"vscode:/vscode.git/clone" did not exist on "a2090375ca8e54e7494d73ba31ce91c50659e556"
Commit 69d8ff1c authored by Jared Casper's avatar Jared Casper
Browse files

Merge branch 'staging_gpt2_dataloader' into 'staging'

GPT2 dataloader using indexed dataset

See merge request ADLR/megatron-lm!45
parents 7890681a 0afe1fde
...@@ -65,7 +65,7 @@ def set_global_variables(extra_args_provider=None, args_defaults={}): ...@@ -65,7 +65,7 @@ def set_global_variables(extra_args_provider=None, args_defaults={}):
"""Set args, tokenizer, tensorboard-writer, adlr-autoresume, and timers.""" """Set args, tokenizer, tensorboard-writer, adlr-autoresume, and timers."""
args = _parse_args(extra_args_provider=extra_args_provider, args = _parse_args(extra_args_provider=extra_args_provider,
defaults=args_defaults) defaults=args_defaults)
_build_tokenizer(args) _ = _build_tokenizer(args)
_set_tensorboard_writer(args) _set_tensorboard_writer(args)
_set_adlr_autoresume(args) _set_adlr_autoresume(args)
_set_timers() _set_timers()
...@@ -85,6 +85,13 @@ def _build_tokenizer(args): ...@@ -85,6 +85,13 @@ def _build_tokenizer(args):
global _GLOBAL_TOKENIZER global _GLOBAL_TOKENIZER
_ensure_var_is_not_initialized(_GLOBAL_TOKENIZER, 'tokenizer') _ensure_var_is_not_initialized(_GLOBAL_TOKENIZER, 'tokenizer')
_GLOBAL_TOKENIZER = build_tokenizer(args) _GLOBAL_TOKENIZER = build_tokenizer(args)
return _GLOBAL_TOKENIZER
def rebuild_tokenizer(args):
global _GLOBAL_TOKENIZER
_GLOBAL_TOKENIZER = None
return _build_tokenizer(args)
def _set_tensorboard_writer(args): def _set_tensorboard_writer(args):
......
...@@ -102,6 +102,7 @@ class ParallelSelfAttention(MegatronModule): ...@@ -102,6 +102,7 @@ class ParallelSelfAttention(MegatronModule):
output_layer_init_method, layer_number): output_layer_init_method, layer_number):
super(ParallelSelfAttention, self).__init__() super(ParallelSelfAttention, self).__init__()
args = get_args() args = get_args()
self.fp16 = args.fp16
self.attention_mask_func = attention_mask_func self.attention_mask_func = attention_mask_func
self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
...@@ -244,7 +245,7 @@ class ParallelSelfAttention(MegatronModule): ...@@ -244,7 +245,7 @@ class ParallelSelfAttention(MegatronModule):
query_layer, key_layer) query_layer, key_layer)
# fp32 conversion. # fp32 conversion.
if self.attention_softmax_in_fp32: if self.fp16 and self.attention_softmax_in_fp32:
attention_scores = attention_scores.float() attention_scores = attention_scores.float()
# Apply attention mask. [b, np, s, s] # Apply attention mask. [b, np, s, s]
...@@ -267,7 +268,7 @@ class ParallelSelfAttention(MegatronModule): ...@@ -267,7 +268,7 @@ class ParallelSelfAttention(MegatronModule):
attention_probs = self._get_attention_probs(attention_scores) attention_probs = self._get_attention_probs(attention_scores)
# fp16 conversion # fp16 conversion
if self.attention_softmax_in_fp32: if self.fp16 and self.attention_softmax_in_fp32:
attention_probs = attention_probs.half() attention_probs = attention_probs.half()
# Context layer. [b, s, hp] # Context layer. [b, s, hp]
......
...@@ -37,11 +37,12 @@ from megatron.learning_rates import AnnealingLR ...@@ -37,11 +37,12 @@ from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization from megatron.model import get_params_for_weight_decay_optimization
from megatron.utils import check_adlr_autoresume_termination from megatron.utils import check_adlr_autoresume_termination
from megatron.utils import make_data_loader
from megatron.utils import report_memory from megatron.utils import report_memory
def pretrain(train_val_test_data_provider, model_provider, forward_step_func, def pretrain(train_valid_test_dataset_provider, model_provider,
extra_args_provider=None, args_defaults={}): forward_step_func, extra_args_provider=None, args_defaults={}):
"""Main training program. """Main training program.
This function will run the followings in the order provided: This function will run the followings in the order provided:
...@@ -51,9 +52,9 @@ def pretrain(train_val_test_data_provider, model_provider, forward_step_func, ...@@ -51,9 +52,9 @@ def pretrain(train_val_test_data_provider, model_provider, forward_step_func,
4) train the modle using the forward_step_func. 4) train the modle using the forward_step_func.
Arguments: Arguments:
train_val_test_data_provider: a function that builds datasets train_valid_test_dataset_provider: a function that takes the size of
and returns `train, val, test` dataloaders. train/valid/test dataset and returns `train, valid, test` datasets.
model_provider: a function that returns a vanilla version of the model_provider: a function that returns a vanilla version of the
model. By vanilla we mean a simple model on cpu with no fp16 or ddp. model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
forward_step_func: a function that takes a `data iterator` and `model`, forward_step_func: a function that takes a `data iterator` and `model`,
and returns a `loss` scalar with a dictionary with key:values being and returns a `loss` scalar with a dictionary with key:values being
...@@ -78,22 +79,15 @@ def pretrain(train_val_test_data_provider, model_provider, forward_step_func, ...@@ -78,22 +79,15 @@ def pretrain(train_val_test_data_provider, model_provider, forward_step_func,
timers('model and optimizer').stop() timers('model and optimizer').stop()
# Data stuff. # Data stuff.
timers('train/valid/test dataset').start() timers('train/valid/test data iterators').start()
train_data, val_data, test_data = train_val_test_data_provider() train_data_iterator, valid_data_iterator, test_data_iterator \
timers('train/valid/test dataset').stop() = build_train_valid_test_data_iterators(
train_valid_test_dataset_provider)
# Train, validation, and test data. timers('train/valid/test data iterators').stop()
timers('train/valid/test dataloader').start()
train_data_iterator, val_data_iterator, \
test_data_iterator = get_train_val_test_data_iterators(train_data,
val_data,
test_data)
timers('train/valid/test dataloader').stop()
# Print setup timing. # Print setup timing.
print_rank_0('done with setups ...') print_rank_0('done with setups ...')
timers.log(['model and optimizer', 'train/valid/test dataset', timers.log(['model and optimizer', 'train/valid/test data iterators'])
'train/valid/test dataloader'])
print_rank_0('training ...') print_rank_0('training ...')
iteration = 0 iteration = 0
...@@ -101,13 +95,13 @@ def pretrain(train_val_test_data_provider, model_provider, forward_step_func, ...@@ -101,13 +95,13 @@ def pretrain(train_val_test_data_provider, model_provider, forward_step_func,
if args.do_train: if args.do_train:
iteration, _ = train(forward_step_func, iteration, _ = train(forward_step_func,
model, optimizer, lr_scheduler, model, optimizer, lr_scheduler,
train_data_iterator, val_data_iterator) train_data_iterator, valid_data_iterator)
if args.do_valid: if args.do_valid:
prefix = 'the end of training for val data' prefix = 'the end of training for val data'
evaluate_and_print_results(prefix, forward_step_func, evaluate_and_print_results(prefix, forward_step_func,
val_data_iterator, model, valid_data_iterator, model,
iteration, False) iteration, False)
if args.save and iteration != 0: if args.save and iteration != 0:
...@@ -152,8 +146,7 @@ def get_model(model_provider_func): ...@@ -152,8 +146,7 @@ def get_model(model_provider_func):
return model return model
raise NotImplementedError('Unknown DDP implementation specified: {}. ' raise NotImplementedError('Unknown DDP implementation specified: {}. '
'Exiting.'.format(args.DDP_impl)) 'Exiting.'.format(args.DDP_impl))
sys.exit()
def get_optimizer(model): def get_optimizer(model):
...@@ -352,7 +345,7 @@ def training_log(loss_dict, total_loss_dict, learning_rate, iteration, ...@@ -352,7 +345,7 @@ def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
def train(forward_step_func, model, optimizer, lr_scheduler, def train(forward_step_func, model, optimizer, lr_scheduler,
train_data_iterator, val_data_iterator): train_data_iterator, valid_data_iterator):
"""Train the model function.""" """Train the model function."""
args = get_args() args = get_args()
timers = get_timers() timers = get_timers()
...@@ -379,9 +372,12 @@ def train(forward_step_func, model, optimizer, lr_scheduler, ...@@ -379,9 +372,12 @@ def train(forward_step_func, model, optimizer, lr_scheduler,
iteration += 1 iteration += 1
# Logging. # Logging.
loss_scale = None
if args.fp16:
loss_scale = optimizer.loss_scale
report_memory_flag = training_log(loss_dict, total_loss_dict, report_memory_flag = training_log(loss_dict, total_loss_dict,
optimizer.param_groups[0]['lr'], optimizer.param_groups[0]['lr'],
iteration, optimizer.loss_scale, iteration, loss_scale,
report_memory_flag) report_memory_flag)
# Autoresume # Autoresume
...@@ -400,7 +396,7 @@ def train(forward_step_func, model, optimizer, lr_scheduler, ...@@ -400,7 +396,7 @@ def train(forward_step_func, model, optimizer, lr_scheduler,
args.do_valid: args.do_valid:
prefix = 'iteration {}'.format(iteration) prefix = 'iteration {}'.format(iteration)
evaluate_and_print_results(prefix, forward_step_func, evaluate_and_print_results(prefix, forward_step_func,
val_data_iterator, model, valid_data_iterator, model,
iteration, False) iteration, False)
if args.exit_interval and iteration % args.exit_interval == 0: if args.exit_interval and iteration % args.exit_interval == 0:
...@@ -469,37 +465,87 @@ def evaluate_and_print_results(prefix, forward_step_func, ...@@ -469,37 +465,87 @@ def evaluate_and_print_results(prefix, forward_step_func,
print_rank_0('-' * length) print_rank_0('-' * length)
def get_train_val_test_data_iterators(train_data, val_data, test_data): def build_train_valid_test_data_iterators(
"""Build train/validation/test iterators""" build_train_valid_test_datasets_provider):
"""XXX"""
args = get_args() args = get_args()
(train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)
print_rank_0('> building train, validation, and test datasets ...')
# Data loader only on rank 0 of each model parallel group.
if mpu.get_model_parallel_rank() == 0:
# Rank, size, and global batch size.
data_parallel_size = mpu.get_data_parallel_world_size()
global_batch_size = args.batch_size * data_parallel_size
# Number of train/valid/test samples.
train_iters = args.train_iters
eval_iters = (train_iters // args.eval_interval + 1) * args.eval_iters
test_iters = args.eval_iters
train_val_test_num_samples = [train_iters * global_batch_size,
eval_iters * global_batch_size,
test_iters * global_batch_size]
print_rank_0(' > datasets target sizes (minimum size):')
print_rank_0(' train: {}'.format(train_val_test_num_samples[0]))
print_rank_0(' validation: {}'.format(train_val_test_num_samples[1]))
print_rank_0(' test: {}'.format(train_val_test_num_samples[2]))
# Build the datasets.
train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
train_val_test_num_samples)
# Build dataloders.
train_dataloader = make_data_loader(train_ds)
valid_dataloader = make_data_loader(valid_ds)
test_dataloader = make_data_loader(test_ds)
# Flags to know if we need to do training/validation/testing.
do_train = train_dataloader is not None and args.train_iters > 0
do_valid = valid_dataloader is not None and args.eval_iters > 0
do_test = test_dataloader is not None and args.eval_iters > 0
# Need to broadcast num_tokens and num_type_tokens.
flags = torch.cuda.LongTensor(
[int(do_train), int(do_valid), int(do_test)])
else:
flags = torch.cuda.LongTensor([0, 0, 0])
# Broadcast num tokens.
torch.distributed.broadcast(flags,
mpu.get_model_parallel_src_rank(),
group=mpu.get_model_parallel_group())
args.do_train = flags[0].item()
args.do_valid = flags[1].item()
args.do_test = flags[2].item()
# Shift the start iterations. # Shift the start iterations.
if train_data is not None: if train_dataloader is not None:
train_data.batch_sampler.start_iter = args.iteration % \ train_dataloader.batch_sampler.start_iter = args.iteration % \
len(train_data) len(train_dataloader)
print_rank_0('setting training data start iteration to {}'. print_rank_0('setting training data start iteration to {}'.
format(train_data.batch_sampler.start_iter)) format(train_dataloader.batch_sampler.start_iter))
if val_data is not None: if valid_dataloader is not None:
start_iter_val = (args.iteration // args.eval_interval) * \ start_iter_val = (args.iteration // args.eval_interval) * \
args.eval_iters args.eval_iters
val_data.batch_sampler.start_iter = start_iter_val % \ valid_dataloader.batch_sampler.start_iter = start_iter_val % \
len(val_data) len(valid_dataloader)
print_rank_0('setting validation data start iteration to {}'. print_rank_0('setting validation data start iteration to {}'.
format(val_data.batch_sampler.start_iter)) format(valid_dataloader.batch_sampler.start_iter))
if train_data is not None: # Build iterators.
train_data_iterator = iter(train_data) if train_dataloader is not None:
train_data_iterator = iter(train_dataloader)
else: else:
train_data_iterator = None train_data_iterator = None
if val_data is not None: if valid_dataloader is not None:
val_data_iterator = iter(val_data) valid_data_iterator = iter(valid_dataloader)
else: else:
val_data_iterator = None valid_data_iterator = None
if test_data is not None: if test_dataloader is not None:
test_data_iterator = iter(test_data) test_data_iterator = iter(test_dataloader)
else: else:
test_data_iterator = None test_data_iterator = None
return train_data_iterator, val_data_iterator, test_data_iterator return train_data_iterator, valid_data_iterator, test_data_iterator
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import numpy as np
import time
import os
import sys
from tokenizer import Tokenizer
def tokenize_corpus(filename, np_filename, print_interval=10000):
print(' > tokenizing {}'.format(filename))
tokenizer = Tokenizer(cache_dir='./cache')
tokenized_docs = []
num_docs = 0
num_tokens = 0
start_time = time.time()
with open(filename, 'r') as f:
for line in f:
try:
myjson = json.loads(line)
url = myjson['url']
sample = myjson['text']
tokens = tokenizer.tokenize_document(sample)
tokenized_docs.append(np.array(tokens, dtype=np.uint16))
num_docs += 1
num_tokens += len(tokens)
if num_docs % print_interval == 0:
print(' processed {:9d} documents in {:.2f} (s) so far'.
format(num_docs, time.time() - start_time),
flush=True)
except Exception as e:
print(' skipping ', line, e)
print(' >> processed {} document with total of {} tokens ...'.format(
num_docs, num_tokens))
tokenized_docs = np.array(tokenized_docs, dtype=object)
np.save(np_filename, tokenized_docs, allow_pickle=True)
print(' >> saved the tokenzed document to {} ...'.format(np_filename))
if __name__ == '__main__':
print('building gpt2 dataset ...')
path = sys.argv[1]
shard = sys.argv[2]
input_filename = os.path.join(path,
'shards/shard_{:04d}'.format(int(shard)))
output_filename = os.path.join(path,
'npys/shard_{:04d}.npy'.format(int(shard)))
print('will be reading {}'.format(input_filename))
print('and will write the results to {}'.format(output_filename))
tokenize_corpus(input_filename, output_filename)
import glob
import json
import os
import time
import sys
import numpy as np
if __name__ == '__main__':
print('building the shard sizes ...')
path = sys.argv[1]
print('> reading numpy files from {}'.format(path))
npy_files = glob.glob(path + '/*.npy')
npy_files.sort()
print(' found {} numpy files'.format(len(npy_files)))
size_dict = {}
counter = 0
start_time = time.time()
for filename in npy_files:
data = np.load(filename, allow_pickle=True)
size = np.hstack(data).size
np_filename = os.path.basename(filename)
size_dict[np_filename] = size
counter += 1
if counter % 10 == 0:
print(' processed {} files in {:.2f} seconds'.format(
counter, time.time() - start_time))
output_filename = os.path.join(path, 'sizes.txt')
with open(output_filename, 'w') as f:
json.dump(size_dict, f)
print('> wrote sizes to {}'.format(output_filename))
#!/bin/bash
echo "processing gpt2 data ..."
DIR="/raid/mpatwary/redownload_v0/0-21"
for thread in {0..3}; do
echo " launching thread "$thread && python make_gpt2_dataset.py $DIR $thread > $DIR/logs/shard_$thread.log 2>&1 &
done
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append('..')
from megatron.data_utils.tokenization_gpt2 import GPT2Tokenizer
class Tokenizer:
def __init__(self, cache_dir=None):
self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2',
cache_dir=cache_dir)
self.tokenizer.max_len = int(1e12)
self.eod_token = self.tokenizer.encoder['<|endoftext|>']
assert self.eod_token < 65535, 'vocab size will not fit in uint16'
print('> GPT2 tokenizer with {} vocab size and eod token {} ...'.format(
len(self.tokenizer.encoder), self.eod_token))
def tokenize_document(self, document):
tokens = self.tokenizer.encode(document)
tokens.append(self.eod_token)
return tokens
...@@ -25,13 +25,11 @@ from megatron import print_rank_0 ...@@ -25,13 +25,11 @@ from megatron import print_rank_0
from megatron.data.bert_dataset import build_train_valid_test_datasets from megatron.data.bert_dataset import build_train_valid_test_datasets
from megatron.model import BertModel from megatron.model import BertModel
from megatron.training import pretrain from megatron.training import pretrain
from megatron.utils import make_data_loader
from megatron.utils import reduce_losses from megatron.utils import reduce_losses
def model_provider(): def model_provider():
"""Build the model.""" """Build the model."""
args = get_args()
print_rank_0('building BERT model ...') print_rank_0('building BERT model ...')
...@@ -44,6 +42,7 @@ def model_provider(): ...@@ -44,6 +42,7 @@ def model_provider():
def get_batch(data_iterator): def get_batch(data_iterator):
"""Build the batch."""
# Items and their type. # Items and their type.
keys = ['text', 'types', 'labels', 'is_random', 'loss_mask', 'padding_mask'] keys = ['text', 'types', 'labels', 'is_random', 'loss_mask', 'padding_mask']
...@@ -96,70 +95,28 @@ def forward_step(data_iterator, model): ...@@ -96,70 +95,28 @@ def forward_step(data_iterator, model):
return loss, {'lm loss': reduced_losses[0], 'sop loss': reduced_losses[1]} return loss, {'lm loss': reduced_losses[0], 'sop loss': reduced_losses[1]}
def get_train_val_test_data(): def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Load the data on rank zero and boradcast number of tokens to all GPUS.""" """Build train, valid, and test datasets."""
args = get_args() args = get_args()
(train_data, valid_data, test_data) = (None, None, None) print_rank_0('> building train, validation, and test datasets '
'for BERT ...')
# Data loader only on rank 0 of each model parallel group. train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
if mpu.get_model_parallel_rank() == 0: data_prefix=args.data_path,
print_rank_0('> building train, validation, and test datasets ' data_impl=args.data_impl,
'for BERT ...') splits_string=args.split,
train_valid_test_num_samples=train_val_test_num_samples,
data_parallel_size = mpu.get_data_parallel_world_size() max_seq_length=args.seq_length,
data_parallel_rank = mpu.get_data_parallel_rank() masked_lm_prob=args.mask_prob,
global_batch_size = args.batch_size * data_parallel_size short_seq_prob=args.short_seq_prob,
seed=args.seed,
# Number of train/valid/test samples. skip_warmup=(not args.mmap_warmup))
train_iters = args.train_iters print_rank_0("> finished creating BERT datasets ...")
eval_iters = (train_iters // args.eval_interval + 1) * args.eval_iters
test_iters = args.eval_iters
train_val_test_num_samples = [train_iters * global_batch_size,
eval_iters * global_batch_size,
test_iters * global_batch_size]
print_rank_0(' > datasets target sizes (minimum size):')
print_rank_0(' train: {}'.format(train_val_test_num_samples[0]))
print_rank_0(' validation: {}'.format(train_val_test_num_samples[1]))
print_rank_0(' test: {}'.format(train_val_test_num_samples[2]))
train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
data_prefix=args.data_path,
data_impl=args.data_impl,
splits_string=args.split,
train_valid_test_num_samples=train_val_test_num_samples,
max_seq_length=args.seq_length,
masked_lm_prob=args.mask_prob,
short_seq_prob=args.short_seq_prob,
seed=args.seed,
skip_warmup=(not args.mmap_warmup))
print_rank_0("> finished creating BERT datasets ...")
train_data = make_data_loader(train_ds)
valid_data = make_data_loader(valid_ds)
test_data = make_data_loader(test_ds)
do_train = train_data is not None and args.train_iters > 0
do_valid = valid_data is not None and args.eval_iters > 0
do_test = test_data is not None and args.eval_iters > 0
# Need to broadcast num_tokens and num_type_tokens.
flags = torch.cuda.LongTensor(
[int(do_train), int(do_valid), int(do_test)])
else:
flags = torch.cuda.LongTensor([0, 0, 0])
# Broadcast num tokens.
torch.distributed.broadcast(flags,
mpu.get_model_parallel_src_rank(),
group=mpu.get_model_parallel_group())
args.do_train = flags[0].item()
args.do_valid = flags[1].item()
args.do_test = flags[2].item()
return train_data, valid_data, test_data return train_ds, valid_ds, test_ds
if __name__ == "__main__": if __name__ == "__main__":
pretrain(get_train_val_test_data, model_provider, forward_step, pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'}) args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
...@@ -15,8 +15,6 @@ ...@@ -15,8 +15,6 @@
"""Pretrain GPT2""" """Pretrain GPT2"""
import os
import torch import torch
from megatron import get_args from megatron import get_args
...@@ -24,17 +22,15 @@ from megatron import get_timers ...@@ -24,17 +22,15 @@ from megatron import get_timers
from megatron import get_tokenizer from megatron import get_tokenizer
from megatron import mpu from megatron import mpu
from megatron import print_rank_0 from megatron import print_rank_0
from megatron.data.gpt2_dataset import GPT2Dataset from megatron.data.gpt2_dataset import build_train_valid_test_datasets
from megatron.model import GPT2Model from megatron.model import GPT2Model
from megatron.training import pretrain from megatron.training import pretrain
from megatron.utils import get_ltor_masks_and_position_ids from megatron.utils import get_ltor_masks_and_position_ids
from megatron.utils import make_data_loader
from megatron.utils import reduce_losses from megatron.utils import reduce_losses
def model_provider(): def model_provider():
"""Build the model.""" """Build the model."""
args = get_args()
print_rank_0('building GPT2 model ...') print_rank_0('building GPT2 model ...')
model = GPT2Model(num_tokentypes=0, parallel_output=True) model = GPT2Model(num_tokentypes=0, parallel_output=True)
...@@ -98,71 +94,26 @@ def forward_step(data_iterator, model): ...@@ -98,71 +94,26 @@ def forward_step(data_iterator, model):
return loss, {'lm loss': reduced_loss[0]} return loss, {'lm loss': reduced_loss[0]}
def make_gpt2_dataloaders(): def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build gpt2 dataloders.""" """Build train, valid, and test datasets."""
args = get_args()
# Input parameters.
input_data_sizes_file = args.input_data_sizes_file
seq_length = args.seq_length
initial_seed = args.seed
# Build the datasets.
def _build_dataset(name):
return GPT2Dataset(os.path.join(args.data_path, name),
args.input_data_sizes_file,
args.seq_length, args.seed)
train_ds = _build_dataset('train')
valid_ds = _build_dataset('valid')
test_ds = _build_dataset('test')
# Dataloaders
train = make_data_loader(train_ds)
valid = make_data_loader(valid_ds)
test = make_data_loader(test_ds)
args.do_train = False
args.do_valid = False
args.do_test = False
if train is not None:
args.do_train = True
if valid is not None:
args.do_valid = True
if test is not None:
args.do_test = True
return (train, valid, test)
def get_train_val_test_data():
"""Load the data on rank zero and boradcast number of tokens to all GPUS."""
args = get_args() args = get_args()
(train_data, val_data, test_data) = (None, None, None) print_rank_0('> building train, validation, and test datasets '
'for GPT2 ...')
# Data loader only on rank 0 of each model parallel group. train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
if mpu.get_model_parallel_rank() == 0: data_prefix=args.data_path,
data_impl=args.data_impl,
(train_data, val_data, test_data) = make_gpt2_dataloaders() splits_string=args.split,
flags = torch.cuda.LongTensor([int(args.do_train), train_valid_test_num_samples=train_val_test_num_samples,
int(args.do_valid), seq_length=args.seq_length,
int(args.do_test)]) seed=args.seed,
else: skip_warmup=(not args.mmap_warmup))
flags = torch.cuda.LongTensor([0, 0, 0]) print_rank_0("> finished creating GPT2 datasets ...")
# Broadcast num tokens.
torch.distributed.broadcast(flags,
mpu.get_model_parallel_src_rank(),
group=mpu.get_model_parallel_group())
args.do_train = flags[0].item()
args.do_valid = flags[1].item()
args.do_test = flags[2].item()
return train_data, val_data, test_data return train_ds, valid_ds, test_ds
if __name__ == "__main__": if __name__ == "__main__":
pretrain(get_train_val_test_data, model_provider, forward_step, pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
args_defaults={'tokenizer_type': 'GPT2BPETokenizer'}) args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})
...@@ -15,6 +15,11 @@ ...@@ -15,6 +15,11 @@
"""Sample Generate GPT2""" """Sample Generate GPT2"""
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
os.path.pardir)))
from megatron import get_args from megatron import get_args
from megatron import get_tokenizer from megatron import get_tokenizer
from megatron import print_rank_0 from megatron import print_rank_0
......
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Merge model parallel partitions."""
import os import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
os.path.pardir)))
import torch import torch
from arguments import get_args
from megatron import mpu from megatron import mpu
from megatron.utils import ensure_directory_exists from megatron.checkpointing import ensure_directory_exists
from megatron.utils import get_checkpoint_name from megatron.checkpointing import get_checkpoint_name
from megatron.utils import get_checkpoint_tracker_filename from megatron.checkpointing import get_checkpoint_tracker_filename
from megatron.utils import vocab_size_with_padding from megatron.global_vars import rebuild_tokenizer
from megatron.global_vars import _parse_args
def split_into_partitions(tensor, num_partitions, partition_dim, stride): def split_into_partitions(tensor, num_partitions, partition_dim, stride):
...@@ -84,21 +104,26 @@ def merge_partitions(merged, partitions, partition_dim, stride): ...@@ -84,21 +104,26 @@ def merge_partitions(merged, partitions, partition_dim, stride):
return return
def get_model(model_type, args): def get_model(model_type):
if model_type == 'BERT': if model_type == 'BERT':
from pretrain_albert import model_provider from pretrain_bert import model_provider
args.tokentype_size = 2 elif model_type == 'GPT2':
elif model_type == 'GPT':
from pretrain_gpt2 import model_provider from pretrain_gpt2 import model_provider
elif model_type == 'RACE':
from tasks.race.finetune import model_provider
elif model_type == ['MNLI', 'QQP']:
num_classes = 2
if model_type == 'MNLI':
num_classes = 3
from megatron.model.classification import Classification
def model_provider():
return Classification(num_classes=num_classes, num_tokentypes=2)
else: else:
raise Exception('unrecognized model type: {}'.format(model_type)) raise Exception('unrecognized model type: {}'.format(model_type))
orig_vocab_size = args.vocab_size model = model_provider()
args.vocab_size = vocab_size_with_padding(args.vocab_size, args)
model = model_provider(args)
model = model.half() model = model.half()
args.vocab_size = orig_vocab_size
return model return model
...@@ -147,17 +172,32 @@ def test_split_merge(): ...@@ -147,17 +172,32 @@ def test_split_merge():
print(' > max error (should be zero): {}'.format(max_error)) print(' > max error (should be zero): {}'.format(max_error))
def main(model_type): def get_mp_merge_args(parser):
"""Provide extra arguments required for merging."""
group = parser.add_argument_group(title='mp merge')
group.add_argument('--model-type', type=str, required=True,
choices=['BERT', 'GPT2', 'RACE', 'MNLI', 'QQP'],
help='Type of the mdoel.')
return parser
def main():
# Args # Args
args = get_args() args = _parse_args(extra_args_provider=get_mp_merge_args)
model_type = args.model_type
orig_model_parallel_size = args.model_parallel_size
args.model_parallel_size = 1
tokenizer = rebuild_tokenizer(args)
print('\n merging model parallel partitions ...') print('\n merging model parallel partitions ...')
assert args.vocab_size is not None print(' > number of partitions: {}'.format(orig_model_parallel_size))
print(' > number of partitions: {}'.format(args.model_parallel_size))
print(' > checkpoint path: {}'.format(args.load)) print(' > checkpoint path: {}'.format(args.load))
print(' > model parameters:') print(' > model parameters:')
print(' number of tokens ................ {} '.format(args.vocab_size)) print(' number of tokens ................ {} '.format(
tokenizer.vocab_size))
print(' number of layers ................ {}'.format(args.num_layers)) print(' number of layers ................ {}'.format(args.num_layers))
print(' hidden sise ..................... {}'.format(args.hidden_size)) print(' hidden sise ..................... {}'.format(args.hidden_size))
print(' number of attention heads ....... {}'.format( print(' number of attention heads ....... {}'.format(
...@@ -169,17 +209,19 @@ def main(model_type): ...@@ -169,17 +209,19 @@ def main(model_type):
print('> building the full model ...') print('> building the full model ...')
mpu.initialize.set_model_parallel_world_size(1) mpu.initialize.set_model_parallel_world_size(1)
mpu.initialize.set_model_parallel_rank(0) mpu.initialize.set_model_parallel_rank(0)
merged_model = get_model(model_type, args) merged_model = get_model(model_type)
# Build and load partitions. # Build and load partitions.
partitions = [] partitions = []
iteration = 0 iteration = 0
args.model_parallel_size = orig_model_parallel_size
tokenizer = rebuild_tokenizer(args)
mpu.initialize.set_model_parallel_world_size(args.model_parallel_size) mpu.initialize.set_model_parallel_world_size(args.model_parallel_size)
for rank in range(args.model_parallel_size): for rank in range(args.model_parallel_size):
mpu.initialize.set_model_parallel_rank(rank) mpu.initialize.set_model_parallel_rank(rank)
checkpoint_name, iteration = get_parallel_checkpoint_name(args.load) checkpoint_name, iteration = get_parallel_checkpoint_name(args.load)
print('> loading {} ...'.format(checkpoint_name)) print('> loading {} ...'.format(checkpoint_name))
model_ = get_model(model_type, args) model_ = get_model(model_type)
sd = torch.load(checkpoint_name, map_location='cpu') sd = torch.load(checkpoint_name, map_location='cpu')
model_.load_state_dict(sd['model']) model_.load_state_dict(sd['model'])
partitions.append(model_) partitions.append(model_)
...@@ -225,6 +267,7 @@ def main(model_type): ...@@ -225,6 +267,7 @@ def main(model_type):
# Save the model. # Save the model.
args.model_parallel_size = 1
mpu.initialize.set_model_parallel_rank(0) mpu.initialize.set_model_parallel_rank(0)
sd = {} sd = {}
sd['model'] = merged_model.state_dict_for_save_checkpoint() sd['model'] = merged_model.state_dict_for_save_checkpoint()
...@@ -240,4 +283,4 @@ def main(model_type): ...@@ -240,4 +283,4 @@ def main(model_type):
if __name__ == '__main__': if __name__ == '__main__':
main('BERT') main()
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processing data for pretraining."""
import argparse
import json
import multiprocessing
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
os.path.pardir)))
import time
import torch
try:
import nltk
nltk_available = True
except ImportError:
nltk_available = False
from megatron.tokenizer import build_tokenizer
from megatron.data import indexed_dataset
# https://stackoverflow.com/questions/33139531/preserve-empty-lines-with-nltks-punkt-tokenizer
class CustomLanguageVars(nltk.tokenize.punkt.PunktLanguageVars):
_period_context_fmt = r"""
\S* # some word material
%(SentEndChars)s # a potential sentence ending
\s* # <-- THIS is what I changed
(?=(?P<after_tok>
%(NonWord)s # either other punctuation
|
(?P<next_tok>\S+) # <-- Normally you would have \s+ here
))"""
class IdentitySplitter(object):
def tokenize(self, *text):
return text
class Encoder(object):
def __init__(self, args):
self.args = args
def initializer(self):
# Use Encoder class as a container for global data
Encoder.tokenizer = build_tokenizer(self.args)
if self.args.split_sentences:
if not nltk_available:
print("NLTK is not available to split sentences.")
exit()
splitter = nltk.load("tokenizers/punkt/english.pickle")
if self.args.keep_newlines:
# this prevents punkt from eating newlines after sentences
Encoder.splitter = nltk.tokenize.punkt.PunktSentenceTokenizer(
train_text = splitter._params,
lang_vars = CustomLanguageVars())
else:
Encoder.splitter = splitter
else:
Encoder.splitter = IdentitySplitter()
def encode(self, json_line):
data = json.loads(json_line)
ids = {}
for key in self.args.json_keys:
text = data[key]
doc_ids = []
for sentence in Encoder.splitter.tokenize(text):
sentence_ids = Encoder.tokenizer.tokenize(sentence)
if len(sentence_ids) > 0:
doc_ids.append(sentence_ids)
if self.args.append_eod:
doc_ids[-1].append(Encoder.tokenizer.eod)
ids[key] = doc_ids
return ids, len(json_line)
def get_args():
parser = argparse.ArgumentParser()
group = parser.add_argument_group(title='input data')
group.add_argument('--input', type=str, required=True,
help='Path to input JSON')
group.add_argument('--json-keys', nargs='+', default=['text'],
help='space separate listed of keys to extract from json')
group.add_argument('--split-sentences', action='store_true',
help='Split documents into sentences.')
group.add_argument('--keep-newlines', action='store_true',
help='Keep newlines between sentences when splitting.')
group = parser.add_argument_group(title='tokenizer')
group.add_argument('--tokenizer-type', type=str, required=True,
choices=['BertWordPieceLowerCase',
'GPT2BPETokenizer'],
help='What type of tokenizer to use.')
group.add_argument('--vocab-file', type=str, default=None,
help='Path to the vocab file')
group.add_argument('--merge-file', type=str, default=None,
help='Path to the BPE merge file (if necessary).')
group.add_argument('--append-eod', action='store_true',
help='Append an <eod> token to the end of a document.')
group = parser.add_argument_group(title='output data')
group.add_argument('--output-prefix', type=str, required=True,
help='Path to binary output file without suffix')
group.add_argument('--dataset-impl', type=str, default='mmap',
choices=['lazy', 'cached', 'mmap'])
group = parser.add_argument_group(title='runtime')
group.add_argument('--workers', type=int, default=1,
help='Number of worker processes to launch')
group.add_argument('--log-interval', type=int, default=100,
help='Interval between progress updates')
args = parser.parse_args()
args.keep_empty = False
if args.tokenizer_type.lower().startswith('bert'):
if not args.split_sentences:
print("Bert tokenizer detected, are you sure you don't want to split sentences?")
# some default/dummy values for the tokenizer
args.rank = 0
args.make_vocab_size_divisible_by = 128
args.model_parallel_size = 1
return args
def main():
args = get_args()
startup_start = time.time()
print("Opening", args.input)
fin = open(args.input, 'r', encoding='utf-8')
if nltk_available and args.split_sentences:
nltk.download("punkt", quiet=True)
encoder = Encoder(args)
tokenizer = build_tokenizer(args)
pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
encoded_docs = pool.imap(encoder.encode, fin, 25)
#encoded_docs = map(encoder.encode, fin)
level = "document"
if args.split_sentences:
level = "sentence"
print(f"Vocab size: {tokenizer.vocab_size}")
print(f"Output prefix: {args.output_prefix}")
output_bin_files = {}
output_idx_files = {}
builders = {}
for key in args.json_keys:
output_bin_files[key] = "{}_{}_{}.bin".format(args.output_prefix,
key, level)
output_idx_files[key] = "{}_{}_{}.idx".format(args.output_prefix,
key, level)
builders[key] = indexed_dataset.make_builder(output_bin_files[key],
impl=args.dataset_impl,
vocab_size=tokenizer.vocab_size)
startup_end = time.time()
proc_start = time.time()
total_bytes_processed = 0
print("Time to startup:", startup_end - startup_start)
for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
total_bytes_processed += bytes_processed
for key, sentences in doc.items():
for sentence in sentences:
builders[key].add_item(torch.IntTensor(sentence))
builders[key].end_document()
if i % args.log_interval == 0:
current = time.time()
elapsed = current - proc_start
mbs = total_bytes_processed/elapsed/1024/1024
print(f"Processed {i} documents",
f"({i/elapsed} docs/s, {mbs} MB/s).",
file=sys.stderr)
for key in args.json_keys:
builders[key].finalize(output_idx_files[key])
if __name__ == '__main__':
main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment