Commit 41276b6c authored by Vijay Korthikanti's avatar Vijay Korthikanti
Browse files

Merge branch 'main' into nmt-main

parents a44360ed fc7f4f03
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from commons import print_separator from commons import print_separator
from commons import initialize_distributed from commons import initialize_distributed
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from mpu import layers from mpu import layers
from commons import set_random_seed from commons import set_random_seed
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from commons import print_separator from commons import print_separator
from commons import initialize_distributed from commons import initialize_distributed
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch import torch
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from apex.optimizers import FusedAdam as Adam from apex.optimizers import FusedAdam as Adam
from apex.optimizers import FusedSGD as SGD from apex.optimizers import FusedSGD as SGD
...@@ -145,6 +132,7 @@ def get_megatron_optimizer(model, ...@@ -145,6 +132,7 @@ def get_megatron_optimizer(model,
args.use_contiguous_buffers_in_local_ddp, args.use_contiguous_buffers_in_local_ddp,
args.fp16, args.fp16,
args.bf16, args.bf16,
args.params_dtype,
grad_scaler, grad_scaler,
model) model)
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Gradient clipping.""" """Gradient clipping."""
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Megatron distributed optimizer.""" """Megatron distributed optimizer."""
...@@ -351,7 +338,7 @@ class DistributedOptimizer(MixedPrecisionOptimizer): ...@@ -351,7 +338,7 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad, def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp, params_have_main_grad, use_contiguous_buffers_in_local_ddp,
fp16, bf16, grad_scaler, models): fp16, bf16, params_dtype, grad_scaler, models):
""" """
See top of class definition for argument descriptions. See top of class definition for argument descriptions.
...@@ -365,7 +352,7 @@ class DistributedOptimizer(MixedPrecisionOptimizer): ...@@ -365,7 +352,7 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
super().__init__( super().__init__(
optimizer, clip_grad, log_num_zeros_in_grad, optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp, params_have_main_grad, use_contiguous_buffers_in_local_ddp,
fp16, bf16, grad_scaler, models) fp16, bf16, params_dtype, grad_scaler, models)
# Verify that contiguous buffers are being used. # Verify that contiguous buffers are being used.
# - Note: this should already be checked in arguments.py. # - Note: this should already be checked in arguments.py.
...@@ -394,6 +381,21 @@ class DistributedOptimizer(MixedPrecisionOptimizer): ...@@ -394,6 +381,21 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
self.model_param_gbuf_map, self.model_param_gbuf_map,
self.opt_group_ranges) self.opt_group_ranges)
# Initialize param buffers.
# - These are views on the DDP model's grad buffers, that share
# storage & have their own dtype. This is safe because the param
# dtype size is always <= grad dtype size.
self.param_buffers = []
for model_index, model in enumerate(self.models):
current_param_buffers = {}
for dtype, grad_buffer in model._grad_buffers.items():
param_buffer = torch.tensor(grad_buffer.data.storage()._untyped(),
dtype = params_dtype,
device = grad_buffer.data.device)
param_buffer = param_buffer[:grad_buffer.numel_padded]
current_param_buffers[dtype] = param_buffer
self.param_buffers.append(current_param_buffers)
# Update optimizer groups. # Update optimizer groups.
# - Also, leverage state_dict() and load_state_dict() to # - Also, leverage state_dict() and load_state_dict() to
# recast preexisting per-param state tensors. # recast preexisting per-param state tensors.
...@@ -449,8 +451,9 @@ class DistributedOptimizer(MixedPrecisionOptimizer): ...@@ -449,8 +451,9 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
# Grad scaler. # Grad scaler.
if 'grad_scaler' not in state_dict: if 'grad_scaler' not in state_dict:
print_rank_0('***WARNING*** found an old checkpoint, will not ' if self.fp16:
'load grad scaler ...') print_rank_0('***WARNING*** found an old checkpoint, will not '
'load grad scaler ...')
else: else:
if self.grad_scaler: if self.grad_scaler:
self.grad_scaler.load_state_dict(state_dict['grad_scaler']) self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
...@@ -487,36 +490,48 @@ class DistributedOptimizer(MixedPrecisionOptimizer): ...@@ -487,36 +490,48 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
_zero_grad_group_helper(group, set_to_none) _zero_grad_group_helper(group, set_to_none)
def get_model_grad_buffer_dp_views(self): @staticmethod
def get_model_buffer_dp_views(model_buffers):
""" """
Get shard views of each of the DDP's grad buffers. Get shard views of each of the DDP's param/grad buffers.
In this nested list, the top level is grouped by the virtual model In this nested list, the top level is grouped by the virtual model
index and the grad buffer's data type. The sub-level is a list of index and the buffer's data type. The sub-level is a list of
shards of that grad buffer, where each shard in the list represents shards of that buffer, where each shard in the list represents
a contiguous view of the grad buffer, that is owned by a data-parallel a contiguous view of the buffer, that is owned by a data-parallel
rank. The shard boundary does not respect parameter boundaries, and rank. The shard boundary does not respect parameter boundaries, and
so the elements of some parameters are split across data parallel so the elements of some parameters are split across data parallel
ranks. ranks.
Additionally, return references to the entire grad buffers, for use Additionally, return references to the entire buffers, for use
in _reduce_scatter_base and _all_gather_base. in _reduce_scatter_base and _all_gather_base.
""" """
data_parallel_world_size = mpu.get_data_parallel_world_size() data_parallel_world_size = mpu.get_data_parallel_world_size()
# Grad buffer views. # Buffer views.
gbuf_view_items = [] view_items = []
for model_index, model in enumerate(self.models): for model_index, buffers in enumerate(model_buffers):
for dtype, gbuf in model._grad_buffers.items(): for dtype, buf in buffers.items():
assert buf.numel() % data_parallel_world_size == 0
shard_size = int(buf.numel() / data_parallel_world_size)
buf_views = [buf[(r*shard_size):((r+1)*shard_size)]
for r in range(data_parallel_world_size)]
view_items.append((model_index, dtype, buf, buf_views))
assert gbuf.numel_padded % data_parallel_world_size == 0 return view_items
shard_size = int(gbuf.numel_padded / data_parallel_world_size)
gbuf_views = [gbuf.data[(r*shard_size):((r+1)*shard_size)]
for r in range(data_parallel_world_size)]
gbuf_view_items.append((model_index, dtype, gbuf.data, gbuf_views))
return gbuf_view_items
def get_model_grad_buffer_dp_views(self):
return self.get_model_buffer_dp_views([
{dtype : mem_buffer.data}
for model in self.models
for dtype, mem_buffer in model._grad_buffers.items()])
def get_model_param_buffer_dp_views(self):
return self.get_model_buffer_dp_views(self.param_buffers)
def reduce_model_grads(self, args, timers): def reduce_model_grads(self, args, timers):
...@@ -532,17 +547,20 @@ class DistributedOptimizer(MixedPrecisionOptimizer): ...@@ -532,17 +547,20 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
""" """
# All-reduce layer-norm grads (for sequence parallelism). # All-reduce layer-norm grads (for sequence parallelism).
timers('backward-layernorm-all-reduce').start() timers('layernorm-grads-all-reduce', log_level=1).start(
barrier=args.barrier_with_L1_time)
self.allreduce_layernorm_grads(args) self.allreduce_layernorm_grads(args)
timers('backward-layernorm-all-reduce').stop() timers('layernorm-grads-all-reduce').stop()
# All-reduce embedding grads. # All-reduce embedding grads.
timers('backward-embedding-all-reduce').start() timers('embedding-grads-all-reduce', log_level=1).start(
barrier=args.barrier_with_L1_time)
self.allreduce_embedding_grads(args) self.allreduce_embedding_grads(args)
timers('backward-embedding-all-reduce').stop() timers('embedding-grads-all-reduce').stop()
# Reduce-scatter setup. # Reduce-scatter setup.
timers('backward-params-all-reduce').start() timers('grads-reduce-scatter', log_level=1).start(
barrier=args.barrier_with_L1_time)
data_parallel_rank = mpu.get_data_parallel_rank() data_parallel_rank = mpu.get_data_parallel_rank()
data_parallel_world_size = mpu.get_data_parallel_world_size() data_parallel_world_size = mpu.get_data_parallel_world_size()
data_parallel_group = mpu.get_data_parallel_group() data_parallel_group = mpu.get_data_parallel_group()
...@@ -563,46 +581,49 @@ class DistributedOptimizer(MixedPrecisionOptimizer): ...@@ -563,46 +581,49 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
group = data_parallel_group, group = data_parallel_group,
) )
timers('backward-params-all-reduce').stop() timers('grads-reduce-scatter').stop()
def gather_model_params(self, args, timers): def gather_model_params(self, args, timers):
""" """
All-gather updated model params. All-gather updated model params.
The DDP's grad buffer is used for the all-gather, and thus no The DDP's param buffer is used for the all-gather, and thus no
tensors are dynamically allocated. After the all-gather, the params tensors are dynamically allocated. After the all-gather, the params
can be copied from param.main_grad to param. can be copied from the param buffer to the param.
""" """
timers('backward-params-all-gather').start() timers('params-all-gather', log_level=1).start(
barrier=args.barrier_with_L1_time)
data_parallel_rank = mpu.get_data_parallel_rank() data_parallel_rank = mpu.get_data_parallel_rank()
data_parallel_group = mpu.get_data_parallel_group() data_parallel_group = mpu.get_data_parallel_group()
# All-gather updated main params. # All-gather updated main params.
# - All grad buffer views are guaranteed to have the same num elements # - All param buffer views are guaranteed to have the same num elements
# across all data parallel ranks, with grad buffer padding that is done # across all data parallel ranks, due to grad buffer padding that is
# in distributed.py. Thus, all sub-views will have consistent start/end # done in distributed.py, and extended to the param buffers. Thus,
# indexes across data parallel ranks. # all sub-views will have consistent start/end indexes across data
gbuf_view_items = self.get_model_grad_buffer_dp_views() # parallel ranks.
for index, (model_index, dtype, gbuf, gbuf_views) \ pbuf_view_items = self.get_model_param_buffer_dp_views()
in enumerate(gbuf_view_items): for index, (model_index, dtype, pbuf, pbuf_views) \
in enumerate(pbuf_view_items):
torch.distributed._all_gather_base( torch.distributed._all_gather_base(
gbuf, pbuf,
gbuf_views[data_parallel_rank], pbuf_views[data_parallel_rank],
group = data_parallel_group, group = data_parallel_group,
) )
# Each model param now contains its updated values in its # Copy from param buffer to each param.
# '.main_grad' field. for model_id, model in enumerate(self.models):
for model in self.models:
for dtype, param_map in model._grad_buffer_param_index_map.items(): for dtype, param_map in model._grad_buffer_param_index_map.items():
for param in param_map: for param, buf_range in param_map.items():
param.detach().copy_(param.main_grad) param_buf = self.param_buffers[model_id][dtype]
param_buf_shard = param_buf[buf_range[0]:buf_range[1]]
param.view(-1).detach().copy_(param_buf_shard)
timers('backward-params-all-gather').stop() timers('params-all-gather').stop()
def _collect_main_grad_data_for_unscaling(self): def _collect_main_grad_data_for_unscaling(self):
...@@ -680,14 +701,17 @@ class DistributedOptimizer(MixedPrecisionOptimizer): ...@@ -680,14 +701,17 @@ class DistributedOptimizer(MixedPrecisionOptimizer):
model_group): model_group):
param_range_map = self.get_model_param_range_map(model_param) param_range_map = self.get_model_param_range_map(model_param)
param_range = param_range_map["param"] world_range = param_range_map["gbuf_world"]
assert param_range.size == shard_main_param.nelement()
model_grad = model_param.main_grad assert world_range.size == shard_main_param.nelement()
shard_model_grad = model_grad.view(-1) \
[param_range.start:param_range.end] model_id, dtype = self.model_param_gbuf_map[model_param]
model_param_buffer = self.param_buffers[model_id][dtype]
shard_model_param = model_param_buffer.view(-1) \
[world_range.start:world_range.end]
shard_model_grad.data.copy_(shard_main_param) shard_model_param.data.copy_(shard_main_param)
# Copy shard groups to model groups. # Copy shard groups to model groups.
copy_group_params(self.shard_fp32_from_float16_groups, copy_group_params(self.shard_fp32_from_float16_groups,
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Megatron grad scaler.""" """Megatron grad scaler."""
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Megatron optimizer.""" """Megatron optimizer."""
...@@ -294,21 +281,24 @@ class MegatronOptimizer(ABC): ...@@ -294,21 +281,24 @@ class MegatronOptimizer(ABC):
"""All-reduce all grads, and all-reduce embeddings.""" """All-reduce all grads, and all-reduce embeddings."""
# All-reduce layer-norm grads (for sequence parallelism). # All-reduce layer-norm grads (for sequence parallelism).
timers('backward-layernorm-all-reduce').start() timers('layernorm-grads-all-reduce', log_level=1).start(
barrier=args.barrier_with_L1_time)
self.allreduce_layernorm_grads(args) self.allreduce_layernorm_grads(args)
timers('backward-layernorm-all-reduce').stop() timers('layernorm-grads-all-reduce').stop()
# All-reduce if needed. # All-reduce if needed.
if args.DDP_impl == 'local': if args.DDP_impl == 'local':
timers('backward-params-all-reduce').start() timers('grads-all-reduce', log_level=1).start(
barrier=args.barrier_with_L1_time)
for model in self.models: for model in self.models:
model.allreduce_gradients() model.allreduce_gradients()
timers('backward-params-all-reduce').stop() timers('grads-all-reduce').stop()
# All-reduce embedding grads. # All-reduce embedding grads.
timers('backward-embedding-all-reduce').start() timers('embedding-grads-all-reduce', log_level=1).start(
barrier=args.barrier_with_L1_time)
self.allreduce_embedding_grads(args) self.allreduce_embedding_grads(args)
timers('backward-embedding-all-reduce').stop() timers('embedding-grads-all-reduce').stop()
class MixedPrecisionOptimizer(MegatronOptimizer): class MixedPrecisionOptimizer(MegatronOptimizer):
...@@ -332,6 +322,7 @@ class MixedPrecisionOptimizer(MegatronOptimizer): ...@@ -332,6 +322,7 @@ class MixedPrecisionOptimizer(MegatronOptimizer):
is using a contiguous buffer to hold the model grads. is using a contiguous buffer to hold the model grads.
fp16: if true, the model is running in fp16. fp16: if true, the model is running in fp16.
bf16: if true, the model is running in bfloat16. bf16: if true, the model is running in bfloat16.
params_dtype: used by distributed optimizer.
grad_scaler: used for scaling gradients. Note that this can be grad_scaler: used for scaling gradients. Note that this can be
None. This case happens when `bf16 = True` and we don't None. This case happens when `bf16 = True` and we don't
use any loss scale. Note that for `bf16 = True`, we can have use any loss scale. Note that for `bf16 = True`, we can have
...@@ -343,7 +334,7 @@ class MixedPrecisionOptimizer(MegatronOptimizer): ...@@ -343,7 +334,7 @@ class MixedPrecisionOptimizer(MegatronOptimizer):
def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad, def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp, params_have_main_grad, use_contiguous_buffers_in_local_ddp,
fp16, bf16, grad_scaler, fp16, bf16, params_dtype, grad_scaler,
models): models):
super().__init__( super().__init__(
...@@ -353,6 +344,7 @@ class MixedPrecisionOptimizer(MegatronOptimizer): ...@@ -353,6 +344,7 @@ class MixedPrecisionOptimizer(MegatronOptimizer):
self.fp16 = fp16 self.fp16 = fp16
self.bf16 = bf16 self.bf16 = bf16
self.params_dtype = params_dtype
self.grad_scaler = grad_scaler self.grad_scaler = grad_scaler
# None grad scaler is only supported for bf16. # None grad scaler is only supported for bf16.
...@@ -416,7 +408,8 @@ class MixedPrecisionOptimizer(MegatronOptimizer): ...@@ -416,7 +408,8 @@ class MixedPrecisionOptimizer(MegatronOptimizer):
def step(self, args, timers): def step(self, args, timers):
# Copy gradients from model params to main params. # Copy gradients from model params to main params.
timers('optimizer-copy-to-main-grad').start() timers('optimizer-copy-to-main-grad', log_level=1).start(
barrier=args.barrier_with_L1_time)
self._copy_model_grads_to_main_grads() self._copy_model_grads_to_main_grads()
timers('optimizer-copy-to-main-grad').stop() timers('optimizer-copy-to-main-grad').stop()
...@@ -425,7 +418,8 @@ class MixedPrecisionOptimizer(MegatronOptimizer): ...@@ -425,7 +418,8 @@ class MixedPrecisionOptimizer(MegatronOptimizer):
if self.grad_scaler: if self.grad_scaler:
# Unscale and check for inf/nan. # Unscale and check for inf/nan.
timers('optimizer-unscale-and-check-inf').start() timers('optimizer-unscale-and-check-inf', log_level=1).start(
barrier=args.barrier_with_L1_time)
found_inf_flag = self._unscale_main_grads_and_check_for_nan() found_inf_flag = self._unscale_main_grads_and_check_for_nan()
timers('optimizer-unscale-and-check-inf').stop() timers('optimizer-unscale-and-check-inf').stop()
...@@ -438,25 +432,29 @@ class MixedPrecisionOptimizer(MegatronOptimizer): ...@@ -438,25 +432,29 @@ class MixedPrecisionOptimizer(MegatronOptimizer):
return False, None, None return False, None, None
# Clip the main gradients. # Clip the main gradients.
timers('optimizer-clip-main-grad').start() timers('optimizer-clip-main-grad', log_level=1).start(
barrier=args.barrier_with_L1_time)
grad_norm = None grad_norm = None
if self.clip_grad > 0.0: if self.clip_grad > 0.0:
grad_norm = self.clip_grad_norm(self.clip_grad) grad_norm = self.clip_grad_norm(self.clip_grad)
timers('optimizer-clip-main-grad').stop() timers('optimizer-clip-main-grad').stop()
# Count the zeros in the grads. # Count the zeros in the grads.
timers('optimizer-count-zeros').start() timers('optimizer-count-zeros', log_level=1).start(
barrier=args.barrier_with_L1_time)
num_zeros_in_grad = self.count_zeros() if \ num_zeros_in_grad = self.count_zeros() if \
self.log_num_zeros_in_grad else None self.log_num_zeros_in_grad else None
timers('optimizer-count-zeros').stop() timers('optimizer-count-zeros').stop()
# Step the optimizer. # Step the optimizer.
timers('optimizer-inner-step').start() timers('optimizer-inner-step', log_level=1).start(
barrier=args.barrier_with_L1_time)
self.optimizer.step() self.optimizer.step()
timers('optimizer-inner-step').stop() timers('optimizer-inner-step').stop()
# Update params from main params. # Update params from main params.
timers('optimizer-copy-main-to-model-params').start() timers('optimizer-copy-main-to-model-params', log_level=1).start(
barrier=args.barrier_with_L1_time)
self._copy_main_params_to_model_params() self._copy_main_params_to_model_params()
timers('optimizer-copy-main-to-model-params').stop() timers('optimizer-copy-main-to-model-params').stop()
...@@ -496,12 +494,12 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer): ...@@ -496,12 +494,12 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad, def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp, params_have_main_grad, use_contiguous_buffers_in_local_ddp,
fp16, bf16, grad_scaler, models): fp16, bf16, params_dtype, grad_scaler, models):
super().__init__( super().__init__(
optimizer, clip_grad, log_num_zeros_in_grad, optimizer, clip_grad, log_num_zeros_in_grad,
params_have_main_grad, use_contiguous_buffers_in_local_ddp, params_have_main_grad, use_contiguous_buffers_in_local_ddp,
fp16, bf16, grad_scaler, models) fp16, bf16, params_dtype, grad_scaler, models)
# ====================== # ======================
# main parameter stuff # main parameter stuff
...@@ -671,8 +669,9 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer): ...@@ -671,8 +669,9 @@ class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
# Grad scaler. # Grad scaler.
if 'grad_scaler' not in state_dict: if 'grad_scaler' not in state_dict:
print_rank_0('***WARNING*** found an old checkpoint, will not ' if self.fp16:
'load grad scaler ...') print_rank_0('***WARNING*** found an old checkpoint, will not '
'load grad scaler ...')
else: else:
if self.grad_scaler: if self.grad_scaler:
self.grad_scaler.load_state_dict(state_dict['grad_scaler']) self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
...@@ -725,7 +724,8 @@ class FP32Optimizer(MegatronOptimizer): ...@@ -725,7 +724,8 @@ class FP32Optimizer(MegatronOptimizer):
Always return successful since there is no overflow.""" Always return successful since there is no overflow."""
# Copy main_grads to grads. # Copy main_grads to grads.
timers('optimizer-copy-to-main-grad').start() timers('optimizer-copy-to-main-grad', log_level=1).start(
barrier=args.barrier_with_L1_time)
if self.params_have_main_grad: if self.params_have_main_grad:
for param_group in self.optimizer.param_groups: for param_group in self.optimizer.param_groups:
for param in param_group['params']: for param in param_group['params']:
...@@ -739,20 +739,23 @@ class FP32Optimizer(MegatronOptimizer): ...@@ -739,20 +739,23 @@ class FP32Optimizer(MegatronOptimizer):
timers('optimizer-copy-to-main-grad').stop() timers('optimizer-copy-to-main-grad').stop()
# Clip gradients. # Clip gradients.
timers('optimizer-clip-main-grad').start() timers('optimizer-clip-main-grad', log_level=1).start(
barrier=args.barrier_with_L1_time)
grad_norm = None grad_norm = None
if self.clip_grad > 0.0: if self.clip_grad > 0.0:
grad_norm = self.clip_grad_norm(self.clip_grad) grad_norm = self.clip_grad_norm(self.clip_grad)
timers('optimizer-clip-main-grad').stop() timers('optimizer-clip-main-grad').stop()
# count the zeros in the grads # count the zeros in the grads
timers('optimizer-count-zeros').start() timers('optimizer-count-zeros', log_level=1).start(
barrier=args.barrier_with_L1_time)
num_zeros_in_grad = self.count_zeros() if \ num_zeros_in_grad = self.count_zeros() if \
self.log_num_zeros_in_grad else None self.log_num_zeros_in_grad else None
timers('optimizer-count-zeros').stop() timers('optimizer-count-zeros').stop()
# Update parameters. # Update parameters.
timers('optimizer-inner-step').start() timers('optimizer-inner-step', log_level=1).start(
barrier=args.barrier_with_L1_time)
self.optimizer.step() self.optimizer.step()
timers('optimizer-inner-step').stop() timers('optimizer-inner-step').stop()
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Learning rate decay and weight decay incr functions.""" """Learning rate decay and weight decay incr functions."""
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import reduce from functools import reduce
import operator import operator
...@@ -163,7 +150,7 @@ def recv_forward(tensor_shape=None, dtype_=None, timers=None): ...@@ -163,7 +150,7 @@ def recv_forward(tensor_shape=None, dtype_=None, timers=None):
input_tensor = None input_tensor = None
else: else:
if timers is not None: if timers is not None:
timers('forward-recv').start() timers('forward-recv', log_level=2).start()
input_tensor, _ = _communicate( input_tensor, _ = _communicate(
tensor_send_next=None, tensor_send_next=None,
tensor_send_prev=None, tensor_send_prev=None,
...@@ -182,7 +169,7 @@ def recv_backward(tensor_shape=None, timers=None): ...@@ -182,7 +169,7 @@ def recv_backward(tensor_shape=None, timers=None):
output_tensor_grad = None output_tensor_grad = None
else: else:
if timers is not None: if timers is not None:
timers('backward-recv').start() timers('backward-recv', log_level=2).start()
_, output_tensor_grad = _communicate( _, output_tensor_grad = _communicate(
tensor_send_next=None, tensor_send_next=None,
tensor_send_prev=None, tensor_send_prev=None,
...@@ -199,7 +186,7 @@ def send_forward(output_tensor, tensor_shape=None, dtype_=None, timers=None): ...@@ -199,7 +186,7 @@ def send_forward(output_tensor, tensor_shape=None, dtype_=None, timers=None):
if not mpu.is_pipeline_last_stage(): if not mpu.is_pipeline_last_stage():
if timers is not None: if timers is not None:
timers('forward-send').start() timers('forward-send', log_level=2).start()
_communicate( _communicate(
tensor_send_next=output_tensor, tensor_send_next=output_tensor,
tensor_send_prev=None, tensor_send_prev=None,
...@@ -215,7 +202,7 @@ def send_backward(input_tensor_grad, tensor_shape=None, timers=None): ...@@ -215,7 +202,7 @@ def send_backward(input_tensor_grad, tensor_shape=None, timers=None):
"""Send tensor to previous rank in pipeline (backward send).""" """Send tensor to previous rank in pipeline (backward send)."""
if not mpu.is_pipeline_first_stage(): if not mpu.is_pipeline_first_stage():
if timers is not None: if timers is not None:
timers('backward-send').start() timers('backward-send', log_level=2).start()
_communicate( _communicate(
tensor_send_next=None, tensor_send_next=None,
tensor_send_prev=input_tensor_grad, tensor_send_prev=input_tensor_grad,
...@@ -232,7 +219,7 @@ def send_forward_recv_backward(output_tensor, tensor_shape=None, timers=None): ...@@ -232,7 +219,7 @@ def send_forward_recv_backward(output_tensor, tensor_shape=None, timers=None):
output_tensor_grad = None output_tensor_grad = None
else: else:
if timers is not None: if timers is not None:
timers('forward-send-backward-recv').start() timers('forward-send-backward-recv', log_level=2).start()
_, output_tensor_grad = _communicate( _, output_tensor_grad = _communicate(
tensor_send_next=output_tensor, tensor_send_next=output_tensor,
tensor_send_prev=None, tensor_send_prev=None,
...@@ -250,7 +237,7 @@ def send_backward_recv_forward(input_tensor_grad, tensor_shape=None, timers=None ...@@ -250,7 +237,7 @@ def send_backward_recv_forward(input_tensor_grad, tensor_shape=None, timers=None
input_tensor = None input_tensor = None
else: else:
if timers is not None: if timers is not None:
timers('backward-send-forward-recv').start() timers('backward-send-forward-recv', log_level=2).start()
input_tensor, _ = _communicate( input_tensor, _ = _communicate(
tensor_send_next=None, tensor_send_next=None,
tensor_send_prev=input_tensor_grad, tensor_send_prev=input_tensor_grad,
...@@ -265,7 +252,7 @@ def send_backward_recv_forward(input_tensor_grad, tensor_shape=None, timers=None ...@@ -265,7 +252,7 @@ def send_backward_recv_forward(input_tensor_grad, tensor_shape=None, timers=None
def send_forward_recv_forward(output_tensor, recv_prev, tensor_shape=None, timers=None): def send_forward_recv_forward(output_tensor, recv_prev, tensor_shape=None, timers=None):
"""Batched recv from previous rank and send to next rank in pipeline.""" """Batched recv from previous rank and send to next rank in pipeline."""
if timers is not None: if timers is not None:
timers('forward-send-forward-recv').start() timers('forward-send-forward-recv', log_level=2).start()
input_tensor, _ = _communicate( input_tensor, _ = _communicate(
tensor_send_next=output_tensor, tensor_send_next=output_tensor,
tensor_send_prev=None, tensor_send_prev=None,
...@@ -280,7 +267,7 @@ def send_forward_recv_forward(output_tensor, recv_prev, tensor_shape=None, timer ...@@ -280,7 +267,7 @@ def send_forward_recv_forward(output_tensor, recv_prev, tensor_shape=None, timer
def send_backward_recv_backward(input_tensor_grad, recv_next, tensor_shape=None, timers=None): def send_backward_recv_backward(input_tensor_grad, recv_next, tensor_shape=None, timers=None):
"""Batched recv from next rank and send to previous rank in pipeline.""" """Batched recv from next rank and send to previous rank in pipeline."""
if timers is not None: if timers is not None:
timers('backward-send-backward-recv').start() timers('backward-send-backward-recv', log_level=2).start()
_, output_tensor_grad = _communicate( _, output_tensor_grad = _communicate(
tensor_send_next=None, tensor_send_next=None,
tensor_send_prev=input_tensor_grad, tensor_send_prev=input_tensor_grad,
...@@ -297,7 +284,8 @@ def send_forward_backward_recv_forward_backward( ...@@ -297,7 +284,8 @@ def send_forward_backward_recv_forward_backward(
recv_next, tensor_shape=None, timers=None): recv_next, tensor_shape=None, timers=None):
"""Batched send and recv with previous and next ranks in pipeline.""" """Batched send and recv with previous and next ranks in pipeline."""
if timers is not None: if timers is not None:
timers('forward-backward-send-forward-backward-recv').start() timers('forward-backward-send-forward-backward-recv',
log_level=2).start()
input_tensor, output_tensor_grad = _communicate( input_tensor, output_tensor_grad = _communicate(
tensor_send_next=output_tensor, tensor_send_next=output_tensor,
tensor_send_prev=input_tensor_grad, tensor_send_prev=input_tensor_grad,
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager from contextlib import contextmanager
import torch import torch
...@@ -107,6 +94,7 @@ def forward_step(forward_step_func, ...@@ -107,6 +94,7 @@ def forward_step(forward_step_func,
model, model,
input_tensor, input_tensor,
forward_data_store, forward_data_store,
timers,
collect_non_loss_data=False): collect_non_loss_data=False):
"""Forward step for passed-in model. """Forward step for passed-in model.
...@@ -115,9 +103,9 @@ def forward_step(forward_step_func, ...@@ -115,9 +103,9 @@ def forward_step(forward_step_func,
Returns output tensor.""" Returns output tensor."""
args = get_args() args = get_args()
timers = get_timers()
timers('forward-compute').start() if timers is not None:
timers('forward-compute', log_level=2).start()
unwrapped_model = unwrap_model( unwrapped_model = unwrap_model(
model, (torchDDP, LocalDDP, Float16Module)) model, (torchDDP, LocalDDP, Float16Module))
...@@ -138,7 +126,8 @@ def forward_step(forward_step_func, ...@@ -138,7 +126,8 @@ def forward_step(forward_step_func,
data = loss_func(output_tensor, non_loss_data=True) data = loss_func(output_tensor, non_loss_data=True)
forward_data_store.append(data) forward_data_store.append(data)
timers('forward-compute').stop() if timers is not None:
timers('forward-compute').stop()
# If T5 model (or other model with encoder and decoder) # If T5 model (or other model with encoder and decoder)
# and in decoder stack, then send encoder_hidden_state # and in decoder stack, then send encoder_hidden_state
...@@ -151,7 +140,8 @@ def forward_step(forward_step_func, ...@@ -151,7 +140,8 @@ def forward_step(forward_step_func,
return [output_tensor] return [output_tensor]
def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad): def backward_step(optimizer, input_tensor, output_tensor,
output_tensor_grad, timers):
"""Backward step through passed-in output tensor. """Backward step through passed-in output tensor.
If last stage, output_tensor_grad is None, otherwise gradient of loss If last stage, output_tensor_grad is None, otherwise gradient of loss
...@@ -165,8 +155,8 @@ def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad): ...@@ -165,8 +155,8 @@ def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
# connections. # connections.
args = get_args() args = get_args()
timers = get_timers() if timers is not None:
timers('backward-compute').start() timers('backward-compute', log_level=2).start()
# Retain the grad on the input_tensor. # Retain the grad on the input_tensor.
unwrap_input_tensor_grad = False unwrap_input_tensor_grad = False
...@@ -207,7 +197,8 @@ def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad): ...@@ -207,7 +197,8 @@ def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
if unwrap_input_tensor_grad: if unwrap_input_tensor_grad:
input_tensor_grad = input_tensor_grad[0] input_tensor_grad = input_tensor_grad[0]
timers('backward-compute').stop() if timers is not None:
timers('backward-compute').stop()
return input_tensor_grad return input_tensor_grad
...@@ -243,18 +234,19 @@ def forward_backward_no_pipelining(forward_step_func, ...@@ -243,18 +234,19 @@ def forward_backward_no_pipelining(forward_step_func,
for i in range(get_num_microbatches() - 1): for i in range(get_num_microbatches() - 1):
output_tensor = forward_step(forward_step_func, data_iterator, output_tensor = forward_step(forward_step_func, data_iterator,
model, input_tensor, forward_data_store, model, input_tensor, forward_data_store,
collect_non_loss_data) timers, collect_non_loss_data)
if not forward_only: if not forward_only:
backward_step(optimizer, input_tensor, output_tensor, backward_step(optimizer, input_tensor, output_tensor,
output_tensor_grad) timers, output_tensor_grad)
# Run computation for last microbatch out of context handler (want to # Run computation for last microbatch out of context handler (want to
# synchronize gradients). # synchronize gradients).
output_tensor = forward_step(forward_step_func, data_iterator, output_tensor = forward_step(forward_step_func, data_iterator,
model, input_tensor, forward_data_store, model, input_tensor, forward_data_store,
collect_non_loss_data) timers, collect_non_loss_data)
if not forward_only: if not forward_only:
backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad) backward_step(optimizer, input_tensor, output_tensor,
output_tensor_grad, timers)
return forward_data_store return forward_data_store
...@@ -269,6 +261,9 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, ...@@ -269,6 +261,9 @@ def forward_backward_pipelining_with_interleaving(forward_step_func,
communication between pipeline stages as needed. communication between pipeline stages as needed.
Returns dictionary with losses if the last stage, empty dict otherwise.""" Returns dictionary with losses if the last stage, empty dict otherwise."""
args = get_args()
input_tensors = [[] for _ in range(len(model))] input_tensors = [[] for _ in range(len(model))]
output_tensors = [[] for _ in range(len(model))] output_tensors = [[] for _ in range(len(model))]
forward_data_store = [] forward_data_store = []
...@@ -278,7 +273,6 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, ...@@ -278,7 +273,6 @@ def forward_backward_pipelining_with_interleaving(forward_step_func,
pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size() pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank() pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
args = get_args()
if args.sequence_parallel: if args.sequence_parallel:
seq_length = args.seq_length // mpu.get_tensor_model_parallel_world_size() seq_length = args.seq_length // mpu.get_tensor_model_parallel_world_size()
else: else:
...@@ -337,6 +331,7 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, ...@@ -337,6 +331,7 @@ def forward_backward_pipelining_with_interleaving(forward_step_func,
model[model_chunk_id], model[model_chunk_id],
input_tensor, input_tensor,
forward_data_store, forward_data_store,
timers,
collect_non_loss_data) collect_non_loss_data)
output_tensors[model_chunk_id].append(output_tensor) output_tensors[model_chunk_id].append(output_tensor)
...@@ -364,7 +359,8 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, ...@@ -364,7 +359,8 @@ def forward_backward_pipelining_with_interleaving(forward_step_func,
backward_step(optimizer, backward_step(optimizer,
input_tensor, input_tensor,
output_tensor, output_tensor,
output_tensor_grad) output_tensor_grad,
timers)
return input_tensor_grad return input_tensor_grad
...@@ -620,8 +616,7 @@ def forward_backward_pipelining_without_interleaving(forward_step_func, ...@@ -620,8 +616,7 @@ def forward_backward_pipelining_without_interleaving(forward_step_func,
Returns dictionary with losses if the last stage, empty dict otherwise.""" Returns dictionary with losses if the last stage, empty dict otherwise."""
args = get_args() args = get_args()
timers = get_timers()
assert len(model) == 1 assert len(model) == 1
model = model[0] model = model[0]
...@@ -656,7 +651,7 @@ def forward_backward_pipelining_without_interleaving(forward_step_func, ...@@ -656,7 +651,7 @@ def forward_backward_pipelining_without_interleaving(forward_step_func,
input_tensor = recv_forward(recv_tensor_shapes, timers=timers) input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
output_tensor = forward_step(forward_step_func, data_iterator, model, output_tensor = forward_step(forward_step_func, data_iterator, model,
input_tensor, forward_data_store, input_tensor, forward_data_store,
collect_non_loss_data) timers, collect_non_loss_data)
send_forward(output_tensor, send_tensor_shapes, timers=timers) send_forward(output_tensor, send_tensor_shapes, timers=timers)
if not forward_only: if not forward_only:
...@@ -676,7 +671,7 @@ def forward_backward_pipelining_without_interleaving(forward_step_func, ...@@ -676,7 +671,7 @@ def forward_backward_pipelining_without_interleaving(forward_step_func,
output_tensor = forward_step(forward_step_func, data_iterator, model, output_tensor = forward_step(forward_step_func, data_iterator, model,
input_tensor, forward_data_store, input_tensor, forward_data_store,
collect_non_loss_data) timers, collect_non_loss_data)
if forward_only: if forward_only:
send_forward(output_tensor, send_tensor_shapes, timers=timers) send_forward(output_tensor, send_tensor_shapes, timers=timers)
...@@ -701,7 +696,7 @@ def forward_backward_pipelining_without_interleaving(forward_step_func, ...@@ -701,7 +696,7 @@ def forward_backward_pipelining_without_interleaving(forward_step_func,
input_tensor_grad = \ input_tensor_grad = \
backward_step(optimizer, input_tensor, output_tensor, backward_step(optimizer, input_tensor, output_tensor,
output_tensor_grad) output_tensor_grad, timers)
if last_iteration: if last_iteration:
input_tensor = None input_tensor = None
...@@ -721,7 +716,7 @@ def forward_backward_pipelining_without_interleaving(forward_step_func, ...@@ -721,7 +716,7 @@ def forward_backward_pipelining_without_interleaving(forward_step_func,
input_tensor_grad = \ input_tensor_grad = \
backward_step(optimizer, input_tensor, output_tensor, backward_step(optimizer, input_tensor, output_tensor,
output_tensor_grad) output_tensor_grad, timers)
send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers) send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
......
<!-- coding=utf-8--> <!-- coding=utf-8-->
<!-- Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.--> <!-- Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.-->
<!---->
<!-- Licensed under the Apache License, Version 2.0 (the "License");-->
<!-- you may not use this file except in compliance with the License.-->
<!-- You may obtain a copy of the License at-->
<!---->
<!-- http://www.apache.org/licenses/LICENSE-2.0-->
<!---->
<!-- Unless required by applicable law or agreed to in writing, software-->
<!-- distributed under the License is distributed on an "AS IS" BASIS,-->
<!-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.-->
<!-- See the License for the specific language governing permissions and-->
<!-- limitations under the License.-->
<!DOCTYPE html> <!DOCTYPE html>
<html lang="en"> <html lang="en">
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .api import ( from .api import (
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference API.""" """Inference API."""
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Communications utilities.""" """Communications utilities."""
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Forward step utilities.""" """Forward step utilities."""
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Generation utilities.""" """Generation utilities."""
...@@ -47,10 +34,15 @@ def score_and_return_on_first_stage(model, tokens, lengths): ...@@ -47,10 +34,15 @@ def score_and_return_on_first_stage(model, tokens, lengths):
batch_size = tokens.size(0) batch_size = tokens.size(0)
max_prompt_length = lengths.max().item() max_prompt_length = lengths.max().item()
assert max_prompt_length == tokens.size(1) assert max_prompt_length == tokens.size(1)
max_sequence_length = min(max_prompt_length, args.max_position_embeddings)
if max_prompt_length > args.max_position_embeddings:
raise ValueError("Length of prompt + tokens_to_generate longer than allowed")
if max_prompt_length * batch_size >= MAX_TOKENS_TO_OOM:
raise ValueError("Too many tokens. " + str(max_prompt_length*batch_size)+ " is greater than "+str(MAX_TOKENS_TO_OOM))
# forward step. # forward step.
forward_step = ForwardStep(model, batch_size, max_sequence_length) forward_step = ForwardStep(model, batch_size, max_prompt_length)
# =================== # ===================
# Pre-allocate memory # Pre-allocate memory
...@@ -58,7 +50,7 @@ def score_and_return_on_first_stage(model, tokens, lengths): ...@@ -58,7 +50,7 @@ def score_and_return_on_first_stage(model, tokens, lengths):
# Log probability of the sequence (prompt + generated tokens). # Log probability of the sequence (prompt + generated tokens).
output_log_probs = None output_log_probs = None
output_log_probs_size = (batch_size, max_sequence_length - 1) output_log_probs_size = (batch_size, max_prompt_length - 1)
if mpu.is_pipeline_last_stage(): if mpu.is_pipeline_last_stage():
output_log_probs = torch.empty(output_log_probs_size, output_log_probs = torch.empty(output_log_probs_size,
...@@ -395,7 +387,7 @@ def beam_search_and_return_on_first_stage(model, tokens, lengths, beam_size, sto ...@@ -395,7 +387,7 @@ def beam_search_and_return_on_first_stage(model, tokens, lengths, beam_size, sto
# if cannot find stop token, add open beams to hyps # if cannot find stop token, add open beams to hyps
if not done: if not done:
for beam_id in range(beam_size): for beam_id in range(beam_size):
beam_hyp.add(tokens[beam_id].clone(), scores[beam_id], context_length + 1 - prompt_length) beam_hyp.add(tokens[beam_id].clone(), scores[beam_id].squeeze(), context_length + 1 - prompt_length)
# rank based on scores # rank based on scores
sorted_hyps = sorted(beam_hyp.beams, key=lambda x: x[0], reverse=True) sorted_hyps = sorted(beam_hyp.beams, key=lambda x: x[0], reverse=True)
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sampling utilities. """Sampling utilities.
Part of this code is inspired by: Part of this code is inspired by:
......
# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization utilities.""" """Tokenization utilities."""
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment