attention layer abstract class. """Parallel self-attention layer abstract class.
Self-attention layer takes input with size [b, s, h] Self-attention layer takes input with size [s, b, h]
and returns output of the same size. and returns output of the same size.
""" """
...@@ -130,13 +316,6 @@ class ParallelAttention(MegatronModule): ...@@ -130,13 +316,6 @@ class ParallelAttention(MegatronModule):
attn_mask_type=AttnMaskType.padding): attn_mask_type=AttnMaskType.padding):
super(ParallelAttention, self).__init__() super(ParallelAttention, self).__init__()
args = get_args() args = get_args()
self.fp16 = args.fp16
self.bf16 = args.bf16
self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
if self.apply_query_key_layer_scaling:
self.attention_softmax_in_fp32 = True
self.layer_number = max(1, layer_number) self.layer_number = max(1, layer_number)
self.attention_type = attention_type self.attention_type = attention_type
self.attn_mask_type = attn_mask_type self.attn_mask_type = attn_mask_type
...@@ -146,8 +325,6 @@ class ParallelAttention(MegatronModule): ...@@ -146,8 +325,6 @@ class ParallelAttention(MegatronModule):
# Per attention head and per partition values. # Per attention head and per partition values.
world_size = mpu.get_tensor_model_parallel_world_size() world_size = mpu.get_tensor_model_parallel_world_size()
self.hidden_size_per_partition = mpu.divide(projection_size,
world_size)
self.hidden_size_per_attention_head = mpu.divide( self.hidden_size_per_attention_head = mpu.divide(
projection_size, args.num_attention_heads) projection_size, args.num_attention_heads)
self.num_attention_heads_per_partition = mpu.divide( self.num_attention_heads_per_partition = mpu.divide(
...@@ -174,24 +351,9 @@ class ParallelAttention(MegatronModule): ...@@ -174,24 +351,9 @@ class ParallelAttention(MegatronModule):
gather_output=False, gather_output=False,
init_method=init_method) init_method=init_method)
coeff = None self.core_attention = CoreAttention(self.layer_number,
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head) self.attn_mask_type)
if self.apply_query_key_layer_scaling: self.checkpoint_core_attention = args.recompute_granularity == 'selective'
coeff = self.layer_number
self.norm_factor *= coeff
self.scale_mask_softmax = FusedScaleMaskSoftmax(
self.fp16, self.bf16,
self.attn_mask_type,
args.masked_softmax_fusion,
attention_mask_func,
self.attention_softmax_in_fp32,
coeff)
# Dropout. Note that for a single iteration, this layer will generate
# different outputs on different number of parallel partitions but
# on average it should not be partition dependent.
self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
# Output. # Output.
self.dense = mpu.RowParallelLinear( self.dense = mpu.RowParallelLinear(
...@@ -201,6 +363,23 @@ class ParallelAttention(MegatronModule): ...@@ -201,6 +363,23 @@ class ParallelAttention(MegatronModule):
init_method=output_layer_init_method, init_method=output_layer_init_method,
skip_bias_add=True) skip_bias_add=True)
def _checkpointed_attention_forward(self, query_layer, key_layer,
value_layer, attention_mask):
"""Forward method with activation checkpointing."""
def custom_forward(*inputs):
query_layer = inputs[0]
key_layer = inputs[1]
value_layer = inputs[2]
attention_mask = inputs[3]
output_ = self.core_attention(query_layer, key_layer,
value_layer, attention_mask)
return output_
hidden_states = mpu.checkpoint(
custom_forward,
False, query_layer, key_layer, value_layer, attention_mask)
return hidden_states
def _allocate_memory(self, inference_max_sequence_len, batch_size): def _allocate_memory(self, inference_max_sequence_len, batch_size):
return torch.empty( return torch.empty(
...@@ -210,13 +389,11 @@ class ParallelAttention(MegatronModule): ...@@ -210,13 +389,11 @@ class ParallelAttention(MegatronModule):
self.hidden_size_per_attention_head, self.hidden_size_per_attention_head,
dtype=self.params_dtype, dtype=self.params_dtype,
device=torch.cuda.current_device()) device=torch.cuda.current_device())
def forward(self, hidden_states, attention_mask, def forward(self, hidden_states, attention_mask,
encoder_output=None, inference_params=None): encoder_output=None, inference_params=None):
# hidden_states: [sq, b, h] # hidden_states: [sq, b, h]
# ================================================= # =================================================
# Pre-allocate memory for key-values for inference. # Pre-allocate memory for key-values for inference.
# ================================================= # =================================================
...@@ -234,7 +411,6 @@ class ParallelAttention(MegatronModule): ...@@ -234,7 +411,6 @@ class ParallelAttention(MegatronModule):
inference_key_memory, inference_value_memory = \ inference_key_memory, inference_value_memory = \
inference_params.key_value_memory_dict[self.layer_number] inference_params.key_value_memory_dict[self.layer_number]
# ===================== # =====================
# Query, Key, and Value # Query, Key, and Value
# ===================== # =====================
...@@ -275,7 +451,6 @@ class ParallelAttention(MegatronModule): ...@@ -275,7 +451,6 @@ class ParallelAttention(MegatronModule):
self.hidden_size_per_attention_head) self.hidden_size_per_attention_head)
query_layer = query_layer.view(*new_tensor_shape) query_layer = query_layer.view(*new_tensor_shape)
# ================================== # ==================================
# Adjust key and value for inference # Adjust key and value for inference
# ================================== # ==================================
...@@ -297,90 +472,16 @@ class ParallelAttention(MegatronModule): ...@@ -297,90 +472,16 @@ class ParallelAttention(MegatronModule):
value_layer = inference_value_memory[ value_layer = inference_value_memory[
:sequence_end, batch_start:batch_end, ...] :sequence_end, batch_start:batch_end, ...]
# ==================================
# core attention computation
# ==================================
# =================================== if self.checkpoint_core_attention:
# Raw attention scores. [b, np, s, s] context_layer = self._checkpointed_attention_forward(
# =================================== query_layer, key_layer, value_layer, attention_mask)
else:
# [b, np, sq, sk] context_layer = self.core_attention(
output_size = (query_layer.size(1), query_layer, key_layer, value_layer, attention_mask)
query_layer.size(2),
query_layer.size(0),
key_layer.size(0))
# [sq, b, np, hn] -> [sq, b * np, hn]
query_layer = query_layer.view(output_size[2],
output_size[0] * output_size[1], -1)
# [sk, b, np, hn] -> [sk, b * np, hn]
key_layer = key_layer.view(output_size[3],
output_size[0] * output_size[1], -1)
# preallocting result tensor: [b * np, sq, sk]
matmul_result = torch.empty(
output_size[0]*output_size[1],
output_size[2],
output_size[3],
dtype=query_layer.dtype,
device=torch.cuda.current_device())
# Raw attention scores. [b * np, sq, sk]
matmul_result = torch.baddbmm(
matmul_result,
query_layer.transpose(0, 1), # [b * np, sq, hn]
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
beta=0.0, alpha=(1.0/self.norm_factor))
# change view to [b, np, sq, sk]
attention_scores = matmul_result.view(*output_size)
# ===========================
# Attention probs and dropout
# ===========================
# attention scores and attention mask [b, np, sq, sk]
attention_probs = self.scale_mask_softmax(attention_scores,
attention_mask)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
with mpu.get_cuda_rng_tracker().fork():
attention_probs = self.attention_dropout(attention_probs)
# =========================
# Context layer. [sq, b, hp]
# =========================
# value_layer -> context layer.
# [sk, b, np, hn] --> [b, np, sq, hn]
# context layer shape: [b, np, sq, hn]
output_size = (value_layer.size(1),
value_layer.size(2),
query_layer.size(0),
value_layer.size(3))
# change view [sk, b * np, hn]
value_layer = value_layer.view(value_layer.size(0),
output_size[0] * output_size[1], -1)
# change view [b * np, sq, sk]
attention_probs = attention_probs.view(output_size[0] * output_size[1],
output_size[2], -1)
# matmul: [b * np, sq, hn]
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
# change view [b, np, sq, hn]
context_layer = context_layer.view(*output_size)
# [b, np, sq, hn] --> [sq, b, np, hn]
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
# [sq, b, np, hn] --> [sq, b, hp]
new_context_layer_shape = context_layer.size()[:-2] + \
(self.hidden_size_per_partition,)
context_layer = context_layer.view(*new_context_layer_shape)
# ================= # =================
# Output. [sq, b, h] # Output. [sq, b, h]
...@@ -423,7 +524,7 @@ def bias_dropout_add_fused_inference(x: torch.Tensor, ...@@ -423,7 +524,7 @@ def bias_dropout_add_fused_inference(x: torch.Tensor,
class ParallelTransformerLayer(MegatronModule): class ParallelTransformerLayer(MegatronModule):
"""A single transformer layer. """A single transformer layer.
Transformer layer takes input with size [b, s, h] and returns an Transformer layer takes input with size [s, b, h] and returns an
output of the same size. output of the same size.
""" """
...@@ -447,7 +548,8 @@ class ParallelTransformerLayer(MegatronModule): ...@@ -447,7 +548,8 @@ class ParallelTransformerLayer(MegatronModule):
self.input_layernorm = LayerNorm( self.input_layernorm = LayerNorm(
args.hidden_size, args.hidden_size,
eps=args.layernorm_epsilon, eps=args.layernorm_epsilon,
no_persist_layer_norm=args.no_persist_layer_norm) no_persist_layer_norm=args.no_persist_layer_norm,
sequence_parallel=args.sequence_parallel)
# Self attention. # Self attention.
self.self_attention = ParallelAttention( self.self_attention = ParallelAttention(
...@@ -464,7 +566,8 @@ class ParallelTransformerLayer(MegatronModule): ...@@ -464,7 +566,8 @@ class ParallelTransformerLayer(MegatronModule):
self.post_attention_layernorm = LayerNorm( self.post_attention_layernorm = LayerNorm(
args.hidden_size, args.hidden_size,
eps=args.layernorm_epsilon, eps=args.layernorm_epsilon,
no_persist_layer_norm=args.no_persist_layer_norm) no_persist_layer_norm=args.no_persist_layer_norm,
sequence_parallel=args.sequence_parallel)
if self.layer_type == LayerType.decoder: if self.layer_type == LayerType.decoder:
self.inter_attention = ParallelAttention( self.inter_attention = ParallelAttention(
...@@ -476,16 +579,26 @@ class ParallelTransformerLayer(MegatronModule): ...@@ -476,16 +579,26 @@ class ParallelTransformerLayer(MegatronModule):
self.post_inter_attention_layernorm = LayerNorm( self.post_inter_attention_layernorm = LayerNorm(
args.hidden_size, args.hidden_size,
eps=args.layernorm_epsilon, eps=args.layernorm_epsilon,
no_persist_layer_norm=args.no_persist_layer_norm) no_persist_layer_norm=args.no_persist_layer_norm,
sequence_parallel=args.sequence_parallel)
# MLP # MLP
self.mlp = ParallelMLP(init_method, if args.num_experts is not None:
output_layer_init_method) self.mlp = SwitchMLP(init_method, output_layer_init_method)
else:
self.mlp = ParallelMLP(init_method, output_layer_init_method)
# Set bias+dropout+add fusion grad_enable execution handler.
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
self.bias_dropout_add_exec_handler = \
nullcontext if use_nvfuser else torch.enable_grad
def forward(self, hidden_states, attention_mask, def forward(self, hidden_states, attention_mask,
encoder_output=None, enc_dec_attn_mask=None, encoder_output=None, enc_dec_attn_mask=None,
inference_params=None): inference_params=None):
# hidden_states: [b, s, h] # hidden_states: [s, b, h]
# Layer norm at the beginning of the transformer layer. # Layer norm at the beginning of the transformer layer.
layernorm_output = self.input_layernorm(hidden_states) layernorm_output = self.input_layernorm(hidden_states)
...@@ -515,8 +628,7 @@ class ParallelTransformerLayer(MegatronModule): ...@@ -515,8 +628,7 @@ class ParallelTransformerLayer(MegatronModule):
else: else:
bias_dropout_add_func = get_bias_dropout_add(self.training) bias_dropout_add_func = get_bias_dropout_add(self.training)
# re-enable torch grad to enable fused optimization. with self.bias_dropout_add_exec_handler():
with torch.enable_grad():
layernorm_input = bias_dropout_add_func( layernorm_input = bias_dropout_add_func(
attention_output, attention_output,
attention_bias.expand_as(residual), attention_bias.expand_as(residual),
...@@ -542,8 +654,7 @@ class ParallelTransformerLayer(MegatronModule): ...@@ -542,8 +654,7 @@ class ParallelTransformerLayer(MegatronModule):
else: else:
residual = layernorm_input residual = layernorm_input
# re-enable torch grad to enable fused optimization. with self.bias_dropout_add_exec_handler():
with torch.enable_grad():
layernorm_input = bias_dropout_add_func( layernorm_input = bias_dropout_add_func(
attention_output, attention_output,
attention_bias.expand_as(residual), attention_bias.expand_as(residual),
...@@ -563,13 +674,23 @@ class ParallelTransformerLayer(MegatronModule): ...@@ -563,13 +674,23 @@ class ParallelTransformerLayer(MegatronModule):
residual = layernorm_input residual = layernorm_input
if self.drop_path is None: if self.drop_path is None:
# re-enable torch grad to enable fused optimization. with self.bias_dropout_add_exec_handler():
with torch.enable_grad():
output = bias_dropout_add_func( output = bias_dropout_add_func(
mlp_output, mlp_output,
mlp_bias.expand_as(residual), mlp_bias.expand_as(residual),
residual, residual,
self.hidden_dropout) self.hidden_dropout)
# Jit compiled function creates 'view' tensor. This tensor
# potentially gets saved in the MPU checkpoint function context,
# which rejects view tensors. While making a viewless tensor here
# won't result in memory savings (like the data loader, or
# p2p_communication), it serves to document the origin of this
# 'view' tensor.
output = mpu.make_viewless_tensor(inp = output,
requires_grad = output.requires_grad,
keep_graph = True)
else: else:
out = torch.nn.functional.dropout(mlp_output + mlp_bias, out = torch.nn.functional.dropout(mlp_output + mlp_bias,
p=self.hidden_dropout, p=self.hidden_dropout,
...@@ -611,22 +732,30 @@ class ParallelTransformer(MegatronModule): ...@@ -611,22 +732,30 @@ class ParallelTransformer(MegatronModule):
def __init__(self, init_method, output_layer_init_method, def __init__(self, init_method, output_layer_init_method,
layer_type=LayerType.encoder, layer_type=LayerType.encoder,
self_attn_mask_type=AttnMaskType.padding, self_attn_mask_type=AttnMaskType.padding,
post_layer_norm=True,
pre_process=True, post_process=True, pre_process=True, post_process=True,
drop_path_rate=0.0): drop_path_rate=0.0):
super(ParallelTransformer, self).__init__() super(ParallelTransformer, self).__init__()
args = get_args() args = get_args()
self.layer_type = layer_type
self.model_type = args.model_type
self.bf16 = args.bf16 self.bf16 = args.bf16
self.fp32_residual_connection = args.fp32_residual_connection self.fp32_residual_connection = args.fp32_residual_connection
self.post_layer_norm = post_layer_norm
self.pre_process = pre_process self.pre_process = pre_process
self.post_process = post_process self.post_process = post_process
self.input_tensor = None self.input_tensor = None
self.drop_path_rate = drop_path_rate self.drop_path_rate = drop_path_rate
# Store activation checkpoiting flag. # Store activation checkpoiting flag.
self.activations_checkpoint_method = args.activations_checkpoint_method self.recompute_granularity = args.recompute_granularity
self.activations_checkpoint_num_layers = args.activations_checkpoint_num_layers self.recompute_method = args.recompute_method
self.distribute_checkpointed_activations = args.distribute_checkpointed_activations self.recompute_num_layers = args.recompute_num_layers
self.distribute_saved_activations = \
args.distribute_saved_activations and not args.sequence_parallel
self.sequence_parallel = args.sequence_parallel
# Number of layers. # Number of layers.
self.num_layers = mpu.get_num_layers( self.num_layers = mpu.get_num_layers(
...@@ -690,12 +819,13 @@ class ParallelTransformer(MegatronModule): ...@@ -690,12 +819,13 @@ class ParallelTransformer(MegatronModule):
self.layers = torch.nn.ModuleList( self.layers = torch.nn.ModuleList(
[build_layer(i + 1 + offset) for i in range(self.num_layers)]) [build_layer(i + 1 + offset) for i in range(self.num_layers)])
if self.post_process: if self.post_process and self.post_layer_norm:
# Final layer norm before output. # Final layer norm before output.
self.final_layernorm = LayerNorm( self.final_layernorm = LayerNorm(
args.hidden_size, args.hidden_size,
eps=args.layernorm_epsilon, eps=args.layernorm_epsilon,
no_persist_layer_norm=args.no_persist_layer_norm) no_persist_layer_norm=args.no_persist_layer_norm,
sequence_parallel=args.sequence_parallel)
def _get_layer(self, layer_number): def _get_layer(self, layer_number):
return self.layers[layer_number] return self.layers[layer_number]
...@@ -715,32 +845,33 @@ class ParallelTransformer(MegatronModule): ...@@ -715,32 +845,33 @@ class ParallelTransformer(MegatronModule):
return x_ return x_
return custom_forward return custom_forward
if self.activations_checkpoint_method == 'uniform': if self.recompute_method == 'uniform':
# Uniformly divide the total number of Transformer layers and checkpoint # Uniformly divide the total number of Transformer layers and checkpoint
# the input activation of each divided chunk. # the input activation of each divided chunk.
# A method to further reduce memory usage reducing checkpoints. # A method to further reduce memory usage reducing checkpoints.
l = 0 l = 0
while l < self.num_layers: while l < self.num_layers:
hidden_states = mpu.checkpoint( hidden_states = mpu.checkpoint(
custom(l, l + self.activations_checkpoint_num_layers), custom(l, l + self.recompute_num_layers),
self.distribute_checkpointed_activations, self.distribute_saved_activations,
hidden_states, attention_mask, encoder_output, enc_dec_attn_mask) hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
l += self.activations_checkpoint_num_layers l += self.recompute_num_layers
elif self.activations_checkpoint_method == 'block':
elif self.recompute_method == 'block':
# Checkpoint the input activation of only a set number of individual # Checkpoint the input activation of only a set number of individual
# Transformer layers and skip the rest. # Transformer layers and skip the rest.
# A method fully use the device memory removing redundant re-computation. # A method fully use the device memory removing redundant re-computation.
for l in range(self.num_layers): for l in range(self.num_layers):
if l < self.activations_checkpoint_num_layers: if l < self.recompute_num_layers:
hidden_states = mpu.checkpoint( hidden_states = mpu.checkpoint(
custom(l, l + 1), custom(l, l + 1),
self.distribute_checkpointed_activations, self.distribute_saved_activations,
hidden_states, attention_mask, encoder_output, enc_dec_attn_mask) hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
else: else:
hidden_states = custom(l, l + 1)( hidden_states = custom(l, l + 1)(
hidden_states, attention_mask, encoder_output, enc_dec_attn_mask) hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
else: else:
raise ValueError("Invalid activation checkpoint method.") raise ValueError("Invalid activation recompute method.")
return hidden_states return hidden_states
...@@ -757,21 +888,14 @@ class ParallelTransformer(MegatronModule): ...@@ -757,21 +888,14 @@ class ParallelTransformer(MegatronModule):
def forward(self, hidden_states, attention_mask, def forward(self, hidden_states, attention_mask,
encoder_output=None, enc_dec_attn_mask=None, encoder_output=None, enc_dec_attn_mask=None,
inference_params=None): inference_params=None):
# hidden_states: [s, b, h]
# Checks. # Checks.
if inference_params: if inference_params:
assert self.activations_checkpoint_method is None, \ assert self.recompute_granularity is None, \
'inference does not work with activation checkpointing' 'inference does not work with activation checkpointing'
if self.pre_process: if not self.pre_process:
# Data format change to avoid explicit tranposes : [b s h] --> [s b h].
# If the input flag for fp32 residual connection is set, convert for float.
if self.fp32_residual_connection:
hidden_states = hidden_states.transpose(0, 1).contiguous().float()
# Otherwise, leave it as is.
else:
hidden_states = hidden_states.transpose(0, 1).contiguous()
else:
# See set_input_tensor() # See set_input_tensor()
hidden_states = self.input_tensor hidden_states = self.input_tensor
...@@ -792,37 +916,34 @@ class ParallelTransformer(MegatronModule): ...@@ -792,37 +916,34 @@ class ParallelTransformer(MegatronModule):
# is called here to be future-proof and corner-case-proof. # is called here to be future-proof and corner-case-proof.
hidden_states = mpu.make_viewless_tensor( hidden_states = mpu.make_viewless_tensor(
hidden_states, hidden_states,
requires_grad = True, requires_grad=True,
keep_graph = True, keep_graph=True,
) )
# Transpose encoder output. if self.sequence_parallel:
if encoder_output is not None: rng_context = mpu.get_cuda_rng_tracker().fork()
encoder_output = encoder_output.transpose(0, 1).contiguous()
# Forward pass.
if self.activations_checkpoint_method is not None:
hidden_states = self._checkpointed_forward(hidden_states,
attention_mask,
encoder_output,
enc_dec_attn_mask)
else: else:
for index in range(self.num_layers): rng_context = nullcontext()
layer = self._get_layer(index)
hidden_states = layer( with rng_context:
hidden_states, # Forward pass.
attention_mask, if self.recompute_granularity == 'full':
encoder_output=encoder_output, hidden_states = self._checkpointed_forward(hidden_states,
enc_dec_attn_mask=enc_dec_attn_mask, attention_mask,
inference_params=inference_params) encoder_output,
enc_dec_attn_mask)
else:
for index in range(self.num_layers):
layer = self._get_layer(index)
hidden_states = layer(
hidden_states,
attention_mask,
encoder_output=encoder_output,
enc_dec_attn_mask=enc_dec_attn_mask,
inference_params=inference_params)
# Final layer norm. # Final layer norm.
if self.post_process: if self.post_process and self.post_layer_norm:
# Reverting data format change [s b h] --> [b s h]. hidden_states = self.final_layernorm(hidden_states)
hidden_states = hidden_states.transpose(0, 1).contiguous()
output = self.final_layernorm(hidden_states)
else:
output = hidden_states
return output return hidden_states
...@@ -21,7 +21,6 @@ import torch ...@@ -21,7 +21,6 @@ import torch
import apex import apex
import torch.nn.functional as F import torch.nn.functional as F
from megatron import get_args from megatron import get_args
from megatron.model import LayerNorm
from megatron.model.transformer import ParallelTransformer from megatron.model.transformer import ParallelTransformer
from megatron.model.utils import ( from megatron.model.utils import (
get_linear_layer, get_linear_layer,
...@@ -148,6 +147,7 @@ class VitBackbone(MegatronModule): ...@@ -148,6 +147,7 @@ class VitBackbone(MegatronModule):
post_process=True, post_process=True,
class_token=True, class_token=True,
single_token_output=False, single_token_output=False,
post_layer_norm=True,
drop_path_rate=0.0): drop_path_rate=0.0):
super(VitBackbone, self).__init__(share_word_embeddings=False) super(VitBackbone, self).__init__(share_word_embeddings=False)
args = get_args() args = get_args()
...@@ -165,6 +165,7 @@ class VitBackbone(MegatronModule): ...@@ -165,6 +165,7 @@ class VitBackbone(MegatronModule):
self.pre_process = pre_process self.pre_process = pre_process
self.post_process = post_process self.post_process = post_process
self.class_token = class_token self.class_token = class_token
self.post_layer_norm = post_layer_norm
self.hidden_size = args.hidden_size self.hidden_size = args.hidden_size
self.patch_dim = args.patch_dim self.patch_dim = args.patch_dim
self.img_h = args.img_h self.img_h = args.img_h
...@@ -218,6 +219,7 @@ class VitBackbone(MegatronModule): ...@@ -218,6 +219,7 @@ class VitBackbone(MegatronModule):
self.scaled_init_method, self.scaled_init_method,
pre_process=self.pre_process, pre_process=self.pre_process,
post_process=self.post_process, post_process=self.post_process,
post_layer_norm=self.post_layer_norm,
drop_path_rate=self.drop_path_rate drop_path_rate=self.drop_path_rate
) )
......
...@@ -49,17 +49,21 @@ from .initialize import get_virtual_pipeline_model_parallel_rank, set_virtual_pi ...@@ -49,17 +49,21 @@ from .initialize import get_virtual_pipeline_model_parallel_rank, set_virtual_pi
from .initialize import initialize_model_parallel from .initialize import initialize_model_parallel
from .initialize import model_parallel_is_initialized from .initialize import model_parallel_is_initialized
from .layers import LinearWithGradAccumulationAndAsyncCommunication
from .layers import ColumnParallelLinear from .layers import ColumnParallelLinear
from .layers import RowParallelLinear from .layers import RowParallelLinear
from .layers import VocabParallelEmbedding from .layers import VocabParallelEmbedding
from .layers import (set_tensor_model_parallel_attributes, from .layers import (set_tensor_model_parallel_attributes,
set_defaults_if_not_set_tensor_model_parallel_attributes, set_defaults_if_not_set_tensor_model_parallel_attributes,
copy_tensor_model_parallel_attributes) copy_tensor_model_parallel_attributes)
from .mappings import copy_to_tensor_model_parallel_region from .mappings import copy_to_tensor_model_parallel_region
from .mappings import gather_from_tensor_model_parallel_region from .mappings import reduce_from_tensor_model_parallel_region
from .mappings import reduce_from_tensor_model_parallel_region from .mappings import scatter_to_tensor_model_parallel_region
from .mappings import scatter_to_tensor_model_parallel_region from .mappings import gather_from_tensor_model_parallel_region
from .mappings import scatter_to_sequence_parallel_region
from .mappings import gather_from_sequence_parallel_region
from .mappings import reduce_scatter_to_sequence_parallel_region
from .random import checkpoint from .random import checkpoint
from .random import get_cuda_rng_tracker from .random import get_cuda_rng_tracker
......
...@@ -54,6 +54,12 @@ _POSITION_EMBEDDING_GLOBAL_RANKS = None ...@@ -54,6 +54,12 @@ _POSITION_EMBEDDING_GLOBAL_RANKS = None
# rank when broadcasting from the first or last pipeline stage. # rank when broadcasting from the first or last pipeline stage.
_PIPELINE_GLOBAL_RANKS = None _PIPELINE_GLOBAL_RANKS = None
# A list of global ranks for each data parallel group to ease calculation of the source
# rank when broadcasting weights from src to all other data parallel ranks
_DATA_PARALLEL_GLOBAL_RANKS = None
def is_unitialized(): def is_unitialized():
"""Useful for code segments that may be accessed with or without mpu initialization""" """Useful for code segments that may be accessed with or without mpu initialization"""
return _DATA_PARALLEL_GROUP is None return _DATA_PARALLEL_GROUP is None
...@@ -124,6 +130,7 @@ def initialize_model_parallel(tensor_model_parallel_size_=1, ...@@ -124,6 +130,7 @@ def initialize_model_parallel(tensor_model_parallel_size_=1,
# Build the data-parallel groups. # Build the data-parallel groups.
global _DATA_PARALLEL_GROUP global _DATA_PARALLEL_GROUP
global _DATA_PARALLEL_GLOBAL_RANKS
assert _DATA_PARALLEL_GROUP is None, \ assert _DATA_PARALLEL_GROUP is None, \
'data parallel group is already initialized' 'data parallel group is already initialized'
all_data_parallel_group_ranks = [] all_data_parallel_group_ranks = []
...@@ -137,6 +144,7 @@ def initialize_model_parallel(tensor_model_parallel_size_=1, ...@@ -137,6 +144,7 @@ def initialize_model_parallel(tensor_model_parallel_size_=1,
group = torch.distributed.new_group(ranks) group = torch.distributed.new_group(ranks)
if rank in ranks: if rank in ranks:
_DATA_PARALLEL_GROUP = group _DATA_PARALLEL_GROUP = group
_DATA_PARALLEL_GLOBAL_RANKS = ranks
# Build the model-parallel groups. # Build the model-parallel groups.
global _MODEL_PARALLEL_GROUP global _MODEL_PARALLEL_GROUP
...@@ -478,11 +486,10 @@ def get_tensor_model_parallel_src_rank(): ...@@ -478,11 +486,10 @@ def get_tensor_model_parallel_src_rank():
def get_data_parallel_src_rank(): def get_data_parallel_src_rank():
"""Calculate the global rank corresponding to the first local rank """Calculate the global rank corresponding to the first local rank
in the tensor model parallel group.""" in the data parallel group."""
global_rank = torch.distributed.get_rank() assert _DATA_PARALLEL_GLOBAL_RANKS is not None, \
data_parallel_size = get_data_parallel_world_size() "Data parallel group is not initialized"
num_data_parallel_groups = torch.distributed.get_world_size() // data_parallel_size return _DATA_PARALLEL_GLOBAL_RANKS[0]
return global_rank % num_data_parallel_groups
def get_pipeline_model_parallel_first_rank(): def get_pipeline_model_parallel_first_rank():
......
...@@ -30,20 +30,21 @@ from .initialize import get_tensor_model_parallel_world_size ...@@ -30,20 +30,21 @@ from .initialize import get_tensor_model_parallel_world_size
from .initialize import get_tensor_model_parallel_group from .initialize import get_tensor_model_parallel_group
from .mappings import copy_to_tensor_model_parallel_region from .mappings import copy_to_tensor_model_parallel_region
from .mappings import gather_from_tensor_model_parallel_region from .mappings import gather_from_tensor_model_parallel_region
from .mappings import gather_from_sequence_parallel_region
from .mappings import reduce_from_tensor_model_parallel_region from .mappings import reduce_from_tensor_model_parallel_region
from .mappings import scatter_to_tensor_model_parallel_region from .mappings import scatter_to_tensor_model_parallel_region
from .mappings import reduce_scatter_to_sequence_parallel_region
from .random import get_cuda_rng_tracker from .random import get_cuda_rng_tracker
from .utils import divide from .utils import divide
from .utils import split_tensor_along_last_dim from .utils import split_tensor_along_last_dim
from .utils import VocabUtility from .utils import VocabUtility
from megatron import get_args from megatron import get_args, get_global_memory_buffer
_MODEL_PARALLEL_ATTRIBUTE_DEFAULTS = {'tensor_model_parallel': False, _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS = {'tensor_model_parallel': False,
'partition_dim': -1, 'partition_dim': -1,
'partition_stride': 1} 'partition_stride': 1}
def param_is_not_tensor_parallel_duplicate(param): def param_is_not_tensor_parallel_duplicate(param):
return (hasattr(param, 'tensor_model_parallel') and return (hasattr(param, 'tensor_model_parallel') and
param.tensor_model_parallel) or ( param.tensor_model_parallel) or (
...@@ -201,16 +202,37 @@ class VocabParallelEmbedding(torch.nn.Module): ...@@ -201,16 +202,37 @@ class VocabParallelEmbedding(torch.nn.Module):
return output return output
class ColumnParallelLinearWithAsyncAllreduce(torch.autograd.Function): class LinearWithGradAccumulationAndAsyncCommunication(torch.autograd.Function):
""" """
Column-parallel linear layer execution with asynchronous all-reduce Linear layer execution with asynchronous communication and gradient accumulation
execution in backprop. fusion in backprop.
""" """
@staticmethod @staticmethod
def forward(ctx, input, weight, bias): def forward(ctx, input, weight, bias, gradient_accumulation_fusion,
async_grad_allreduce, sequence_parallel):
ctx.save_for_backward(input, weight) ctx.save_for_backward(input, weight)
ctx.use_bias = bias is not None ctx.use_bias = bias is not None
output = torch.matmul(input, weight.t()) ctx.gradient_accumulation_fusion = gradient_accumulation_fusion
ctx.async_grad_allreduce = async_grad_allreduce
ctx.sequence_parallel = sequence_parallel
if sequence_parallel:
world_size = get_tensor_model_parallel_world_size()
dim_size = list(input.size())
dim_size[0] = dim_size[0] * world_size
all_gather_buffer = \
get_global_memory_buffer().get_tensor(dim_size, input.dtype, "mpu")
torch.distributed._all_gather_base(
all_gather_buffer,
input,
group=get_tensor_model_parallel_group())
total_input = all_gather_buffer
else:
total_input = input
output = torch.matmul(total_input, weight.t())
if bias is not None: if bias is not None:
output = output + bias output = output + bias
return output return output
...@@ -219,17 +241,75 @@ class ColumnParallelLinearWithAsyncAllreduce(torch.autograd.Function): ...@@ -219,17 +241,75 @@ class ColumnParallelLinearWithAsyncAllreduce(torch.autograd.Function):
def backward(ctx, grad_output): def backward(ctx, grad_output):
input, weight = ctx.saved_tensors input, weight = ctx.saved_tensors
use_bias = ctx.use_bias use_bias = ctx.use_bias
if ctx.sequence_parallel:
world_size = get_tensor_model_parallel_world_size()
dim_size = list(input.size())
dim_size[0] = dim_size[0] * world_size
all_gather_buffer = \
get_global_memory_buffer().get_tensor(dim_size, input.dtype, "mpu")
handle = torch.distributed._all_gather_base(
all_gather_buffer,
input,
group=get_tensor_model_parallel_group(), async_op=True)
# Delay the start of intput gradient computation shortly (3us) to have
# gather scheduled first and have GPU resources allocated
_ = torch.empty(1, device=grad_output.device) + 1
total_input = all_gather_buffer
else:
total_input = input
grad_input = grad_output.matmul(weight) grad_input = grad_output.matmul(weight)
# Asyncronous all-reduce
handle = torch.distributed.all_reduce( if ctx.sequence_parallel:
grad_input, group=get_tensor_model_parallel_group(), async_op=True) handle.wait()
# Delay the start of weight gradient computation shortly (3us) to have
# all-reduce scheduled first and have GPU resources allocated # Convert the tensor shapes to 2D for execution compatibility
_ = torch.empty(1, device=grad_output.device) + 1 grad_output = grad_output.view(grad_output.shape[0] * grad_output.shape[1],
grad_weight = grad_output.t().matmul(input) grad_output.shape[2])
total_input = total_input.view(total_input.shape[0] * total_input.shape[1],
total_input.shape[2])
if ctx.async_grad_allreduce:
# Asynchronous all-reduce
handle = torch.distributed.all_reduce(
grad_input, group=get_tensor_model_parallel_group(), async_op=True)
# Delay the start of weight gradient computation shortly (3us) to have
# all-reduce scheduled first and have GPU resources allocated
_ = torch.empty(1, device=grad_output.device) + 1
if ctx.sequence_parallel:
assert not ctx.async_grad_allreduce
dim_size = list(input.size())
sub_grad_input = torch.empty(dim_size, dtype=input.dtype,
device=torch.cuda.current_device(),
requires_grad=False)
# reduce_scatter
handle = torch.distributed._reduce_scatter_base(sub_grad_input, grad_input,
group=get_tensor_model_parallel_group(),
async_op=True)
# Delay the start of weight gradient computation shortly (3us) to have
# reduce scatter scheduled first and have GPU resources allocated
_ = torch.empty(1, device=grad_output.device) + 1
if ctx.gradient_accumulation_fusion:
import fused_dense_cuda
fused_dense_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, weight.main_grad)
grad_weight = None
else:
grad_weight = grad_output.t().matmul(total_input)
grad_bias = grad_output.sum(dim=0) if use_bias else None grad_bias = grad_output.sum(dim=0) if use_bias else None
handle.wait()
return grad_input, grad_weight, grad_bias if ctx.sequence_parallel:
handle.wait()
return sub_grad_input, grad_weight, grad_bias, None, None, None
if ctx.async_grad_allreduce:
handle.wait()
return grad_input, grad_weight, grad_bias, None, None, None
class ColumnParallelLinear(torch.nn.Module): class ColumnParallelLinear(torch.nn.Module):
...@@ -242,7 +322,7 @@ class ColumnParallelLinear(torch.nn.Module): ...@@ -242,7 +322,7 @@ class ColumnParallelLinear(torch.nn.Module):
input_size: first dimension of matrix A. input_size: first dimension of matrix A.
output_size: second dimension of matrix A. output_size: second dimension of matrix A.
bias: If true, add bias bias: If true, add bias
gather_output: If true, call all-gather on output and make Y avaiable gather_output: If true, call all-gather on output and make Y available
to all GPUs, otherwise, every GPU will have its output to all GPUs, otherwise, every GPU will have its output
which is Y_i = XA_i which is Y_i = XA_i
init_method: method to initialize weights. Note that bias is always set init_method: method to initialize weights. Note that bias is always set
...@@ -309,31 +389,30 @@ class ColumnParallelLinear(torch.nn.Module): ...@@ -309,31 +389,30 @@ class ColumnParallelLinear(torch.nn.Module):
else: else:
self.register_parameter('bias', None) self.register_parameter('bias', None)
self.async_tensor_model_parallel_allreduce = ( self.async_tensor_model_parallel_allreduce = (
not args.no_async_tensor_model_parallel_allreduce and args.async_tensor_model_parallel_allreduce and
world_size > 1) world_size > 1)
self.sequence_parallel = (
args.sequence_parallel and
world_size > 1)
assert not self.async_tensor_model_parallel_allreduce or \
not self.sequence_parallel
self.gradient_accumulation_fusion = args.gradient_accumulation_fusion
def forward(self, input_): def forward(self, input_):
bias = self.bias if not self.skip_bias_add else None bias = self.bias if not self.skip_bias_add else None
if self.async_tensor_model_parallel_allreduce: if self.async_tensor_model_parallel_allreduce or \
input_shape = input_.shape self.sequence_parallel:
input_ = input_.view(input_shape[0] * input_shape[1],input_shape[2]) input_parallel = input_
# Maxtrix multiply with asynchronouse all-reduce execution
output_parallel = ColumnParallelLinearWithAsyncAllreduce.apply(
input_, self.weight, bias)
output_parallel = output_parallel.view(
input_shape[0], input_shape[1], output_parallel.shape[1])
else: else:
# Set up backprop all-reduce.
input_parallel = copy_to_tensor_model_parallel_region(input_) input_parallel = copy_to_tensor_model_parallel_region(input_)
# Matrix multiply.
# Matrix multiply. output_parallel = LinearWithGradAccumulationAndAsyncCommunication.apply(
output_parallel = F.linear(input_parallel, self.weight, bias) input_parallel, self.weight, bias, self.gradient_accumulation_fusion,
self.async_tensor_model_parallel_allreduce, self.sequence_parallel)
if self.gather_output: if self.gather_output:
# All-gather across the partitions. # All-gather across the partitions.
assert not self.sequence_parallel
output = gather_from_tensor_model_parallel_region(output_parallel) output = gather_from_tensor_model_parallel_region(output_parallel)
else: else:
output = output_parallel output = output_parallel
...@@ -416,11 +495,15 @@ class RowParallelLinear(torch.nn.Module): ...@@ -416,11 +495,15 @@ class RowParallelLinear(torch.nn.Module):
self.bias = Parameter(torch.empty( self.bias = Parameter(torch.empty(
self.output_size, device=torch.cuda.current_device(), self.output_size, device=torch.cuda.current_device(),
dtype=args.params_dtype)) dtype=args.params_dtype))
setattr(self.bias, 'sequence_parallel', args.sequence_parallel)
# Always initialize bias to zero. # Always initialize bias to zero.
with torch.no_grad(): with torch.no_grad():
self.bias.zero_() self.bias.zero_()
else: else:
self.register_parameter('bias', None) self.register_parameter('bias', None)
self.sequence_parallel = args.sequence_parallel
self.gradient_accumulation_fusion = args.gradient_accumulation_fusion
...@@ -429,11 +512,17 @@ class RowParallelLinear(torch.nn.Module): ...@@ -429,11 +512,17 @@ class RowParallelLinear(torch.nn.Module):
if self.input_is_parallel: if self.input_is_parallel:
input_parallel = input_ input_parallel = input_
else: else:
assert not self.sequence_parallel
input_parallel = scatter_to_tensor_model_parallel_region(input_) input_parallel = scatter_to_tensor_model_parallel_region(input_)
# Matrix multiply. # Matrix multiply.
output_parallel = F.linear(input_parallel, self.weight) output_parallel = LinearWithGradAccumulationAndAsyncCommunication.apply(
input_parallel, self.weight, None,
self.gradient_accumulation_fusion, None, None)
# All-reduce across all the partitions. # All-reduce across all the partitions.
output_ = reduce_from_tensor_model_parallel_region(output_parallel) if self.sequence_parallel:
output_ = reduce_scatter_to_sequence_parallel_region(output_parallel)
else:
output_ = reduce_from_tensor_model_parallel_region(output_parallel)
if not self.skip_bias_add: if not self.skip_bias_add:
output = output_ + self.bias if self.bias is not None else output_ output = output_ + self.bias if self.bias is not None else output_
output_bias = None output_bias = None
......
...@@ -32,13 +32,13 @@ def _reduce(input_): ...@@ -32,13 +32,13 @@ def _reduce(input_):
return input_ return input_
def _split(input_): def _split_along_last_dim(input_):
"""Split the tensor along its last dimension and keep the """Split the tensor along its last dimension and keep the
corresponding slice.""" corresponding slice."""
world_size = get_tensor_model_parallel_world_size() world_size = get_tensor_model_parallel_world_size()
# Bypass the function if we are using only 1 GPU. # Bypass the function if we are using only 1 GPU.
if world_size==1: if world_size == 1:
return input_ return input_
# Split along last dimension. # Split along last dimension.
...@@ -51,12 +51,34 @@ def _split(input_): ...@@ -51,12 +51,34 @@ def _split(input_):
return output return output
def _gather(input_): def _split_along_first_dim(input_):
"""Split the tensor along its first dimension and keep the
corresponding slice."""
world_size = get_tensor_model_parallel_world_size()
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return input_
# Split along first dimension.
dim_size = input_.size()[0]
assert dim_size % world_size == 0, \
"First dimension of the tensor should be divisible by tensor parallel size"
local_dim_size = dim_size // world_size
rank = get_tensor_model_parallel_rank()
dim_offset = rank * local_dim_size
output = input_[dim_offset:dim_offset+local_dim_size].contiguous()
return output
def _gather_along_last_dim(input_):
"""Gather tensors and concatinate along the last dimension.""" """Gather tensors and concatinate along the last dimension."""
world_size = get_tensor_model_parallel_world_size() world_size = get_tensor_model_parallel_world_size()
# Bypass the function if we are using only 1 GPU. # Bypass the function if we are using only 1 GPU.
if world_size==1: if world_size == 1:
return input_ return input_
# Size and dimension. # Size and dimension.
...@@ -73,6 +95,44 @@ def _gather(input_): ...@@ -73,6 +95,44 @@ def _gather(input_):
return output return output
def _gather_along_first_dim(input_):
"""Gather tensors and concatinate along the first dimension."""
world_size = get_tensor_model_parallel_world_size()
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return input_
dim_size = list(input_.size())
dim_size[0] = dim_size[0] * world_size
output = torch.empty(dim_size, dtype=input_.dtype,
device=torch.cuda.current_device())
torch.distributed._all_gather_base(output, input_.contiguous(),
group=get_tensor_model_parallel_group())
return output
def _reduce_scatter_along_first_dim(input_):
"""Reduce-scatter the input tensor across model parallel group."""
world_size = get_tensor_model_parallel_world_size()
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return input_
dim_size = list(input_.size())
assert dim_size[0] % world_size == 0, \
"First dimension of the tensor should be divisible by tensor parallel size"
dim_size[0] = dim_size[0] // world_size
output = torch.empty(dim_size, dtype=input_.dtype,
device=torch.cuda.current_device())
torch.distributed._reduce_scatter_base(output, input_.contiguous(),
group=get_tensor_model_parallel_group())
return output
class _CopyToModelParallelRegion(torch.autograd.Function): class _CopyToModelParallelRegion(torch.autograd.Function):
"""Pass the input to the model parallel region.""" """Pass the input to the model parallel region."""
...@@ -110,15 +170,15 @@ class _ScatterToModelParallelRegion(torch.autograd.Function): ...@@ -110,15 +170,15 @@ class _ScatterToModelParallelRegion(torch.autograd.Function):
@staticmethod @staticmethod
def symbolic(graph, input_): def symbolic(graph, input_):
return _split(input_) return _split_along_last_dim(input_)
@staticmethod @staticmethod
def forward(ctx, input_): def forward(ctx, input_):
return _split(input_) return _split_along_last_dim(input_)
@staticmethod @staticmethod
def backward(ctx, grad_output): def backward(ctx, grad_output):
return _gather(grad_output) return _gather_along_last_dim(grad_output)
class _GatherFromModelParallelRegion(torch.autograd.Function): class _GatherFromModelParallelRegion(torch.autograd.Function):
...@@ -126,15 +186,73 @@ class _GatherFromModelParallelRegion(torch.autograd.Function): ...@@ -126,15 +186,73 @@ class _GatherFromModelParallelRegion(torch.autograd.Function):
@staticmethod @staticmethod
def symbolic(graph, input_): def symbolic(graph, input_):
return _gather(input_) return _gather_along_last_dim(input_)
@staticmethod @staticmethod
def forward(ctx, input_): def forward(ctx, input_):
return _gather(input_) return _gather_along_last_dim(input_)
@staticmethod @staticmethod
def backward(ctx, grad_output): def backward(ctx, grad_output):
return _split(grad_output) return _split_along_last_dim(grad_output)
class _ScatterToSequenceParallelRegion(torch.autograd.Function):
"""Split the input and keep only the corresponding chuck to the rank."""
@staticmethod
def symbolic(graph, input_):
return _split_along_first_dim(input_)
@staticmethod
def forward(ctx, input_):
return _split_along_first_dim(input_)
@staticmethod
def backward(ctx, grad_output):
return _gather_along_first_dim(grad_output)
class _GatherFromSequenceParallelRegion(torch.autograd.Function):
"""Gather the input from sequence parallel region and concatinate."""
@staticmethod
def symbolic(graph, input_, tensor_parallel_output_grad=True):
return _gather_along_first_dim(input_)
@staticmethod
def forward(ctx, input_, tensor_parallel_output_grad=True):
ctx.tensor_parallel_output_grad = tensor_parallel_output_grad
return _gather_along_first_dim(input_)
@staticmethod
def backward(ctx, grad_output):
tensor_parallel_output_grad = ctx.tensor_parallel_output_grad
# If the computation graph after the gather operation is
# in the tensor parallel mode, output gradients need to reduce
# scattered and whereas if the computation is duplicated,
# output gradients need to be scattered.
if tensor_parallel_output_grad:
return _reduce_scatter_along_first_dim(grad_output), None
else:
return _split_along_first_dim(grad_output), None
class _ReduceScatterToSequenceParallelRegion(torch.autograd.Function):
"""Reduce scatter the input from the model parallel region."""
@staticmethod
def symbolic(graph, input_):
return _reduce_scatter_along_first_dim(input_)
@staticmethod
def forward(ctx, input_):
return _reduce_scatter_along_first_dim(input_)
@staticmethod
def backward(ctx, grad_output):
return _gather_along_first_dim(grad_output)
# ----------------- # -----------------
...@@ -155,3 +273,16 @@ def scatter_to_tensor_model_parallel_region(input_): ...@@ -155,3 +273,16 @@ def scatter_to_tensor_model_parallel_region(input_):
def gather_from_tensor_model_parallel_region(input_): def gather_from_tensor_model_parallel_region(input_):
return _GatherFromModelParallelRegion.apply(input_) return _GatherFromModelParallelRegion.apply(input_)
def scatter_to_sequence_parallel_region(input_):
return _ScatterToSequenceParallelRegion.apply(input_)
def gather_from_sequence_parallel_region(input_, tensor_parallel_output_grad=True):
return _GatherFromSequenceParallelRegion.apply(input_, tensor_parallel_output_grad)
def reduce_scatter_to_sequence_parallel_region(input_):
return _ReduceScatterToSequenceParallelRegion.apply(input_)
...@@ -307,10 +307,10 @@ class CheckpointFunction(torch.autograd.Function): ...@@ -307,10 +307,10 @@ class CheckpointFunction(torch.autograd.Function):
tracked/set/reset. tracked/set/reset.
""" """
@staticmethod @staticmethod
def forward(ctx, run_function, distribute_checkpointed_activations, *args): def forward(ctx, run_function, distribute_saved_activations, *args):
ctx.run_function = run_function ctx.run_function = run_function
ctx.distribute_checkpointed_activations \ ctx.distribute_saved_activations \
= distribute_checkpointed_activations = distribute_saved_activations
# Copy the rng states. # Copy the rng states.
ctx.fwd_cpu_rng_state = torch.get_rng_state() ctx.fwd_cpu_rng_state = torch.get_rng_state()
...@@ -322,7 +322,7 @@ class CheckpointFunction(torch.autograd.Function): ...@@ -322,7 +322,7 @@ class CheckpointFunction(torch.autograd.Function):
# Divide hidden states across model parallel group and only keep # Divide hidden states across model parallel group and only keep
# the chunk corresponding to the current rank. # the chunk corresponding to the current rank.
if distribute_checkpointed_activations: if distribute_saved_activations:
ctx.input_0_shape = args[0].data.shape ctx.input_0_shape = args[0].data.shape
safely_set_viewless_tensor_data( safely_set_viewless_tensor_data(
args[0], args[0],
...@@ -339,7 +339,7 @@ class CheckpointFunction(torch.autograd.Function): ...@@ -339,7 +339,7 @@ class CheckpointFunction(torch.autograd.Function):
raise RuntimeError("Checkpointing is not compatible with .grad(), " raise RuntimeError("Checkpointing is not compatible with .grad(), "
"please use .backward() if possible") "please use .backward() if possible")
inputs = ctx.saved_tensors inputs = ctx.saved_tensors
if ctx.distribute_checkpointed_activations: if ctx.distribute_saved_activations:
safely_set_viewless_tensor_data( safely_set_viewless_tensor_data(
inputs[0], inputs[0],
gather_split_1d_tensor(inputs[0].data).view(ctx.input_0_shape)) gather_split_1d_tensor(inputs[0].data).view(ctx.input_0_shape))
...@@ -372,8 +372,8 @@ class CheckpointFunction(torch.autograd.Function): ...@@ -372,8 +372,8 @@ class CheckpointFunction(torch.autograd.Function):
return (None, None) + grads return (None, None) + grads
def checkpoint(function, distribute_checkpointed_activations, *args): def checkpoint(function, distribute_saved_activations, *args):
"""Checkpoint a model or part of the model. """Checkpoint a model or part of the model.
This has been directly copied from torch.utils.checkpoint.""" This has been directly copied from torch.utils.checkpoint."""
return CheckpointFunction.apply(function, return CheckpointFunction.apply(function,
distribute_checkpointed_activations, *args) distribute_saved_activations, *args)
...@@ -17,8 +17,8 @@ from apex.optimizers import FusedAdam as Adam ...@@ -17,8 +17,8 @@ from apex.optimizers import FusedAdam as Adam
from apex.optimizers import FusedSGD as SGD from apex.optimizers import FusedSGD as SGD
from megatron import get_args from megatron import get_args
from megatron.model import LayerNorm
from .distrib_optimizer import DistributedOptimizer
from .grad_scaler import ConstantGradScaler, DynamicGradScaler from .grad_scaler import ConstantGradScaler, DynamicGradScaler
from .optimizer import Float16OptimizerWithFloat16Params, FP32Optimizer from .optimizer import Float16OptimizerWithFloat16Params, FP32Optimizer
...@@ -105,7 +105,11 @@ def get_megatron_optimizer(model, ...@@ -105,7 +105,11 @@ def get_megatron_optimizer(model,
if args.DDP_impl == 'local': if args.DDP_impl == 'local':
params_have_main_grad = True params_have_main_grad = True
if args.fp16 or args.bf16: # Mixed precision optimizer.
# - Note: both the Float16Optimizer and the DistributedOptimizer inherit
# from the MixedPrecisionOptimizer, which manages any optimizer where
# the model params and main params are distinct.
if args.fp16 or args.bf16 or args.use_distributed_optimizer:
# Grad scaler: # Grad scaler:
# if loss-scale is provided, instantiate the constant scaler. # if loss-scale is provided, instantiate the constant scaler.
...@@ -114,9 +118,11 @@ def get_megatron_optimizer(model, ...@@ -114,9 +118,11 @@ def get_megatron_optimizer(model,
# otherwise we are running in bf16 with no loss-scale so # otherwise we are running in bf16 with no loss-scale so
# leave it as None. # leave it as None.
grad_scaler = None grad_scaler = None
# Constant loss scale. # Constant loss scale.
if args.loss_scale: if args.loss_scale:
grad_scaler = ConstantGradScaler(args.loss_scale) grad_scaler = ConstantGradScaler(args.loss_scale)
# Dynamic loss scale. # Dynamic loss scale.
else: else:
if args.fp16: if args.fp16:
...@@ -129,16 +135,22 @@ def get_megatron_optimizer(model, ...@@ -129,16 +135,22 @@ def get_megatron_optimizer(model,
hysteresis=args.hysteresis) hysteresis=args.hysteresis)
# Megatron optimizer. # Megatron optimizer.
return Float16OptimizerWithFloat16Params(optimizer, opt_ty = DistributedOptimizer \
args.clip_grad, if args.use_distributed_optimizer else \
args.log_num_zeros_in_grad, Float16OptimizerWithFloat16Params
params_have_main_grad, return opt_ty(optimizer,
args.use_contiguous_buffers_in_local_ddp, args.clip_grad,
args.bf16, args.log_num_zeros_in_grad,
grad_scaler) params_have_main_grad,
args.use_contiguous_buffers_in_local_ddp,
args.fp16,
args.bf16,
grad_scaler,
model)
# FP32. # FP32.
return FP32Optimizer(optimizer, args.clip_grad, return FP32Optimizer(optimizer, args.clip_grad,
args.log_num_zeros_in_grad, args.log_num_zeros_in_grad,
params_have_main_grad, params_have_main_grad,
args.use_contiguous_buffers_in_local_ddp) args.use_contiguous_buffers_in_local_ddp,
model)
...@@ -21,12 +21,13 @@ from torch._six import inf ...@@ -21,12 +21,13 @@ from torch._six import inf
from apex.multi_tensor_apply import multi_tensor_applier from apex.multi_tensor_apply import multi_tensor_applier
import amp_C import amp_C
from megatron import mpu
from megatron.model.module import param_is_not_shared from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
def clip_grad_norm_fp32(parameters, max_norm, norm_type=2): def clip_grad_norm_fp32(parameters, grads_for_norm,
max_norm, norm_type=2,
model_parallel_group=None):
"""Clips gradient norm of an iterable of parameters whose gradients """Clips gradient norm of an iterable of parameters whose gradients
are in fp32. are in fp32.
...@@ -37,9 +38,13 @@ def clip_grad_norm_fp32(parameters, max_norm, norm_type=2): ...@@ -37,9 +38,13 @@ def clip_grad_norm_fp32(parameters, max_norm, norm_type=2):
Arguments: Arguments:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized single Tensor that will have gradients normalized
grads_for_norm (Iterable[Tensor]): an iterable of Tensors or a single
Tensor that will be used for calculating the grad norm.
max_norm (float or int): max norm of the gradients max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm. infinity norm.
model_parallel_group (group): given the nature of the distributed
optimizer, this is passed as an argument.
Returns: Returns:
Total norm of the parameters (viewed as a single vector). Total norm of the parameters (viewed as a single vector).
...@@ -47,25 +52,15 @@ def clip_grad_norm_fp32(parameters, max_norm, norm_type=2): ...@@ -47,25 +52,15 @@ def clip_grad_norm_fp32(parameters, max_norm, norm_type=2):
if isinstance(parameters, torch.Tensor): if isinstance(parameters, torch.Tensor):
parameters = [parameters] parameters = [parameters]
if isinstance(grads_for_norm, torch.Tensor):
grads_for_norm = [grads_for_norm]
# Filter parameters based on: # Grads.
# - grad should not be none
# - parameter should not be shared
# - should not be a replica due to tensor model parallelism
grads = [] grads = []
grads_for_norm = []
for param in parameters: for param in parameters:
grad_not_none = param.grad is not None if param.grad is not None:
is_not_shared = param_is_not_shared(param)
is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
if grad_not_none:
grad = param.grad.detach()
if grad_not_none:
# Make sure the grads are in fp32
assert param.grad.type() == 'torch.cuda.FloatTensor' assert param.grad.type() == 'torch.cuda.FloatTensor'
grads.append(grad) grads.append(param.grad.detach())
if grad_not_none and is_not_shared and is_not_tp_duplicate:
grads_for_norm.append(grad)
# Norm parameters. # Norm parameters.
max_norm = float(max_norm) max_norm = float(max_norm)
...@@ -79,7 +74,7 @@ def clip_grad_norm_fp32(parameters, max_norm, norm_type=2): ...@@ -79,7 +74,7 @@ def clip_grad_norm_fp32(parameters, max_norm, norm_type=2):
# Take max across all model-parallel GPUs. # Take max across all model-parallel GPUs.
torch.distributed.all_reduce(total_norm_cuda, torch.distributed.all_reduce(total_norm_cuda,
op=torch.distributed.ReduceOp.MAX, op=torch.distributed.ReduceOp.MAX,
group=mpu.get_model_parallel_group()) group=model_parallel_group)
total_norm = total_norm_cuda[0].item() total_norm = total_norm_cuda[0].item()
else: else:
...@@ -88,12 +83,15 @@ def clip_grad_norm_fp32(parameters, max_norm, norm_type=2): ...@@ -88,12 +83,15 @@ def clip_grad_norm_fp32(parameters, max_norm, norm_type=2):
# Use apex's multi-tensor applier for efficiency reasons. # Use apex's multi-tensor applier for efficiency reasons.
# Multi-tensor applier takes a function and a list of list # Multi-tensor applier takes a function and a list of list
# and performs the operation on that list all in one kernel. # and performs the operation on that list all in one kernel.
grad_norm, _ = multi_tensor_applier( if grads_for_norm:
amp_C.multi_tensor_l2norm, grad_norm, _ = multi_tensor_applier(
dummy_overflow_buf, amp_C.multi_tensor_l2norm,
[grads_for_norm], dummy_overflow_buf,
False # no per-parameter norm [grads_for_norm],
) False # no per-parameter norm
)
else:
grad_norm = torch.cuda.FloatTensor([0])
# Since we will be summing across data parallel groups, # Since we will be summing across data parallel groups,
# we need the pow(norm-type). # we need the pow(norm-type).
total_norm = grad_norm ** norm_type total_norm = grad_norm ** norm_type
...@@ -106,7 +104,7 @@ def clip_grad_norm_fp32(parameters, max_norm, norm_type=2): ...@@ -106,7 +104,7 @@ def clip_grad_norm_fp32(parameters, max_norm, norm_type=2):
# Sum across all model-parallel GPUs. # Sum across all model-parallel GPUs.
torch.distributed.all_reduce(total_norm, torch.distributed.all_reduce(total_norm,
op=torch.distributed.ReduceOp.SUM, op=torch.distributed.ReduceOp.SUM,
group=mpu.get_model_parallel_group()) group=model_parallel_group)
total_norm = total_norm.item() ** (1.0 / norm_type) total_norm = total_norm.item() ** (1.0 / norm_type)
# Scale. # Scale.
...@@ -121,7 +119,7 @@ def clip_grad_norm_fp32(parameters, max_norm, norm_type=2): ...@@ -121,7 +119,7 @@ def clip_grad_norm_fp32(parameters, max_norm, norm_type=2):
return total_norm return total_norm
def count_zeros_fp32(parameters): def count_zeros_fp32(parameters, model_parallel_group):
if isinstance(parameters, torch.Tensor): if isinstance(parameters, torch.Tensor):
parameters = [parameters] parameters = [parameters]
...@@ -130,7 +128,7 @@ def count_zeros_fp32(parameters): ...@@ -130,7 +128,7 @@ def count_zeros_fp32(parameters):
# - grad should not be none # - grad should not be none
# - parameter should not be shared # - parameter should not be shared
# - should not be a replica due to tensor model parallelism # - should not be a replica due to tensor model parallelism
total_num_zeros = 0.0 total_num_zeros = torch.cuda.FloatTensor([0.0])
for param in parameters: for param in parameters:
grad_not_none = param.grad is not None grad_not_none = param.grad is not None
is_not_shared = param_is_not_shared(param) is_not_shared = param_is_not_shared(param)
...@@ -143,7 +141,8 @@ def count_zeros_fp32(parameters): ...@@ -143,7 +141,8 @@ def count_zeros_fp32(parameters):
# Sum across all model-parallel GPUs. # Sum across all model-parallel GPUs.
torch.distributed.all_reduce(total_num_zeros, torch.distributed.all_reduce(total_num_zeros,
op=torch.distributed.ReduceOp.SUM, op=torch.distributed.ReduceOp.SUM,
group=mpu.get_model_parallel_group()) group=model_parallel_group)
total_num_zeros = total_num_zeros.item() total_num_zeros = total_num_zeros.item()
return total_num_zeros return total_num_zeros
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Megatron distributed optimizer."""
import math
import torch
from megatron import get_args
from megatron import get_timers
from megatron import mpu
from megatron import print_rank_0
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
from .optimizer import MixedPrecisionOptimizer, _zero_grad_group_helper
class Range:
"""
A range represents a start and end points for indexing a shard
from a full tensor.
"""
def __init__(self, start, end):
self.start = start
self.end = end
self.size = end - start
def normalize(self, start = 0):
return Range(start, start + self.size)
def __str__(self):
return "%d,%d [%d]" % (self.start, self.end, self.size)
class DistributedOptimizer(MixedPrecisionOptimizer):
"""Distributed optimizer, for all data types (fp16, bf16, and fp32).
Arguments:
optimizer: base optimizer such as Adam or SGD
clip_grad: clip gradeints with this global L2 norm. Note
that clipping is ignored if clip_grad == 0
log_num_zeros_in_grad: return number of zeros in the gradients.
params_have_main_grad: flag indicating if parameters have
a `main_grad` field. If this is set, we are assuming
that the model parameters are store in the `main_grad`
field instead of the typical `grad` field. This happens
for the DDP cases where there is a continuous buffer
holding the gradients. For example for bfloat16, we want
to do gradient accumulation and all-reduces in float32
and as a result we store those gradients in the main_grad.
Note that main grad is not necessarily in float32.
use_contiguous_buffers_in_local_ddp: if true, the local DDP model
is using a contiguous buffer to hold the model grads.
fp16: if true, the model is running in fp16.
bf16: if true, the model is running in bfloat16.
grad_scaler: used for scaling gradients. Note that this can be
None. This case happens when `bf16 = True` and we don't
use any loss scale. Note that for `bf16 = True`, we can have
a constnat gradient scaler. Also for `bf16 = False`, we
always require a grad scaler.
models: list of models (i.e., the virtual pipelining models). This
is used by the distributed optimizer for mapping parameters.
"""
@classmethod
def build_model_gbuf_param_range_map(cls, model, dtype, gbuf_world_range):
"""
Build mapping from param reference to grad buffer shard ranges.
This method builds a mapping from parameter references to grad
buffer shard ranges, specific to each data-parallel (DP) rank's
set of 'owned' parameters. Each grad buffer (padded to be an even
multiple of DP-world-size) is conceptually divided into DP-world-size
contiguous regions, where each DP rank 'owns' a contiguous regions.
Ownership in this sense means DP rank is responsible for reducing
the relevant subset of grads, and updating the relevant subset of
params.
This conceptual partitioning of the grad buffer does NOT respect
parameter boundaries, and as such it is assumed that each created
range references a shard (or subset) of the full parameter. It is
easiest to think of each DP rank as operating (i.e., reducing,
gathering) purely on views into the grad buffer, for all model-to-
main & main-to-model operations.
This method creates three ranges:
- The param's range within the entire grad buffer (i.e., world index).
- The param's range within the DP rank's local view of the grad buffer.
- The param's range within itself (i.e., its shard).
"""
# Param range map.
param_world_index_map = model._grad_buffer_param_index_map[dtype]
param_range_map = {}
for param, param_world_indexes in param_world_index_map.items():
# Param range.
param_world_start, param_world_end = param_world_indexes
param_local_start = max(
0,
param_world_start - gbuf_world_range.start)
param_local_end = min(
gbuf_world_range.size,
param_world_end - gbuf_world_range.start)
# Add param, if within local gbuf range.
if param_local_end > param_local_start:
param_local_range = Range(param_local_start, param_local_end)
param_world_range = param_local_range.normalize(
param_local_start + gbuf_world_range.start)
sub_param_start = max(0, gbuf_world_range.start-param_world_start)
sub_param_range = param_local_range.normalize(sub_param_start)
param_range_map[param] = {
"gbuf_world" : param_world_range,
"gbuf_local" : param_local_range,
"param" : sub_param_range,
}
return param_range_map
@classmethod
def build_model_gbuf_range(cls, model, dtype):
"""
Build mapping between params and their grad buffers.
This method does the initial setup for the method above. This setup
includes determining the shard ranges into the DDP's grad buffer for
each data-parallel (DP) rank. Each DP rank keeps range info for
all other DP ranks, for the purpose of creating args for
reduce-scatter and all-gather.
"""
data_parallel_rank = mpu.get_data_parallel_rank()
data_parallel_world_size = mpu.get_data_parallel_world_size()
# Grad buffer range.
grad_buffer = model._grad_buffers[dtype]
gbuf_size = grad_buffer.numel
max_gbuf_range_size = int(math.ceil(gbuf_size / data_parallel_world_size))
# All world ranges. (i.e., across all data parallel ranks)
gbuf_world_all_ranges = []
for r in range(data_parallel_world_size):
gbuf_world_start = r * max_gbuf_range_size
gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_range_size)
gbuf_world_range = Range(gbuf_world_start, gbuf_world_end)
gbuf_world_all_ranges.append(gbuf_world_range)
# Local DP's ranges.
gbuf_world_range = gbuf_world_all_ranges[data_parallel_rank]
gbuf_local_range = gbuf_world_range.normalize()
# Get each param's ranges.
param_range_map = cls.build_model_gbuf_param_range_map(model,
dtype,
gbuf_world_range)
# Group into dict.
data = {
"local" : gbuf_local_range,
"world" : gbuf_world_range,
"world_all" : gbuf_world_all_ranges,
"param_map" : param_range_map,
"max_range_size" : max_gbuf_range_size,
}
return data
@classmethod
def build_model_gbuf_range_map(cls, model):
"""
Create param-to-grad-buffer mappings, for grad buffer data types
within a specific virtual model.
"""
return {
dtype : cls.build_model_gbuf_range(model, dtype)
for dtype in model._grad_buffers
}
@classmethod
def build_model_param_gbuf_map(cls, model_gbuf_ranges):
"""
Create a reverse of the model_gbuf_ranges, for referencing in
opposite direction.
"""
param_gbuf_map = {}
for model_index, model_gbuf_range_map in enumerate(model_gbuf_ranges):
for dtype, gbuf_range_map in model_gbuf_range_map.items():
for param, param_range_map in gbuf_range_map["param_map"].items():
param_gbuf_map[param] = (model_index, dtype)
return param_gbuf_map
@classmethod
def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):
"""
Create optimizer groups.
Given the set of parameter shard ranges that are owned by the current
data-parallel (DP) rank, gather the set of parameters that will be
used (in the method below) to create the current DP's optimizer
groups.
"""
num_groups = len(param_groups)
# Param group map.
param_group_map = {}
for group_index, group in enumerate(param_groups):
for param in group["params"]:
assert param.requires_grad
param_group_map[param] = group_index
# Optimizer group ranges.
group_ranges = [ {"params": []} for _ in param_groups ]
for model_gbuf_range_map in model_gbuf_ranges:
for dtype, gbuf_range_map in model_gbuf_range_map.items():
for param in gbuf_range_map["param_map"]:
group_index = param_group_map[param]
group_range = group_ranges[group_index]
group_range["params"].append(param)
# Squeeze zero-size group ranges.
for group_index, group_range in enumerate(group_ranges):
group_range["orig_group"] = param_groups[group_index]
group_ranges = [ g for g in group_ranges if len(g["params"]) > 0 ]
return group_ranges
@classmethod
def build_model_and_main_param_groups(cls,
model_gbuf_ranges,
param_gbuf_map,
opt_group_ranges):
"""
Create main parameter groups needed for the optimizer step.
These groups encompass both: 1) groups used by this class, for
reducing/gather, and 2) groups used by the inner optimizer for the
parameter update. Given that the conceptual grad buffer partitioning
(created in earlier method) doesn't respect parameter boundaries,
the optimizer operates on shards of the model parameters, rather than
the full parameters.
"""
# Parameter groups:
# model_float16_groups: original float16 parameters
# model_fp32_groups: original fp32 parameters
# shard_float16_groups: shards of original float16 parameters
# shard_fp32_groups: shards of original fp32 parameters
# shard_fp32_from_float16_groups: fp32 copy of float16 parameters
model_float16_groups = []
model_fp32_groups = []
shard_float16_groups = []
shard_fp32_groups = []
shard_fp32_from_float16_groups = []
# Allocate (or slice) each group's param shard.
for group_index, group_range in enumerate(opt_group_ranges):
# Params of this group.
model_float16_params_this_group = []
model_fp32_params_this_group = []
shard_float16_params_this_group = []
shard_fp32_params_this_group = []
shard_fp32_from_float16_params_this_group = []
model_float16_groups.append(model_float16_params_this_group)
model_fp32_groups.append(model_fp32_params_this_group)
shard_float16_groups.append(shard_float16_params_this_group)
shard_fp32_groups.append(shard_fp32_params_this_group)
shard_fp32_from_float16_groups.append(
shard_fp32_from_float16_params_this_group)
for model_param in group_range["params"]:
assert model_param.requires_grad
model_index, dtype = param_gbuf_map[model_param]
gbuf_range = model_gbuf_ranges[model_index][dtype]
param_range = gbuf_range["param_map"][model_param]["param"]
# fp16, bf16 params.
if model_param.type() in ['torch.cuda.HalfTensor',
'torch.cuda.BFloat16Tensor']:
# Clone model -> main.
shard_model_param = model_param.detach().view(-1) \
[param_range.start:param_range.end]
shard_main_param = shard_model_param.clone().float()
mpu.copy_tensor_model_parallel_attributes(
shard_model_param, model_param)
mpu.copy_tensor_model_parallel_attributes(
shard_main_param, model_param)
if hasattr(model_param, 'shared'):
shard_model_param.shared = model_param.shared
shard_main_param.shared = model_param.shared
# Add to group.
model_float16_params_this_group.append(model_param)
shard_float16_params_this_group.append(shard_model_param)
shard_fp32_from_float16_params_this_group.append(shard_main_param)
# fp32 params.
elif model_param.type() == 'torch.cuda.FloatTensor':
shard_model_param = model_param.view(-1) \
[param_range.start:param_range.end]
model_fp32_params_this_group.append(model_param)
shard_fp32_params_this_group.append(shard_model_param)
mpu.copy_tensor_model_parallel_attributes(
shard_model_param, model_param)
if hasattr(model_param, 'shared'):
shard_model_param.shared = model_param.shared
else:
raise TypeError('Wrapped parameters must be one of '
'torch.cuda.FloatTensor, '
'torch.cuda.HalfTensor, or '
'torch.cuda.BFloat16Tensor. '
'Received {}'.format(param.type()))
# Update optimizer's params.
group_range["orig_group"]["params"] = [
*shard_fp32_params_this_group,
*shard_fp32_from_float16_params_this_group,
]
return (
model_float16_groups,
model_fp32_groups,
shard_float16_groups,
shard_fp32_groups,
shard_fp32_from_float16_groups,
)
def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp,
fp16, bf16, grad_scaler, models):
"""
See top of class definition for argument descriptions.
The steps in this method create the core mapping between DDP grad
buffers, parameters, and parameter shard ranges, that is needed for
converting between model param indexes and main parameter shard
indexes. This method also updates the optimizer parameter groups
with the newly created shards.
"""
super().__init__(
optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp,
fp16, bf16, grad_scaler, models)
# Verify that contiguous buffers are being used.
# - Note: this should already be checked in arguments.py.
assert use_contiguous_buffers_in_local_ddp
# Model grad buffer ranges.
self.model_gbuf_ranges = []
for model_index, model in enumerate(self.models):
self.model_gbuf_ranges.append(self.build_model_gbuf_range_map(model))
self.model_param_gbuf_map = \
self.build_model_param_gbuf_map(self.model_gbuf_ranges)
# Optimizer ranges.
self.opt_group_ranges = self.build_optimizer_group_ranges(
self.optimizer.param_groups,
self.model_gbuf_ranges)
# Allocate main param shards.
(
self.model_float16_groups,
self.model_fp32_groups,
self.shard_float16_groups,
self.shard_fp32_groups,
self.shard_fp32_from_float16_groups,
) = self.build_model_and_main_param_groups(self.model_gbuf_ranges,
self.model_param_gbuf_map,
self.opt_group_ranges)
# Update optimizer groups.
# - Also, leverage state_dict() and load_state_dict() to
# recast preexisting per-param state tensors.
self.optimizer.param_groups = \
[ g["orig_group"] for g in self.opt_group_ranges ]
self.optimizer.load_state_dict(self.optimizer.state_dict())
def get_model_param_range_map(self, param):
"""
Given a model param, get the index sub-range of the param that this
data-parallel rank owns.
"""
model_index, dtype = self.model_param_gbuf_map[param]
gbuf_range_map = self.model_gbuf_ranges[model_index][dtype]
param_range_map = gbuf_range_map["param_map"][param]
return param_range_map
def get_model_parallel_group(self):
"""
With the distributed optimizer, the model parallel group is the
entire world.
"""
return None
def state_dict(self):
"""
The state dict must contain the fp32-from-float16 shards.
"""
state_dict = {}
state_dict['optimizer'] = self.optimizer.state_dict()
if self.grad_scaler:
state_dict['grad_scaler'] = self.grad_scaler.state_dict()
state_dict['shard_fp32_from_float16_groups'] = \
self.shard_fp32_from_float16_groups
return state_dict
def load_state_dict(self, state_dict):
"""
Load the state dict.
"""
# Optimizer.
optimizer_key = 'optimizer'
if optimizer_key not in state_dict:
optimizer_key = 'optimizer_state_dict'
print_rank_0('***WARNING*** loading optimizer from '
'an old checkpoint ...')
self.optimizer.load_state_dict(state_dict[optimizer_key])
# Grad scaler.
if 'grad_scaler' not in state_dict:
print_rank_0('***WARNING*** found an old checkpoint, will not '
'load grad scaler ...')
else:
if self.grad_scaler:
self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
else:
print_rank_0('***WARNING*** fould the grad scaler in the '
'checkpoint but it is None in the class. '
'Skipping loading grad scaler ...')
# Copy data for the main params.
for current_group, saved_group in zip(
self.shard_fp32_from_float16_groups,
state_dict["shard_fp32_from_float16_groups"]):
for current_param, saved_param in zip(current_group, saved_group):
current_param.data.copy_(saved_param.data)
def zero_grad(self, set_to_none=True):
"""
Zero grads.
We only need to zero the model related parameters, i.e.,
model_float16_groups & model_fp32_groups. We additionally zero
the remaining groups as a memory optimization to reduce
fragmentation; in the case of set_to_none==True, the space
used by this field can be safely deallocated at this point.
"""
for groups in (
self.model_float16_groups,
self.model_fp32_groups,
self.shard_float16_groups, # grad empty/unused here?
self.shard_fp32_groups, # throws grad-access warning
self.shard_fp32_from_float16_groups):
for group in groups:
_zero_grad_group_helper(group, set_to_none)
def get_model_grad_buffer_dp_views(self):
"""
Get shard views of each of the DDP's grad buffers.
In this nested list, the top level is grouped by the virtual model
index and the grad buffer's data type. The sub-level is a list of
shards of that grad buffer, where each shard in the list represents
a contiguous view of the grad buffer, that is owned by a data-parallel
rank. The shard boundary does not respect parameter boundaries, and
so the elements of some parameters are split across data parallel
ranks.
Additionally, return references to the entire grad buffers, for use
in _reduce_scatter_base and _all_gather_base.
"""
data_parallel_world_size = mpu.get_data_parallel_world_size()
# Grad buffer views.
gbuf_view_items = []
for model_index, model in enumerate(self.models):
for dtype, gbuf in model._grad_buffers.items():
assert gbuf.numel_padded % data_parallel_world_size == 0
shard_size = int(gbuf.numel_padded / data_parallel_world_size)
gbuf_views = [gbuf.data[(r*shard_size):((r+1)*shard_size)]
for r in range(data_parallel_world_size)]
gbuf_view_items.append((model_index, dtype, gbuf.data, gbuf_views))
return gbuf_view_items
def reduce_model_grads(self, args, timers):
"""
Reduce-scatter model grads.
The DDP's grad buffer is used for the reduce-scatter, and thus no
tensors are dynamically allocated.
Note: this is a different order of reduction, versus the non-
distributed optimizer, which reduces: 1) layernorm grads, 2) all
grads, 3) embedding grads.
"""
# All-reduce layer-norm grads (for sequence parallelism).
timers('backward-layernorm-all-reduce').start()
self.allreduce_layernorm_grads(args)
timers('backward-layernorm-all-reduce').stop()
# All-reduce embedding grads.
timers('backward-embedding-all-reduce').start()
self.allreduce_embedding_grads(args)
timers('backward-embedding-all-reduce').stop()
# Reduce-scatter setup.
timers('backward-params-all-reduce').start()
data_parallel_rank = mpu.get_data_parallel_rank()
data_parallel_world_size = mpu.get_data_parallel_world_size()
data_parallel_group = mpu.get_data_parallel_group()
# Scale grad buffers by '1 / data_parallel_world_size'.
for model in self.models:
for dtype, gbuf in model._grad_buffers.items():
gbuf.data /= data_parallel_world_size
# Reduce-scatter all grads.
gbuf_view_items = self.get_model_grad_buffer_dp_views()
for index, (model_index, dtype, gbuf, gbuf_views) \
in enumerate(gbuf_view_items):
torch.distributed._reduce_scatter_base(
gbuf_views[data_parallel_rank],
gbuf,
group = data_parallel_group,
)
timers('backward-params-all-reduce').stop()
def gather_model_params(self, args, timers):
"""
All-gather updated model params.
The DDP's grad buffer is used for the all-gather, and thus no
tensors are dynamically allocated. After the all-gather, the params
can be copied from param.main_grad to param.
"""
timers('backward-params-all-gather').start()
data_parallel_rank = mpu.get_data_parallel_rank()
data_parallel_group = mpu.get_data_parallel_group()
# All-gather updated main params.
# - All grad buffer views are guaranteed to have the same num elements
# across all data parallel ranks, with grad buffer padding that is done
# in distributed.py. Thus, all sub-views will have consistent start/end
# indexes across data parallel ranks.
gbuf_view_items = self.get_model_grad_buffer_dp_views()
for index, (model_index, dtype, gbuf, gbuf_views) \
in enumerate(gbuf_view_items):
torch.distributed._all_gather_base(
gbuf,
gbuf_views[data_parallel_rank],
group = data_parallel_group,
)
# Each model param now contains its updated values in its
# '.main_grad' field.
for model in self.models:
for dtype, param_map in model._grad_buffer_param_index_map.items():
for param in param_map:
param.detach().copy_(param.main_grad)
timers('backward-params-all-gather').stop()
def _collect_main_grad_data_for_unscaling(self):
"""
Note: this should be equivalent to the float-16 optimizer's method,
but writtent differently, so the two should be combined.
"""
return [
param.grad.data
for group in self.optimizer.param_groups
for param in group["params"]
]
def _get_model_and_main_params_data_float16(self):
"""
Get aligned list of model and main params.
"""
model_data = []
main_data = []
for model_group, main_group in zip(self.shard_float16_groups,
self.shard_fp32_from_float16_groups):
for model_param, main_param in zip(model_group, main_group):
model_data.append(model_param.data)
main_data.append(main_param.data)
return model_data, main_data
def _copy_model_grads_to_main_grads(self):
"""
Copy model grads to main grads.
Since this step follows a reduce-scatter through the DDP's grad
buffer, this method is responsible for copying the updated grads
from the grad buffer to the main shard's grad field.
"""
# Utility method for copying group grads.
def copy_group_grads(model_groups, shard_main_groups):
for model_group, shard_main_group in zip(model_groups,
shard_main_groups):
for model_param, shard_main_param in zip(model_group,
shard_main_group):
param_range_map = self.get_model_param_range_map(model_param)
param_range = param_range_map["param"]
assert param_range.size == shard_main_param.nelement()
model_grad = model_param.main_grad
shard_model_grad = model_grad.view(-1) \
[param_range.start:param_range.end]
shard_main_param.grad = shard_model_grad.float()
# Copy model groups to shard groups.
copy_group_grads(self.model_float16_groups,
self.shard_fp32_from_float16_groups)
copy_group_grads(self.model_fp32_groups,
self.shard_fp32_groups)
def _copy_main_params_to_model_params(self):
"""
Copy main params to model params.
Since this step is followed by an all-gather through the DDP's grad
buffer, this method is responsible for copying the updated params
from the main shards into the correct position in the grad buffer.
"""
# Utility method for copying group params.
def copy_group_params(shard_main_groups, model_groups):
for shard_main_group, model_group in zip(shard_main_groups,
model_groups):
for shard_main_param, model_param in zip(shard_main_group,
model_group):
param_range_map = self.get_model_param_range_map(model_param)
param_range = param_range_map["param"]
assert param_range.size == shard_main_param.nelement()
model_grad = model_param.main_grad
shard_model_grad = model_grad.view(-1) \
[param_range.start:param_range.end]
shard_model_grad.data.copy_(shard_main_param)
# Copy shard groups to model groups.
copy_group_params(self.shard_fp32_from_float16_groups,
self.model_float16_groups)
copy_group_params(self.shard_fp32_groups,
self.model_fp32_groups)
...@@ -17,15 +17,20 @@ ...@@ -17,15 +17,20 @@
from abc import ABC from abc import ABC
from abc import abstractmethod from abc import abstractmethod
import torch
from apex.multi_tensor_apply import multi_tensor_applier from apex.multi_tensor_apply import multi_tensor_applier
import amp_C import amp_C
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from megatron import get_timers from megatron import get_timers
from megatron import mpu from megatron import mpu
from megatron import print_rank_0 from megatron import print_rank_0
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
from megatron.utils import unwrap_model
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32 from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
...@@ -69,7 +74,8 @@ class MegatronOptimizer(ABC): ...@@ -69,7 +74,8 @@ class MegatronOptimizer(ABC):
def __init__(self, optimizer, clip_grad, def __init__(self, optimizer, clip_grad,
log_num_zeros_in_grad, log_num_zeros_in_grad,
params_have_main_grad, params_have_main_grad,
use_contiguous_buffers_in_local_ddp): use_contiguous_buffers_in_local_ddp,
models):
"""Input optimizer is the base optimizer for example Adam.""" """Input optimizer is the base optimizer for example Adam."""
self.optimizer = optimizer self.optimizer = optimizer
...@@ -80,10 +86,15 @@ class MegatronOptimizer(ABC): ...@@ -80,10 +86,15 @@ class MegatronOptimizer(ABC):
self.params_have_main_grad = params_have_main_grad self.params_have_main_grad = params_have_main_grad
self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
# 'models' are retained for access to the contiguous grad buffers.
# (see distributed optimizer)
self.models = models
if self.use_contiguous_buffers_in_local_ddp: if self.use_contiguous_buffers_in_local_ddp:
assert self.params_have_main_grad, \ assert self.params_have_main_grad, \
"use of contiguous buffer requires that params have main grad" "use of contiguous buffer requires that params have main grad"
def get_parameters(self): def get_parameters(self):
params = [] params = []
for param_group in self.optimizer.param_groups: for param_group in self.optimizer.param_groups:
...@@ -92,14 +103,42 @@ class MegatronOptimizer(ABC): ...@@ -92,14 +103,42 @@ class MegatronOptimizer(ABC):
return params return params
def get_main_grads_for_grad_norm(self):
# Filter parameters based on:
# - grad should not be none
# - parameter should not be shared
# - should not be a replica due to tensor model parallelism
params = self.get_parameters()
grads_for_norm = []
for param in params:
grad = param.grad
grad_not_none = grad is not None
is_not_shared = param_is_not_shared(param)
is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
if grad_not_none and is_not_shared and is_not_tp_duplicate:
grads_for_norm.append(grad)
return grads_for_norm
def get_model_parallel_group(self):
"""Default returned here, but the distributed optimizer overrides this."""
return mpu.get_model_parallel_group()
def clip_grad_norm(self, clip_grad): def clip_grad_norm(self, clip_grad):
params = self.get_parameters() params = self.get_parameters()
return clip_grad_norm_fp32(params, clip_grad) grads_for_norm = self.get_main_grads_for_grad_norm()
return clip_grad_norm_fp32(
params, grads_for_norm, clip_grad,
model_parallel_group=self.get_model_parallel_group())
def count_zeros(self): def count_zeros(self):
params = self.get_parameters() params = self.get_parameters()
return count_zeros_fp32(params) return count_zeros_fp32(params,
model_parallel_group=self.get_model_parallel_group())
@abstractmethod @abstractmethod
...@@ -118,11 +157,6 @@ class MegatronOptimizer(ABC): ...@@ -118,11 +157,6 @@ class MegatronOptimizer(ABC):
return self.get_loss_scale() * loss return self.get_loss_scale() * loss
@abstractmethod
def step(self):
pass
@abstractmethod @abstractmethod
def reload_model_params(self): def reload_model_params(self):
"""Refreshes any internal state from the current model parameters. """Refreshes any internal state from the current model parameters.
...@@ -166,9 +200,119 @@ class MegatronOptimizer(ABC): ...@@ -166,9 +200,119 @@ class MegatronOptimizer(ABC):
param_groups = property(_get_param_groups, _set_param_groups) param_groups = property(_get_param_groups, _set_param_groups)
@abstractmethod
def step(self, args, timers):
pass
class Float16OptimizerWithFloat16Params(MegatronOptimizer):
"""Float16 optimizer for fp16 and bf16 data types. def gather_model_params(self, args, timers):
"""
For the case of a non-distributed-optimizer, there is nothing to
do here.
"""
pass
def allreduce_word_embedding_grads(self, args):
"""
All-reduce word embedding grads.
Reduce grads across first and last stages to ensure that word_embeddings
parameters stay in sync. This should only run for models that support
pipelined model parallelism (BERT and GPT-2).
"""
if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
mpu.get_pipeline_model_parallel_world_size() > 1:
if mpu.is_pipeline_first_stage(ignore_virtual=True):
unwrapped_model = self.models[0]
elif mpu.is_pipeline_last_stage(ignore_virtual=True):
unwrapped_model = self.models[-1]
else: # We do not support the interleaved schedule for T5 yet.
unwrapped_model = self.models[0]
unwrapped_model = unwrap_model(
unwrapped_model, (torchDDP, LocalDDP, Float16Module))
if unwrapped_model.share_word_embeddings:
word_embeddings_weight = unwrapped_model.word_embeddings_weight()
if args.DDP_impl == 'local':
grad = word_embeddings_weight.main_grad
else:
grad = word_embeddings_weight.grad
torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
def allreduce_position_embedding_grads(self, args):
"""
All-reduce position_embeddings grad across first (encoder) and
split (decoder) stages to ensure that position embeddings parameters
stay in sync. This should only run for T5 models with pipeline
parallelism.
"""
if mpu.is_rank_in_position_embedding_group() and \
mpu.get_pipeline_model_parallel_world_size() > 1 and \
args.pipeline_model_parallel_split_rank is not None:
unwrapped_model = self.models[0]
unwrapped_model = unwrap_model(
unwrapped_model, (torchDDP, LocalDDP, Float16Module))
assert args.DDP_impl == 'local', \
'T5 model is only supported with local DDP mode'
grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
def allreduce_embedding_grads(self, args):
"""All-reduce both word and position embeddings."""
self.allreduce_word_embedding_grads(args)
self.allreduce_position_embedding_grads(args)
def allreduce_layernorm_grads(self, args):
"""All-reduce layernorm grads (for sequence parallelism)."""
# All-reduce layernorm parameters across model parallel nodes
# when sequence parallelism is used
if mpu.get_tensor_model_parallel_world_size() > 1 and \
args.sequence_parallel:
grads = []
for model_module in self.models:
unwrapped_model = unwrap_model(
model_module, (torchDDP, LocalDDP, Float16Module))
for param in unwrapped_model.parameters():
if getattr(param, 'sequence_parallel', False):
grad = param.main_grad if args.DDP_impl == 'local' else param.grad
grads.append(grad.data)
coalesced = _flatten_dense_tensors(grads)
torch.distributed.all_reduce(
coalesced, group=mpu.get_tensor_model_parallel_group())
for buf, synced in zip(grads, _unflatten_dense_tensors(
coalesced, grads)):
buf.copy_(synced)
def reduce_model_grads(self, args, timers):
"""All-reduce all grads, and all-reduce embeddings."""
# All-reduce layer-norm grads (for sequence parallelism).
timers('backward-layernorm-all-reduce').start()
self.allreduce_layernorm_grads(args)
timers('backward-layernorm-all-reduce').stop()
# All-reduce if needed.
if args.DDP_impl == 'local':
timers('backward-params-all-reduce').start()
for model in self.models:
model.allreduce_gradients()
timers('backward-params-all-reduce').stop()
# All-reduce embedding grads.
timers('backward-embedding-all-reduce').start()
self.allreduce_embedding_grads(args)
timers('backward-embedding-all-reduce').stop()
class MixedPrecisionOptimizer(MegatronOptimizer):
"""Base class for both the float-16 and the distributed optimizer.
Arguments: Arguments:
optimizer: base optimizer such as Adam or SGD optimizer: base optimizer such as Adam or SGD
...@@ -184,27 +328,36 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer): ...@@ -184,27 +328,36 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer):
to do gradient accumulation and all-reduces in float32 to do gradient accumulation and all-reduces in float32
and as a result we store those gradients in the main_grad. and as a result we store those gradients in the main_grad.
Note that main grad is not necessarily in float32. Note that main grad is not necessarily in float32.
use_contiguous_buffers_in_local_ddp: if true, the local DDP model
is using a contiguous buffer to hold the model grads.
fp16: if true, the model is running in fp16.
bf16: if true, the model is running in bfloat16. bf16: if true, the model is running in bfloat16.
grad_scaler: used for scaling gradients. Note that this can be grad_scaler: used for scaling gradients. Note that this can be
None. This case happens when `bf16 = True` and we don't None. This case happens when `bf16 = True` and we don't
use any loss scale. Note that for `bf16 = True`, we can have use any loss scale. Note that for `bf16 = True`, we can have
a constnat gradient scaler. Also for `bf16 = False`, we a constnat gradient scaler. Also for `bf16 = False`, we
always require a grad scaler. always require a grad scaler.
models: list of models (i.e., the virtual pipelining models). This
is used by the distributed optimizer for mapping parameters.
""" """
def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad, def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp, params_have_main_grad, use_contiguous_buffers_in_local_ddp,
bf16, grad_scaler): fp16, bf16, grad_scaler,
models):
super(Float16OptimizerWithFloat16Params, self).__init__( super().__init__(
optimizer, clip_grad, log_num_zeros_in_grad, optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp) params_have_main_grad, use_contiguous_buffers_in_local_ddp,
models)
self.fp16 = fp16
self.bf16 = bf16 self.bf16 = bf16
self.grad_scaler = grad_scaler self.grad_scaler = grad_scaler
# None grad scaler is only supported for bf16. # None grad scaler is only supported for bf16.
if self.grad_scaler is None: if self.grad_scaler is None:
assert self.bf16, 'fp16 expects a grad scaler.' assert not self.fp16, 'fp16 expects a grad scaler.'
# Tensor used to determine if a nan/if has happend. # Tensor used to determine if a nan/if has happend.
# Any non-zero value indicates inf/nan. # Any non-zero value indicates inf/nan.
...@@ -225,6 +378,131 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer): ...@@ -225,6 +378,131 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer):
if self.grad_scaler is None: if self.grad_scaler is None:
self._scale_one = torch.cuda.FloatTensor([1.0]) self._scale_one = torch.cuda.FloatTensor([1.0])
def get_loss_scale(self):
if self.grad_scaler is None:
return self._scale_one
return self.grad_scaler.scale
def reload_model_params(self):
self._copy_model_params_to_main_params()
def _unscale_main_grads_and_check_for_nan(self):
# Collect main grads.
main_grads = self._collect_main_grad_data_for_unscaling()
# Reset found inf.
self.found_inf.fill_(0.0)
# Unscale and set found inf/nan
torch._amp_foreach_non_finite_check_and_unscale_(
main_grads, self.found_inf, self.grad_scaler.inv_scale)
# Update across all model parallel instances.
torch.distributed.all_reduce(self.found_inf,
op=torch.distributed.ReduceOp.MAX,
group=self.get_model_parallel_group())
# Check for nan.
found_inf_flag = (self.found_inf.item() > 0)
return found_inf_flag
@torch.no_grad()
def step(self, args, timers):
# Copy gradients from model params to main params.
timers('optimizer-copy-to-main-grad').start()
self._copy_model_grads_to_main_grads()
timers('optimizer-copy-to-main-grad').stop()
# Do unscale, check for inf, and update grad scaler only for
# the case that grad scaler is provided.
if self.grad_scaler:
# Unscale and check for inf/nan.
timers('optimizer-unscale-and-check-inf').start()
found_inf_flag = self._unscale_main_grads_and_check_for_nan()
timers('optimizer-unscale-and-check-inf').stop()
# We are done with scaling gradients
# so we can update the loss scale.
self.grad_scaler.update(found_inf_flag)
# If we found inf/nan, skip the update.
if found_inf_flag:
return False, None, None
# Clip the main gradients.
timers('optimizer-clip-main-grad').start()
grad_norm = None
if self.clip_grad > 0.0:
grad_norm = self.clip_grad_norm(self.clip_grad)
timers('optimizer-clip-main-grad').stop()
# Count the zeros in the grads.
timers('optimizer-count-zeros').start()
num_zeros_in_grad = self.count_zeros() if \
self.log_num_zeros_in_grad else None
timers('optimizer-count-zeros').stop()
# Step the optimizer.
timers('optimizer-inner-step').start()
self.optimizer.step()
timers('optimizer-inner-step').stop()
# Update params from main params.
timers('optimizer-copy-main-to-model-params').start()
self._copy_main_params_to_model_params()
timers('optimizer-copy-main-to-model-params').stop()
# Successful update.
return True, grad_norm, num_zeros_in_grad
class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
"""Float16 optimizer for fp16 and bf16 data types.
Arguments:
optimizer: base optimizer such as Adam or SGD
clip_grad: clip gradeints with this global L2 norm. Note
that clipping is ignored if clip_grad == 0
log_num_zeros_in_grad: return number of zeros in the gradients.
params_have_main_grad: flag indicating if parameters have
a `main_grad` field. If this is set, we are assuming
that the model parameters are store in the `main_grad`
field instead of the typical `grad` field. This happens
for the DDP cases where there is a continuous buffer
holding the gradients. For example for bfloat16, we want
to do gradient accumulation and all-reduces in float32
and as a result we store those gradients in the main_grad.
Note that main grad is not necessarily in float32.
use_contiguous_buffers_in_local_ddp: if true, the local DDP model
is using a contiguous buffer to hold the model grads.
fp16: if true, the model is running in fp16.
bf16: if true, the model is running in bfloat16.
grad_scaler: used for scaling gradients. Note that this can be
None. This case happens when `bf16 = True` and we don't
use any loss scale. Note that for `bf16 = True`, we can have
a constnat gradient scaler. Also for `bf16 = False`, we
always require a grad scaler.
models: list of models (i.e., the virtual pipelining models). This
is used by the distributed optimizer for mapping parameters.
"""
def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp,
fp16, bf16, grad_scaler, models):
super().__init__(
optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp,
fp16, bf16, grad_scaler, models)
# ====================== # ======================
# main parameter stuff # main parameter stuff
# ====================== # ======================
...@@ -259,12 +537,12 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer): ...@@ -259,12 +537,12 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer):
main_param.shared = param.shared main_param.shared = param.shared
# Replace the optimizer params with the new fp32 copy. # Replace the optimizer params with the new fp32 copy.
param_group['params'][i] = main_param param_group['params'][i] = main_param
fp32_from_float16_params_this_group.append(main_param) fp32_from_float16_params_this_group.append(main_param)
# Reset existing state dict key to the new main param. # Reset existing state dict key to the new main param.
if param in self.optimizer.state: if param in self.optimizer.state:
self.optimizer.state[main_param] \ self.optimizer.state[main_param] \
= self.optimizer.state.pop(param) = self.optimizer.state.pop(param)
# fp32 params. # fp32 params.
elif param.type() == 'torch.cuda.FloatTensor': elif param.type() == 'torch.cuda.FloatTensor':
fp32_params_this_group.append(param) fp32_params_this_group.append(param)
...@@ -282,10 +560,6 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer): ...@@ -282,10 +560,6 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer):
fp32_from_float16_params_this_group) fp32_from_float16_params_this_group)
self.fp32_from_fp32_groups.append(fp32_params_this_group) self.fp32_from_fp32_groups.append(fp32_params_this_group)
# Leverage state_dict() and load_state_dict() to
# recast preexisting per-param state tensors
self.optimizer.load_state_dict(self.optimizer.state_dict())
def zero_grad(self, set_to_none=True): def zero_grad(self, set_to_none=True):
"""We only need to zero the model related parameters, i.e., """We only need to zero the model related parameters, i.e.,
...@@ -301,10 +575,34 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer): ...@@ -301,10 +575,34 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer):
_zero_grad_group_helper(group, set_to_none) _zero_grad_group_helper(group, set_to_none)
def get_loss_scale(self): def _collect_main_grad_data_for_unscaling(self):
if self.grad_scaler is None:
return self._scale_one main_grads = []
return self.grad_scaler.scale
# fp32 params from float16 ones.
for main_group in self.fp32_from_float16_groups:
for main_param in main_group:
if main_param.grad is not None:
main_grads.append(main_param.grad.data)
# Append fp32 parameters.
for main_group in self.fp32_from_fp32_groups:
for main_param in main_group:
if main_param.grad is not None:
main_grads.append(main_param.grad.data)
return main_grads
def _get_model_and_main_params_data_float16(self):
model_data = []
main_data = []
for model_group, main_group in zip(self.float16_groups,
self.fp32_from_float16_groups):
for model_param, main_param in zip(model_group, main_group):
model_data.append(model_param.data)
main_data.append(main_param.data)
return model_data, main_data
def _copy_model_grads_to_main_grads(self): def _copy_model_grads_to_main_grads(self):
...@@ -338,43 +636,6 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer): ...@@ -338,43 +636,6 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer):
if not self.use_contiguous_buffers_in_local_ddp: if not self.use_contiguous_buffers_in_local_ddp:
model_param.main_grad = None model_param.main_grad = None
def _unscale_main_grads_and_check_for_nan(self):
main_grads = []
# fp32 params fromm float16 ones.
for main_group in self.fp32_from_float16_groups:
for main_param in main_group:
if main_param.grad is not None:
main_grads.append(main_param.grad.data)
# Append fp32 parameters.
for main_group in self.fp32_from_fp32_groups:
for main_param in main_group:
if main_param.grad is not None:
main_grads.append(main_param.grad.data)
# Reset found inf.
self.found_inf.fill_(0.0)
# Unscale and set found inf/nan
torch._amp_foreach_non_finite_check_and_unscale_(
main_grads, self.found_inf, self.grad_scaler.inv_scale)
# Update across all model parallel instances.
torch.distributed.all_reduce(self.found_inf,
op=torch.distributed.ReduceOp.MAX,
group=mpu.get_model_parallel_group())
# Check for nan.
found_inf_flag = (self.found_inf.item() > 0)
return found_inf_flag
def _get_model_and_main_params_data_float16(self):
model_data = []
main_data = []
for model_group, main_group in zip(self.float16_groups,
self.fp32_from_float16_groups):
for model_param, main_param in zip(model_group, main_group):
model_data.append(model_param.data)
main_data.append(main_param.data)
return model_data, main_data
def _copy_main_params_to_model_params(self): def _copy_main_params_to_model_params(self):
# Only needed for the float16 params. # Only needed for the float16 params.
...@@ -390,60 +651,6 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer): ...@@ -390,60 +651,6 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer):
overflow_buf=self._dummy_overflow_buf) overflow_buf=self._dummy_overflow_buf)
def reload_model_params(self):
self._copy_model_params_to_main_params()
@torch.no_grad()
def step(self):
timers = get_timers()
# Copy gradients from model params to main params.
timers('optimizer-copy-to-main-grad').start()
self._copy_model_grads_to_main_grads()
timers('optimizer-copy-to-main-grad').stop()
# Do unscale, check for inf, and update grad scaler only for
# the case that grad scaler is provided.
if self.grad_scaler:
# Unscale and check for inf/nan.
timers('optimizer-unscale-and-check-inf').start()
found_inf_flag = self._unscale_main_grads_and_check_for_nan()
timers('optimizer-unscale-and-check-inf').stop()
# We are done with scaling gradients
# so we can update the loss scale.
self.grad_scaler.update(found_inf_flag)
# If we found inf/nan, skip the update.
if found_inf_flag:
return False, None, None
# Clip the main gradients.
timers('optimizer-clip-main-grad').start()
grad_norm = None
if self.clip_grad > 0.0:
grad_norm = self.clip_grad_norm(self.clip_grad)
timers('optimizer-clip-main-grad').stop()
# count the zeros in the grads
num_zeros_in_grad = self.count_zeros() if \
self.log_num_zeros_in_grad else None
# Step the optimizer.
self.optimizer.step()
# Update params from main params.
timers('optimizer-copy-main-to-model-params').start()
self._copy_main_params_to_model_params()
timers('optimizer-copy-main-to-model-params').stop()
# Successful update.
return True, grad_norm, num_zeros_in_grad
def state_dict(self): def state_dict(self):
state_dict = {} state_dict = {}
state_dict['optimizer'] = self.optimizer.state_dict() state_dict['optimizer'] = self.optimizer.state_dict()
...@@ -485,17 +692,18 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer): ...@@ -485,17 +692,18 @@ class Float16OptimizerWithFloat16Params(MegatronOptimizer):
current_param.data.copy_(saved_param.data) current_param.data.copy_(saved_param.data)
class FP32Optimizer(MegatronOptimizer): class FP32Optimizer(MegatronOptimizer):
def __init__(self, optimizer, clip_grad, def __init__(self, optimizer, clip_grad,
log_num_zeros_in_grad, log_num_zeros_in_grad,
params_have_main_grad, params_have_main_grad,
use_contiguous_buffers_in_local_ddp): use_contiguous_buffers_in_local_ddp,
models):
super(FP32Optimizer, self).__init__( super(FP32Optimizer, self).__init__(
optimizer, clip_grad, log_num_zeros_in_grad, optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp) params_have_main_grad, use_contiguous_buffers_in_local_ddp,
models)
self._scale = torch.cuda.FloatTensor([1.0]) self._scale = torch.cuda.FloatTensor([1.0])
...@@ -512,11 +720,12 @@ class FP32Optimizer(MegatronOptimizer): ...@@ -512,11 +720,12 @@ class FP32Optimizer(MegatronOptimizer):
@torch.no_grad() @torch.no_grad()
def step(self): def step(self, args, timers):
"""Clip gradients (if needed) and step the base optimizer. """Clip gradients (if needed) and step the base optimizer.
Always return successful since there is no overflow.""" Always return successful since there is no overflow."""
# Copy main_grads to grads. # Copy main_grads to grads.
timers('optimizer-copy-to-main-grad').start()
if self.params_have_main_grad: if self.params_have_main_grad:
for param_group in self.optimizer.param_groups: for param_group in self.optimizer.param_groups:
for param in param_group['params']: for param in param_group['params']:
...@@ -527,18 +736,25 @@ class FP32Optimizer(MegatronOptimizer): ...@@ -527,18 +736,25 @@ class FP32Optimizer(MegatronOptimizer):
# persist and therefore should not be deallocated.) # persist and therefore should not be deallocated.)
if not self.use_contiguous_buffers_in_local_ddp: if not self.use_contiguous_buffers_in_local_ddp:
param.main_grad = None param.main_grad = None
timers('optimizer-copy-to-main-grad').stop()
# Clip gradients. # Clip gradients.
timers('optimizer-clip-main-grad').start()
grad_norm = None grad_norm = None
if self.clip_grad > 0.0: if self.clip_grad > 0.0:
grad_norm = self.clip_grad_norm(self.clip_grad) grad_norm = self.clip_grad_norm(self.clip_grad)
timers('optimizer-clip-main-grad').stop()
# count the zeros in the grads # count the zeros in the grads
timers('optimizer-count-zeros').start()
num_zeros_in_grad = self.count_zeros() if \ num_zeros_in_grad = self.count_zeros() if \
self.log_num_zeros_in_grad else None self.log_num_zeros_in_grad else None
timers('optimizer-count-zeros').stop()
# Update parameters. # Update parameters.
timers('optimizer-inner-step').start()
self.optimizer.step() self.optimizer.step()
timers('optimizer-inner-step').stop()
# No overflow for FP32 optimizer. # No overflow for FP32 optimizer.
return True, grad_norm, num_zeros_in_grad return True, grad_norm, num_zeros_in_grad
......
...@@ -61,7 +61,8 @@ def _communicate(tensor_send_next, tensor_send_prev, recv_prev, recv_next, ...@@ -61,7 +61,8 @@ def _communicate(tensor_send_next, tensor_send_prev, recv_prev, recv_next,
tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size) tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)
override_scatter_gather_tensors_in_pipeline = False override_scatter_gather_tensors_in_pipeline = False
if args.scatter_gather_tensors_in_pipeline: if args.scatter_gather_tensors_in_pipeline and \
not args.sequence_parallel:
tensor_chunk_shape = reduce(operator.mul, tensor_shape, 1) tensor_chunk_shape = reduce(operator.mul, tensor_shape, 1)
if tensor_chunk_shape % mpu.get_tensor_model_parallel_world_size() == 0: if tensor_chunk_shape % mpu.get_tensor_model_parallel_world_size() == 0:
tensor_chunk_shape = tensor_chunk_shape // \ tensor_chunk_shape = tensor_chunk_shape // \
...@@ -93,7 +94,8 @@ def _communicate(tensor_send_next, tensor_send_prev, recv_prev, recv_next, ...@@ -93,7 +94,8 @@ def _communicate(tensor_send_next, tensor_send_prev, recv_prev, recv_next,
# Split tensor into smaller chunks if using scatter-gather optimization. # Split tensor into smaller chunks if using scatter-gather optimization.
if not override_scatter_gather_tensors_in_pipeline and \ if not override_scatter_gather_tensors_in_pipeline and \
args.scatter_gather_tensors_in_pipeline: args.scatter_gather_tensors_in_pipeline and \
not args.sequence_parallel:
if tensor_send_next is not None: if tensor_send_next is not None:
tensor_send_next = mpu.split_tensor_into_1d_equal_chunks(tensor_send_next) tensor_send_next = mpu.split_tensor_into_1d_equal_chunks(tensor_send_next)
...@@ -138,7 +140,8 @@ def _communicate(tensor_send_next, tensor_send_prev, recv_prev, recv_next, ...@@ -138,7 +140,8 @@ def _communicate(tensor_send_next, tensor_send_prev, recv_prev, recv_next,
# If using scatter-gather optimization, gather smaller chunks. # If using scatter-gather optimization, gather smaller chunks.
if not override_scatter_gather_tensors_in_pipeline and \ if not override_scatter_gather_tensors_in_pipeline and \
args.scatter_gather_tensors_in_pipeline: args.scatter_gather_tensors_in_pipeline and \
not args.sequence_parallel:
if recv_prev: if recv_prev:
tensor_recv_prev = mpu.gather_split_1d_tensor( tensor_recv_prev = mpu.gather_split_1d_tensor(
tensor_recv_prev).view(tensor_shape).requires_grad_() tensor_recv_prev).view(tensor_shape).requires_grad_()
......
...@@ -279,8 +279,12 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, ...@@ -279,8 +279,12 @@ def forward_backward_pipelining_with_interleaving(forward_step_func,
pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank() pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
args = get_args() args = get_args()
tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size) if args.sequence_parallel:
seq_length = args.seq_length // mpu.get_tensor_model_parallel_world_size()
else:
seq_length = args.seq_length
tensor_shape = (seq_length, args.micro_batch_size, args.hidden_size)
# Compute number of warmup and remaining microbatches. # Compute number of warmup and remaining microbatches.
num_model_chunks = len(model) num_model_chunks = len(model)
num_microbatches = get_num_microbatches() * num_model_chunks num_microbatches = get_num_microbatches() * num_model_chunks
...@@ -514,18 +518,25 @@ def get_tensor_shapes(rank, model_type): ...@@ -514,18 +518,25 @@ def get_tensor_shapes(rank, model_type):
# Otherwise, send one tensor (pre-transpose). # Otherwise, send one tensor (pre-transpose).
args = get_args() args = get_args()
tensor_shapes = [] tensor_shapes = []
if args.sequence_parallel:
seq_length = args.seq_length // mpu.get_tensor_model_parallel_world_size()
else:
seq_length = args.seq_length
if model_type == ModelType.encoder_and_decoder: if model_type == ModelType.encoder_and_decoder:
if args.sequence_parallel:
decoder_seq_length = args.decoder_seq_length // mpu.get_tensor_model_parallel_world_size()
else:
decoder_seq_length = args.decoder_seq_length
if mpu.is_pipeline_stage_before_split(rank): if mpu.is_pipeline_stage_before_split(rank):
# If next rank is after split, then need transpose for encoder_hidden_state. tensor_shapes.append((seq_length, args.micro_batch_size, args.hidden_size))
if mpu.is_pipeline_stage_before_split(rank+1):
tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
else:
tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
else: else:
tensor_shapes.append((args.decoder_seq_length, args.micro_batch_size, args.hidden_size)) tensor_shapes.append((decoder_seq_length, args.micro_batch_size, args.hidden_size))
tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size)) tensor_shapes.append((seq_length, args.micro_batch_size, args.hidden_size))
else: else:
tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size)) tensor_shapes.append((seq_length, args.micro_batch_size, args.hidden_size))
return tensor_shapes return tensor_shapes
......
...@@ -16,4 +16,5 @@ ...@@ -16,4 +16,5 @@
from .api import ( from .api import (
generate, generate,
generate_and_post_process) generate_and_post_process,
beam_search_and_post_process)
...@@ -22,7 +22,8 @@ from megatron import mpu ...@@ -22,7 +22,8 @@ from megatron import mpu
from .communication import broadcast_float_list from .communication import broadcast_float_list
from .generation import ( from .generation import (
generate_tokens_probs_and_return_on_first_stage, generate_tokens_probs_and_return_on_first_stage,
score_and_return_on_first_stage) score_and_return_on_first_stage,
beam_search_and_return_on_first_stage)
from .tokenization import ( from .tokenization import (
tokenize_prompts, tokenize_prompts,
detokenize_generations) detokenize_generations)
...@@ -138,3 +139,54 @@ def generate(model, ...@@ -138,3 +139,54 @@ def generate(model,
use_eod_token_for_early_termination=use_eod_token_for_early_termination, use_eod_token_for_early_termination=use_eod_token_for_early_termination,
stop_on_double_eol=stop_on_double_eol, stop_on_double_eol=stop_on_double_eol,
stop_on_eol=stop_on_eol) stop_on_eol=stop_on_eol)
def beam_search_and_post_process(model,
prompts=None,
tokens_to_generate=0,
beam_size=0,
add_BOS=False,
stop_token=50256,
num_return_gen=1,
length_penalty=1):
"""Run beam search and post-process outputs, i.e., detokenize,
move to cpu and convert to list."""
# Main inference.
tokens, scores = beam_search(model,
prompts=prompts,
tokens_to_generate=tokens_to_generate,
beam_size=beam_size,
add_BOS=add_BOS,
stop_token=stop_token,
num_return_gen=num_return_gen,
length_penalty=length_penalty)
# Only post-process on first stage.
if mpu.is_pipeline_first_stage():
lengths = tokens.size(1)*torch.ones(beam_size, dtype=torch.int64, device=torch.cuda.current_device())
tokens, prompts_plus_generations, prompts_plus_generations_segments = detokenize_generations(tokens, lengths, True)
scores = scores.cpu().numpy().tolist()
return prompts_plus_generations, prompts_plus_generations_segments, scores
return None
def beam_search(model, prompts=None, tokens_to_generate=0, beam_size=0, add_BOS=False, stop_token=50256, num_return_gen=1, length_penalty=1):
# Make sure input params are avaialble to all ranks.
values = [tokens_to_generate,
beam_size,
add_BOS,
stop_token,
num_return_gen,
length_penalty]
values_float_tensor = broadcast_float_list(6, float_list=values)
tokens_to_generate = int(values_float_tensor[0].item())
beam_size = int(values_float_tensor[1].item())
add_BOS = bool(values_float_tensor[2].item())
stop_token = int(values_float_tensor[3].item())
num_return_gen = int(values_float_tensor[4].item())
length_penalty = values_float_tensor[5].item()
context_tokens_tensor, context_length_tensor = tokenize_prompts(
prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS)
return beam_search_and_return_on_first_stage(model, context_tokens_tensor, context_length_tensor,
beam_size, stop_token=stop_token, num_return_gen=num_return_gen, length_penalty=length_penalty)
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
## from huggingface beam search
class BeamHypotheses(object):
def __init__(self, num_beams, length_penalty=1.0, early_stopping=False):
"""
Initialize n-best list of hypotheses.
"""
self.length_penalty = length_penalty
self.early_stopping = early_stopping
self.num_beams = num_beams
self.beams = []
self.worst_score = 1e9
def __len__(self):
"""
Number of hypotheses in the list.
"""
return len(self.beams)
def add(self, hyp, sum_logprobs, length):
"""
Add a new hypothesis to the list.
"""
score = sum_logprobs / length ** self.length_penalty
if len(self) < self.num_beams or score > self.worst_score:
self.beams.append((score, hyp))
if len(self) > self.num_beams:
sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.beams)])
del self.beams[sorted_scores[0][1]]
self.worst_score = sorted_scores[1][0]
else:
self.worst_score = min(score, self.worst_score)
def is_done(self, best_sum_logprobs, cur_len):
"""
If there are enough hypotheses and that none of the hypotheses being generated
can become better than the worst one in the heap, then we are done with this sentence.
"""
if len(self) < self.num_beams:
return False
elif self.early_stopping:
return True
else:
cur_score = best_sum_logprobs / cur_len ** self.length_penalty
ret = self.worst_score >= cur_score
return ret
...@@ -42,7 +42,18 @@ class InferenceParams: ...@@ -42,7 +42,18 @@ class InferenceParams:
self.batch_size_offset = 0 self.batch_size_offset = 0
self.key_value_memory_dict = {} self.key_value_memory_dict = {}
def swap_key_value_dict(self, batch_idx):
"swap between batches"
if len(self.key_value_memory_dict) == 0:
raise ValueError("should not swap when dict in empty")
for layer_number in self.key_value_memory_dict.keys():
inference_key_memory, inference_value_memory = self.key_value_memory_dict[layer_number]
assert len(batch_idx) == inference_key_memory.shape[1] ## make sure batch size is the same
new_inference_key_memory = inference_key_memory[:, batch_idx]
new_inference_value_memory = inference_value_memory[:, batch_idx]
self.key_value_memory_dict[layer_number] = (
new_inference_key_memory, new_inference_value_memory)
class ForwardStep: class ForwardStep:
"""Forward step function with all the communications. """Forward step function with all the communications.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment