Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Megatron-LM
Commits
77979e3b
Commit
77979e3b
authored
Sep 14, 2021
by
rprenger
Browse files
Changing api to tokens_to_generate, making it so we always generate at least tokens_to_generate
parent
42e83ee0
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
29 additions
and
30 deletions
+29
-30
megatron/text_generation_server.py
megatron/text_generation_server.py
+16
-15
megatron/text_generation_utils.py
megatron/text_generation_utils.py
+13
-15
No files found.
megatron/text_generation_server.py
View file @
77979e3b
...
@@ -12,10 +12,11 @@
...
@@ -12,10 +12,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
datetime
import
torch
import
torch
import
json
from
flask
import
Flask
,
request
,
jsonify
,
current_app
from
flask
import
Flask
,
request
,
jsonify
,
current_app
from
flask_restful
import
Resource
,
Api
from
flask_restful
import
Resource
,
Api
from
megatron
import
get_args
from
megatron
import
get_args
from
megatron
import
mpu
from
megatron
import
mpu
from
megatron.text_generation_utils
import
generate
from
megatron.text_generation_utils
import
generate
...
@@ -35,17 +36,20 @@ class MegatronGenerate(Resource):
...
@@ -35,17 +36,20 @@ class MegatronGenerate(Resource):
def
put
(
self
):
def
put
(
self
):
args
=
get_args
()
args
=
get_args
()
print
(
"request IP: "
+
str
(
request
.
remote_addr
))
print
(
json
.
dumps
(
request
.
get_json
()),
flush
=
True
)
print
(
"current time: "
,
datetime
.
datetime
.
now
())
sentences
=
request
.
get_json
()[
"sentences"
]
sentences
=
request
.
get_json
()[
"sentences"
]
if
len
(
sentences
)
>
128
:
if
len
(
sentences
)
>
128
:
return
"Maximum number of sentences is 128"
,
400
return
"Maximum number of sentences is 128"
,
400
max_len
=
64
# Choosing hopefully sane default. Full sequence is slow
tokens_to_generate
=
64
# Choosing hopefully sane default. Full sequence is slow
if
"
max_len
"
in
request
.
get_json
():
if
"
tokens_to_generate
"
in
request
.
get_json
():
max_len
=
request
.
get_json
()[
"
max_len
"
]
tokens_to_generate
=
request
.
get_json
()[
"
tokens_to_generate
"
]
if
not
isinstance
(
max_len
,
int
):
if
not
isinstance
(
tokens_to_generate
,
int
):
return
"
max_len
must be an integer greater than 0"
return
"
tokens_to_generate
must be an integer greater than 0"
if
max_len
<
1
:
if
tokens_to_generate
<
1
:
return
"
max_len
must be an integer greater than 0"
return
"
tokens_to_generate
must be an integer greater than 0"
all_probs
=
False
all_probs
=
False
if
"all_probs"
in
request
.
get_json
():
if
"all_probs"
in
request
.
get_json
():
...
@@ -54,7 +58,7 @@ class MegatronGenerate(Resource):
...
@@ -54,7 +58,7 @@ class MegatronGenerate(Resource):
return
"all_probs must be a boolean value"
return
"all_probs must be a boolean value"
MegatronGenerate
.
send_do_generate
()
# Tell other ranks we're doing generate
MegatronGenerate
.
send_do_generate
()
# Tell other ranks we're doing generate
resp_sentences
,
resp_sentences_seg
,
output_logits
,
full_logits
,
tokens
=
generate
(
self
.
model
,
sentences
,
max_len
,
all_probs
)
resp_sentences
,
resp_sentences_seg
,
output_logits
,
full_logits
,
tokens
=
generate
(
self
.
model
,
sentences
,
tokens_to_generate
,
all_probs
)
if
all_probs
:
if
all_probs
:
return
jsonify
({
"sentences"
:
resp_sentences
,
return
jsonify
({
"sentences"
:
resp_sentences
,
"segments"
:
resp_sentences_seg
,
"segments"
:
resp_sentences_seg
,
...
@@ -66,15 +70,12 @@ class MegatronGenerate(Resource):
...
@@ -66,15 +70,12 @@ class MegatronGenerate(Resource):
"segments"
:
resp_sentences_seg
,
"segments"
:
resp_sentences_seg
,
"logits"
:
output_logits
})
"logits"
:
output_logits
})
def
index
():
return
current_app
.
send_static_file
(
'index.html'
)
class
MegatronServer
(
object
):
class
MegatronServer
(
object
):
def
__init__
(
self
,
model
):
def
__init__
(
self
,
model
):
self
.
app
=
Flask
(
__name__
)
self
.
app
=
Flask
(
__name__
,
static_folder
=
'static'
,
static_url_path
=
''
)
self
.
app
.
add_url_rule
(
'/'
,
'index'
,
index
)
self
.
app
.
config
[
'SEND_FILE_MAX_AGE_DEFAULT'
]
=
0
api
=
Api
(
self
.
app
)
api
=
Api
(
self
.
app
)
api
.
add_resource
(
MegatronGenerate
,
'/generate'
,
resource_class_args
=
[
model
])
api
.
add_resource
(
MegatronGenerate
,
'/generate'
,
resource_class_args
=
[
model
])
def
run
(
self
,
url
):
def
run
(
self
,
url
):
self
.
app
.
run
(
url
,
threaded
=
Fals
e
,
debug
=
False
)
self
.
app
.
run
(
url
,
threaded
=
Tru
e
,
debug
=
False
)
megatron/text_generation_utils.py
View file @
77979e3b
...
@@ -104,12 +104,12 @@ def tokenize_batch(sentences):
...
@@ -104,12 +104,12 @@ def tokenize_batch(sentences):
context_length_tensor
=
torch
.
cuda
.
LongTensor
(
context_lengths
)
context_length_tensor
=
torch
.
cuda
.
LongTensor
(
context_lengths
)
return
context_tokens_tensor
,
context_length_tensor
return
context_tokens_tensor
,
context_length_tensor
def
send_generate_info
(
context_tokens_tensor
,
context_length_tensor
,
max_len
,
all_probs
):
def
send_generate_info
(
context_tokens_tensor
,
context_length_tensor
,
tokens_to_generate
,
all_probs
):
"""
"""
Needs to be synced up with receive_generate_info
Needs to be synced up with receive_generate_info
"""
"""
# Send the sizes of the tensors
# Send the sizes of the tensors
input_info
=
[
context_tokens_tensor
.
size
(
0
),
context_tokens_tensor
.
size
(
1
),
max_len
,
all_probs
]
input_info
=
[
context_tokens_tensor
.
size
(
0
),
context_tokens_tensor
.
size
(
1
),
tokens_to_generate
,
all_probs
]
input_info_tensor
=
torch
.
cuda
.
LongTensor
(
input_info
)
input_info_tensor
=
torch
.
cuda
.
LongTensor
(
input_info
)
torch
.
distributed
.
broadcast
(
input_info_tensor
,
0
)
torch
.
distributed
.
broadcast
(
input_info_tensor
,
0
)
...
@@ -125,7 +125,7 @@ def receive_generate_info():
...
@@ -125,7 +125,7 @@ def receive_generate_info():
torch
.
distributed
.
broadcast
(
input_info_tensor
,
0
)
torch
.
distributed
.
broadcast
(
input_info_tensor
,
0
)
batch_size
=
input_info_tensor
[
0
].
item
()
batch_size
=
input_info_tensor
[
0
].
item
()
seq_len
=
input_info_tensor
[
1
].
item
()
seq_len
=
input_info_tensor
[
1
].
item
()
max_len
=
input_info_tensor
[
2
].
item
()
tokens_to_generate
=
input_info_tensor
[
2
].
item
()
all_probs
=
input_info_tensor
[
3
].
item
()
all_probs
=
input_info_tensor
[
3
].
item
()
context_length_tensor
=
torch
.
empty
(
batch_size
,
dtype
=
torch
.
int64
,
device
=
torch
.
cuda
.
current_device
())
context_length_tensor
=
torch
.
empty
(
batch_size
,
dtype
=
torch
.
int64
,
device
=
torch
.
cuda
.
current_device
())
...
@@ -135,16 +135,16 @@ def receive_generate_info():
...
@@ -135,16 +135,16 @@ def receive_generate_info():
torch
.
distributed
.
broadcast
(
context_length_tensor
,
0
)
torch
.
distributed
.
broadcast
(
context_length_tensor
,
0
)
torch
.
distributed
.
broadcast
(
context_tokens_tensor
,
0
)
torch
.
distributed
.
broadcast
(
context_tokens_tensor
,
0
)
return
context_length_tensor
,
context_tokens_tensor
,
max_len
,
all_probs
return
context_length_tensor
,
context_tokens_tensor
,
tokens_to_generate
,
all_probs
def
synced_generate
(
model
,
context_tokens_tensor
,
context_length_tensor
,
max_len
,
all_probs
):
def
synced_generate
(
model
,
context_tokens_tensor
,
context_length_tensor
,
tokens_to_generate
,
all_probs
):
context_length
=
context_length_tensor
.
min
().
item
()
context_length
=
context_length_tensor
.
min
().
item
()
tokens
,
attention_mask
,
position_ids
=
get_batch
(
context_tokens_tensor
)
tokens
,
attention_mask
,
position_ids
=
get_batch
(
context_tokens_tensor
)
batch_token_iterator
=
sample_sequence_batch
(
model
,
context_tokens_tensor
,
batch_token_iterator
=
sample_sequence_batch
(
model
,
context_tokens_tensor
,
context_length_tensor
,
context_length_tensor
,
attention_mask
,
position_ids
,
attention_mask
,
position_ids
,
max_len
,
tokens_to_generate
,
all_probs
)
all_probs
)
for
tokens
,
lengths
,
output_logits
,
full_logits
in
batch_token_iterator
:
for
tokens
,
lengths
,
output_logits
,
full_logits
in
batch_token_iterator
:
context_length
+=
1
context_length
+=
1
...
@@ -175,15 +175,15 @@ def synced_generate(model, context_tokens_tensor, context_length_tensor, max_len
...
@@ -175,15 +175,15 @@ def synced_generate(model, context_tokens_tensor, context_length_tensor, max_len
if
tokens
is
not
None
:
if
tokens
is
not
None
:
return
tokens
[:,
:
context_length
],
output_logits
,
full_logits
return
tokens
[:,
:
context_length
],
output_logits
,
full_logits
def
generate
(
model
,
sentences
=
None
,
max_len
=
0
,
all_probs
=
False
):
def
generate
(
model
,
sentences
=
None
,
tokens_to_generate
=
0
,
all_probs
=
False
):
model
.
eval
()
model
.
eval
()
if
torch
.
distributed
.
get_rank
()
==
0
:
if
torch
.
distributed
.
get_rank
()
==
0
:
context_tokens_tensor
,
context_length_tensor
=
tokenize_batch
(
sentences
)
context_tokens_tensor
,
context_length_tensor
=
tokenize_batch
(
sentences
)
send_generate_info
(
context_tokens_tensor
,
context_length_tensor
,
max_len
,
all_probs
)
send_generate_info
(
context_tokens_tensor
,
context_length_tensor
,
tokens_to_generate
,
all_probs
)
else
:
else
:
context_length_tensor
,
context_tokens_tensor
,
max_len
,
all_probs
=
receive_generate_info
()
context_length_tensor
,
context_tokens_tensor
,
tokens_to_generate
,
all_probs
=
receive_generate_info
()
output
=
synced_generate
(
model
,
context_tokens_tensor
,
context_length_tensor
,
max_len
,
all_probs
)
output
=
synced_generate
(
model
,
context_tokens_tensor
,
context_length_tensor
,
tokens_to_generate
,
all_probs
)
if
output
is
not
None
:
if
output
is
not
None
:
decode_tokens
,
output_logits
,
full_logits
=
output
decode_tokens
,
output_logits
,
full_logits
=
output
...
@@ -264,7 +264,7 @@ def forward_step(model, tokens, position_ids, attention_mask, tokentype_ids,
...
@@ -264,7 +264,7 @@ def forward_step(model, tokens, position_ids, attention_mask, tokentype_ids,
def
sample_sequence_batch
(
model
,
context_tokens
,
context_lengths
,
def
sample_sequence_batch
(
model
,
context_tokens
,
context_lengths
,
attention_mask
,
position_ids
,
attention_mask
,
position_ids
,
maxlen
,
all_probs
=
False
,
type_ids
=
None
):
tokens_to_generate
,
all_probs
=
False
,
type_ids
=
None
):
args
=
get_args
()
args
=
get_args
()
tokenizer
=
get_tokenizer
()
tokenizer
=
get_tokenizer
()
...
@@ -280,7 +280,6 @@ def sample_sequence_batch(model, context_tokens, context_lengths,
...
@@ -280,7 +280,6 @@ def sample_sequence_batch(model, context_tokens, context_lengths,
eos_id
=
tokenizer
.
eod
eos_id
=
tokenizer
.
eod
counter
=
0
counter
=
0
org_context_length
=
context_length
layer_past
=
None
layer_past
=
None
batch_size
=
context_tokens
.
size
(
0
)
batch_size
=
context_tokens
.
size
(
0
)
...
@@ -288,8 +287,8 @@ def sample_sequence_batch(model, context_tokens, context_lengths,
...
@@ -288,8 +287,8 @@ def sample_sequence_batch(model, context_tokens, context_lengths,
tokens
=
context_tokens
tokens
=
context_tokens
output_logits
=
None
output_logits
=
None
#
TODO(rpr
en
g
er
) maxlen should be named a different parameter
#
G
ener
ate enough tokens for the longest sequence
maxlen
=
maxlen
+
org_context_length
maxlen
=
tokens_to_generate
+
context_lengths
.
max
().
item
()
# TODO(rprenger) Need a better understanding of what args.seq_length vs args.out_seq_length (shouldn't be "args")
# TODO(rprenger) Need a better understanding of what args.seq_length vs args.out_seq_length (shouldn't be "args")
if
maxlen
>
args
.
seq_length
:
if
maxlen
>
args
.
seq_length
:
...
@@ -357,7 +356,6 @@ def sample_sequence_batch(model, context_tokens, context_lengths,
...
@@ -357,7 +356,6 @@ def sample_sequence_batch(model, context_tokens, context_lengths,
if
all_probs
:
if
all_probs
:
full_logits
=
torch
.
cat
([
full_logits
,
output_context
],
1
)
full_logits
=
torch
.
cat
([
full_logits
,
output_context
],
1
)
#output_logits = torch.cat([output_logits, output[:,context_length,new_tokens]], 1)
src
=
mpu
.
get_pipeline_model_parallel_last_rank
()
src
=
mpu
.
get_pipeline_model_parallel_last_rank
()
group
=
mpu
.
get_embedding_group
()
group
=
mpu
.
get_embedding_group
()
torch
.
distributed
.
broadcast
(
new_tokens
,
src
,
group
)
torch
.
distributed
.
broadcast
(
new_tokens
,
src
,
group
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment