Commit 41276b6c authored by Vijay Korthikanti's avatar Vijay Korthikanti
Browse files

Merge branch 'main' into nmt-main

parents a44360ed fc7f4f03
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. */
#include <cuda_fp16.h>
#include <torch/extension.h>
......
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. */
#include <ATen/ATen.h>
#include <cuda.h>
......
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. */
#include <cuda_fp16.h>
#include <torch/extension.h>
......
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. */
#pragma once
......
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. */
#include <ATen/ATen.h>
#include <cuda.h>
......
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. */
#include <ATen/ATen.h>
......
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Megatron global variables."""
import os
import sys
import time
from functools import reduce
import operator
import torch
......@@ -25,6 +11,7 @@ import torch
from megatron import dist_signal_handler
from megatron.tokenizer import build_tokenizer
from .microbatches import build_num_microbatches_calculator
from .timers import Timers
_GLOBAL_ARGS = None
_GLOBAL_NUM_MICROBATCHES_CALCULATOR = None
......@@ -108,7 +95,7 @@ def set_global_variables(args):
_ = _build_tokenizer(args)
_set_tensorboard_writer(args)
_set_adlr_autoresume(args)
_set_timers()
_set_timers(args)
_set_global_memory_buffer()
if args.exit_signal_handler:
......@@ -182,11 +169,12 @@ def _set_adlr_autoresume(args):
_GLOBAL_ADLR_AUTORESUME = AutoResume
def _set_timers():
def _set_timers(args):
"""Initialize timers."""
global _GLOBAL_TIMERS
_ensure_var_is_not_initialized(_GLOBAL_TIMERS, 'timers')
_GLOBAL_TIMERS = Timers()
_GLOBAL_TIMERS = Timers(args.timing_log_level, args.timing_log_option)
def _set_global_memory_buffer():
"""Initialize global buffer"""
......@@ -205,87 +193,6 @@ def _ensure_var_is_not_initialized(var, name):
assert var is None, '{} is already initialized.'.format(name)
class _Timer:
"""Timer."""
def __init__(self, name):
self.name_ = name
self.elapsed_ = 0.0
self.started_ = False
self.start_time = time.time()
def start(self):
"""Start the timer."""
assert not self.started_, 'timer has already been started'
torch.cuda.synchronize()
self.start_time = time.time()
self.started_ = True
def stop(self):
"""Stop the timer."""
assert self.started_, 'timer is not started'
torch.cuda.synchronize()
self.elapsed_ += (time.time() - self.start_time)
self.started_ = False
def reset(self):
"""Reset timer."""
self.elapsed_ = 0.0
self.started_ = False
def elapsed(self, reset=True):
"""Calculate the elapsed time."""
started_ = self.started_
# If the timing in progress, end it first.
if self.started_:
self.stop()
# Get the elapsed time.
elapsed_ = self.elapsed_
# Reset the elapsed time
if reset:
self.reset()
# If timing was in progress, set it back.
if started_:
self.start()
return elapsed_
class Timers:
"""Group of timers."""
def __init__(self):
self.timers = {}
def __call__(self, name):
if name not in self.timers:
self.timers[name] = _Timer(name)
return self.timers[name]
def write(self, names, writer, iteration, normalizer=1.0, reset=False):
"""Write timers to a tensorboard writer"""
# currently when using add_scalars,
# torch.utils.add_scalars makes each timer its own run, which
# polutes the runs list, so we just add each as a scalar
assert normalizer > 0.0
for name in names:
value = self.timers[name].elapsed(reset=reset) / normalizer
writer.add_scalar(name + '-time', value, iteration)
def log(self, names, normalizer=1.0, reset=True):
"""Log a group of timers."""
assert normalizer > 0.0
string = 'time (ms)'
for name in names:
elapsed_time = self.timers[name].elapsed(
reset=reset) * 1000.0 / normalizer
string += ' | {}: {:.2f}'.format(name, elapsed_time)
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == (
torch.distributed.get_world_size() - 1):
print(string, flush=True)
else:
print(string, flush=True)
class GlobalMemoryBuffer:
"""Global buffer to avoid dynamic memory allocations.
......
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Megatron initialization."""
......
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
import torch
......
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Megatron number of micro-batches calculators."""
......
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
from .fused_layer_norm import MixedFusedLayerNorm as LayerNorm
......
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""BERT model."""
......@@ -208,26 +195,25 @@ class BertModel(MegatronModule):
return lm_output
def state_dict_for_save_checkpoint(self, destination=None, prefix='',
keep_vars=False):
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
"""For easy load when model is combined with other heads,
add an extra key."""
state_dict_ = {}
state_dict_[self._language_model_key] \
= self.language_model.state_dict_for_save_checkpoint(
destination, prefix, keep_vars)
= self.language_model.state_dict_for_save_checkpoint(prefix=prefix,
keep_vars=keep_vars)
if self.post_process:
state_dict_[self._lm_head_key] \
= self.lm_head.state_dict_for_save_checkpoint(
destination, prefix, keep_vars)
= self.lm_head.state_dict_for_save_checkpoint(prefix=prefix,
keep_vars=keep_vars)
if self.post_process and self.add_binary_head:
state_dict_[self._binary_head_key] \
= self.binary_head.state_dict(destination, prefix, keep_vars)
= self.binary_head.state_dict(prefix=prefix, keep_vars=keep_vars)
# Save word_embeddings.
if self.post_process and not self.pre_process:
state_dict_[self._word_embeddings_for_head_key] \
= self.word_embeddings.state_dict(destination, prefix, keep_vars)
= self.word_embeddings.state_dict(prefix=prefix, keep_vars=keep_vars)
return state_dict_
def load_state_dict(self, state_dict, strict=True):
......
......@@ -139,25 +139,23 @@ class BiEncoderModel(MegatronModule):
token_types)
return logits
def state_dict_for_save_checkpoint(self, destination=None, \
prefix='', keep_vars=False):
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
"""Save dict with state dicts of each of the models."""
state_dict_ = {}
if self.biencoder_shared_query_context_model:
state_dict_[self._model_key] = \
self.model.state_dict_for_save_checkpoint(destination,
prefix,
keep_vars)
self.model.state_dict_for_save_checkpoint(
prefix=prefix, keep_vars=keep_vars)
else:
if self.use_query_model:
state_dict_[self._query_key] = \
self.query_model.state_dict_for_save_checkpoint(
destination, prefix, keep_vars)
prefix=prefix, keep_vars=keep_vars)
if self.use_context_model:
state_dict_[self._context_key] = \
self.context_model.state_dict_for_save_checkpoint(
destination, prefix, keep_vars)
prefix=prefix, keep_vars=keep_vars)
return state_dict_
......@@ -302,19 +300,19 @@ class PretrainedBertModel(MegatronModule):
return pooled_output
def state_dict_for_save_checkpoint(self, destination=None, prefix='',
keep_vars=False):
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
"""For easy load when model is combined with other heads,
add an extra key."""
state_dict_ = {}
state_dict_[self._language_model_key] \
= self.language_model.state_dict_for_save_checkpoint(
destination, prefix, keep_vars)
prefix=prefix, keep_vars=keep_vars)
if self.biencoder_projection_dim > 0:
state_dict_[self._projection_enc_key] = \
self.projection_enc.state_dict(destination, prefix, keep_vars)
self.projection_enc.state_dict(prefix=prefix,
keep_vars=keep_vars)
return state_dict_
......
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Classification model."""
......@@ -89,19 +76,17 @@ class Classification(MegatronModule):
return classification_logits
return lm_output
def state_dict_for_save_checkpoint(self, destination=None, prefix='',
keep_vars=False):
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
"""For easy load when model is combined with other heads,
add an extra key."""
state_dict_ = {}
state_dict_[self._language_model_key] \
= self.language_model.state_dict_for_save_checkpoint(
destination, prefix, keep_vars)
= self.language_model.state_dict_for_save_checkpoint(prefix=prefix,
keep_vars=keep_vars)
if self.post_process:
state_dict_[self._classification_head_key] \
= self.classification_head.state_dict(
destination, prefix, keep_vars)
= self.classification_head.state_dict(prefix=prefix, keep_vars=keep_vars)
return state_dict_
def load_state_dict(self, state_dict, strict=True):
......
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
from abc import ABC
from abc import abstractmethod
......@@ -71,14 +58,13 @@ class DistributedDataParallelBase(MegatronModule, ABC):
return self.module(*inputs, **kwargs)
def state_dict(self, destination=None, prefix='', keep_vars=False):
return self.module.state_dict(destination, prefix, keep_vars)
def state_dict(self, prefix='', keep_vars=False):
return self.module.state_dict(prefix=prefix, keep_vars=keep_vars)
def state_dict_for_save_checkpoint(self, destination=None, prefix='',
keep_vars=False):
return self.module.state_dict_for_save_checkpoint(destination, prefix,
keep_vars)
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
return self.module.state_dict_for_save_checkpoint(prefix=prefix,
keep_vars=keep_vars)
def load_state_dict(self, state_dict, strict=True):
......
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
import enum
......
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
import torch
......
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""This code is copied fron NVIDIA apex:
https://github.com/NVIDIA/apex
......
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
import torch
......
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""GPT-2 model."""
......@@ -105,17 +92,17 @@ class GPTModel(MegatronModule):
else:
return lm_output
def state_dict_for_save_checkpoint(self, destination=None, prefix='',
keep_vars=False):
def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False):
state_dict_ = {}
state_dict_[self._language_model_key] \
= self.language_model.state_dict_for_save_checkpoint(
destination, prefix, keep_vars)
prefix=prefix, keep_vars=keep_vars)
# Save word_embeddings.
if self.post_process and not self.pre_process:
state_dict_[self._word_embeddings_for_head_key] \
= self.word_embeddings.state_dict(destination, prefix, keep_vars)
= self.word_embeddings.state_dict(prefix=prefix,
keep_vars=keep_vars)
return state_dict_
def load_state_dict(self, state_dict, strict=True):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment