Commit 2699f93e authored by Jared Casper's avatar Jared Casper
Browse files

Merge branch 'jbarker/apex_layernorm' into 'main'

replace custom layer_norm_cuda with Apex layer_norm_cuda

See merge request ADLR/megatron-lm!566
parents 378db1cd d650e6a2
......@@ -54,7 +54,7 @@ def load(args):
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda']
# Upper triangular softmax.
sources=[srcpath / 'scaled_upper_triang_masked_softmax.cpp',
srcpath / 'scaled_upper_triang_masked_softmax_cuda.cu']
......@@ -74,29 +74,6 @@ def load(args):
scaled_softmax_cuda = _cpp_extention_load_helper(
"scaled_softmax_cuda", sources, extra_cuda_flags)
# =================================
# Mixed precision fused layer norm.
# =================================
extra_hopper_flags = ['-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__']
extra_cuda_flags = ['-maxrregcount=50']
sources=[srcpath / 'layer_norm_cuda.cpp',
srcpath / 'layer_norm_cuda_kernel.cu']
fused_mix_prec_layer_norm_cuda = _cpp_extention_load_helper(
"fused_mix_prec_layer_norm_cuda", sources, extra_cuda_flags + extra_hopper_flags)
# =================================
# Fused gradient accumulation to weight gradient computation of linear layer
# =================================
if args.gradient_accumulation_fusion:
sources=[srcpath / 'fused_weight_gradient_dense.cpp',
srcpath / 'fused_weight_gradient_dense.cu']
fused_dense_cuda = _cpp_extention_load_helper(
"fused_dense_cuda", sources, extra_hopper_flags)
def _get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
......
#include <torch/torch.h>
#include <torch/extension.h>
#include <vector>
#include <stdio.h>
#include "type_shim.h"
template <typename T>
int wgrad_gemm_accum_fp32_cuda(T *input, T *d_output, float *d_weight, int in_dim, int hidden_dim, int out_dim);
void wgrad_gemm_accum_fp32(const at::Tensor input, const at::Tensor d_output, at::Tensor d_weight) {
at::Tensor input_2d, d_output_2d;
// input tensor: collapse to the first dim
auto in_sizes = input.sizes();
if (input.dim() > 2) {
input_2d = input.view({-1, in_sizes[in_sizes.size() - 1]});
} else {
input_2d = input;
}
// d_output tensor: collapse to the first dim
auto d_out_sizes = d_output.sizes();
if (d_output.dim() > 2) {
d_output_2d = d_output.view({-1, d_out_sizes[d_out_sizes.size() - 1]});
} else {
d_output_2d = d_output;
}
int hidden_dim = input_2d.size(0);
int in_dim = input_2d.size(1);
int out_dim = d_weight.size(0);
DISPATCH_HALF_BFLOAT_AND_FLOAT(input_2d.scalar_type(), "wgrad_gemm_accum_fp32",
int result = wgrad_gemm_accum_fp32_cuda<scalar_t>(
input_2d.data_ptr<scalar_t>(),
d_output_2d.data_ptr<scalar_t>(),
d_weight.data_ptr<float>(),
in_dim,
hidden_dim,
out_dim);
);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("wgrad_gemm_accum_fp32", &wgrad_gemm_accum_fp32, "wgrad gemm accum in fp32");
}
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <torch/torch.h>
/* Includes, cuda */
#include <cublas_v2.h>
#include <cuda_runtime.h>
// BF16 Tensor core wrapper around cublas GEMMEx
cublasStatus_t gemmex_wrapper(
cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const float* alpha,
at::BFloat16* A,
int lda,
at::BFloat16* B,
int ldb,
const float* beta,
float* C,
int ldc) {
return cublasGemmEx(
handle,
transa,
transb,
m,
n,
k,
alpha,
A,
CUDA_R_16BF,
lda,
B,
CUDA_R_16BF,
ldb,
beta,
C,
CUDA_R_32F,
ldc,
CUDA_R_32F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP);
}
// FP16 Tensor core wrapper around cublas GEMMEx
cublasStatus_t gemmex_wrapper(
cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const float* alpha,
at::Half* A,
int lda,
at::Half* B,
int ldb,
const float* beta,
float* C,
int ldc) {
return cublasGemmEx(
handle,
transa,
transb,
m,
n,
k,
alpha,
A,
CUDA_R_16F,
lda,
B,
CUDA_R_16F,
ldb,
beta,
C,
CUDA_R_32F,
ldc,
CUDA_R_32F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP);
}
// FP32 Tensor core wrapper around cublas GEMMEx
cublasStatus_t gemmex_wrapper(
cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const float* alpha,
float* A,
int lda,
float* B,
int ldb,
const float* beta,
float* C,
int ldc) {
return cublasGemmEx(
handle,
transa,
transb,
m,
n,
k,
alpha,
A,
CUDA_R_32F,
lda,
B,
CUDA_R_32F,
ldb,
beta,
C,
CUDA_R_32F,
ldc,
CUDA_R_32F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP);
}
template <typename T>
int wgrad_gemm_accum_fp32_cuda(T *input, T *d_output, float *d_weight, int in_dim, int hidden_dim, int out_dim) {
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cudaStream_t stream;
cublasGetStream(handle, &stream);
const float alpha = 1.0;
const float beta = 1.0;
int status = 1;
status = gemmex_wrapper(
handle,
CUBLAS_OP_N,
CUBLAS_OP_T,
in_dim,
out_dim,
hidden_dim,
&alpha,
input,
in_dim,
d_output,
out_dim,
&beta,
d_weight,
in_dim);
return status;
}
template int wgrad_gemm_accum_fp32_cuda<at::Half>(at::Half *input, at::Half *d_output, float *d_weight, int in_dim, int hidden_dim, int out_dim);
template int wgrad_gemm_accum_fp32_cuda<at::BFloat16>(at::BFloat16 *input, at::BFloat16 *d_output, float *d_weight, int in_dim, int hidden_dim, int out_dim);
template int wgrad_gemm_accum_fp32_cuda<float>(float *input, float *d_output, float *d_weight, int in_dim, int hidden_dim, int out_dim);
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. */
/*This code is copied fron NVIDIA apex:
* https://github.com/NVIDIA/apex
* with minor changes. */
#include <torch/extension.h>
#include <vector>
#include <cassert>
#include "compat.h"
namespace {
void compute_n1_n2(
at::Tensor input,
at::IntArrayRef normalized_shape,
int& n1,
int& n2) {
int idiff = input.ndimension() - normalized_shape.size();
n2 = 1;
for (int i = 0; i < (int)normalized_shape.size(); ++i) {
assert( input.sizes()[i+idiff] == normalized_shape[i] );
n2 *= normalized_shape[i];
}
n1 = 1;
for (int i = 0; i < idiff; ++i) {
n1 *= input.sizes()[i];
}
}
void check_args(
at::IntArrayRef normalized_shape,
at::Tensor gamma,
at::Tensor beta
)
{
TORCH_CHECK(!gamma.defined() || gamma.sizes().equals(normalized_shape));
TORCH_CHECK(!beta.defined() || beta.sizes().equals(normalized_shape));
}
void check_args(
at::Tensor input,
at::IntArrayRef normalized_shape,
int& n1,
int& n2
)
{
int64_t normalized_ndim = normalized_shape.size();
if (normalized_ndim < 1) {
std::stringstream ss;
ss << "Expected normalized_shape to be at least 1-dimensional, i.e., "
<< "containing at least one element, but got normalized_shape="
<< normalized_shape;
throw std::runtime_error(ss.str());
}
auto input_shape = input.sizes();
auto input_ndim = input.dim();
if (input_ndim < normalized_ndim ||
!input_shape.slice(input_ndim - normalized_ndim).equals(normalized_shape)) {
std::stringstream ss;
ss << "Given normalized_shape=" << normalized_shape
<< ", expected input with shape [*";
for (auto size : normalized_shape) {
ss << ", " << size;
}
ss << "], but got input of size" << input_shape;
throw std::runtime_error(ss.str());
}
compute_n1_n2(input,normalized_shape,n1,n2);
}
void check_args(
at::Tensor input,
at::IntArrayRef normalized_shape,
at::Tensor gamma,
at::Tensor beta,
int& n1,
int& n2
)
{
check_args(input,normalized_shape,n1,n2);
check_args(normalized_shape,gamma,beta);
}
}
void cuda_layer_norm(
at::Tensor* output,
at::Tensor* mean,
at::Tensor* invvar,
at::Tensor* input,
int n1,
int n2,
at::IntArrayRef normalized_shape,
at::Tensor* gamma,
at::Tensor* beta,
double epsilon);
#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
std::vector<at::Tensor> layer_norm_affine(
at::Tensor input,
at::IntArrayRef normalized_shape,
at::Tensor gamma,
at::Tensor beta,
double epsilon) {
CHECK_INPUT(input);
CHECK_INPUT(gamma);
CHECK_INPUT(beta);
int n1, n2;
check_args(input, normalized_shape, gamma, beta, n1, n2);
at::Tensor output = at::empty_like(
input, gamma.options().dtype(gamma.scalar_type()));
at::Tensor mean = at::empty(
{n1}, input.options().dtype(at::ScalarType::Float));
at::Tensor invvar = at::empty_like(mean);
cuda_layer_norm(&output, &mean, &invvar, &input, n1, n2,
normalized_shape, &gamma, &beta, epsilon);
return {output, mean, invvar};
}
void cuda_layer_norm_gradient(
at::Tensor* dout,
at::Tensor* mean,
at::Tensor* invvar,
at::Tensor* input,
int n1,
int n2,
at::IntArrayRef normalized_shape,
at::Tensor* gamma,
at::Tensor* beta,
double epsilon,
at::Tensor* grad_input,
at::Tensor* grad_gamma,
at::Tensor* grad_beta
);
std::vector<at::Tensor> layer_norm_gradient_affine(
at::Tensor dout,
at::Tensor mean,
at::Tensor invvar,
at::Tensor input,
at::IntArrayRef normalized_shape,
at::Tensor gamma,
at::Tensor beta,
double epsilon) {
CHECK_INPUT(dout);
CHECK_INPUT(mean);
CHECK_INPUT(invvar);
CHECK_INPUT(input);
CHECK_INPUT(gamma);
CHECK_INPUT(beta);
int n1, n2;
check_args(input, normalized_shape, gamma, beta, n1, n2);
at::Tensor grad_input = at::empty_like(input);
at::Tensor grad_gamma = at::empty_like(gamma);
at::Tensor grad_beta = at::empty_like(beta);
cuda_layer_norm_gradient(&dout, &mean, &invvar, &input, n1, n2,
normalized_shape, &gamma, &beta, epsilon,
&grad_input, &grad_gamma, &grad_beta);
return {grad_input, grad_gamma, grad_beta};
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward_affine", &layer_norm_affine,
"LayerNorm forward (CUDA)");
m.def("backward_affine", &layer_norm_gradient_affine,
"LayerNorm backward (CUDA)");
}
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. */
/*This code is copied fron NVIDIA apex:
* https://github.com/NVIDIA/apex
* with minor changes. */
#include "ATen/ATen.h"
#include "ATen/AccumulateType.h"
#include "ATen/cuda/CUDAContext.h"
#include "ATen/cuda/DeviceUtils.cuh"
#include <cuda.h>
#include <cuda_runtime.h>
#include "type_shim.h"
template<typename U> __device__
void cuWelfordOnlineSum(
const U curr,
U& mu,
U& sigma2,
U& count)
{
count = count + U(1);
U delta = curr - mu;
U lmean = mu + delta / count;
mu = lmean;
U delta2 = curr - lmean;
sigma2 = sigma2 + delta * delta2;
}
template<typename U> __device__
void cuChanOnlineSum(
const U muB,
const U sigma2B,
const U countB,
U& mu,
U& sigma2,
U& count)
{
U delta = muB - mu;
U nA = count;
U nB = countB;
count = count + countB;
U nX = count;
if (nX > U(0)) {
nA = nA / nX;
nB = nB / nX;
mu = nA*mu + nB*muB;
sigma2 = sigma2 + sigma2B + delta * delta * nA * nB * nX;
} else {
mu = U(0);
sigma2 = U(0);
}
}
template<typename T, typename U> __device__
void cuWelfordMuSigma2(
const T* __restrict__ vals,
const int n1,
const int n2,
const int i1,
U& mu,
U& sigma2,
U* buf)
{
// Assumptions:
// 1) blockDim.x == warpSize
// 2) Tensor is contiguous
// 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available.
//
// compute variance and mean over n2
U count = U(0);
mu= U(0);
sigma2 = U(0);
if (i1 < n1) {
// one warp normalizes one n1 index,
// synchronization is implicit
// initialize with standard Welford algorithm
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
const T* lvals = vals + i1*n2;
int l = 4*thrx;
for (; l+3 < n2; l+=4*numx) {
for (int k = 0; k < 4; ++k) {
U curr = static_cast<U>(lvals[l+k]);
cuWelfordOnlineSum<U>(curr,mu,sigma2,count);
}
}
for (; l < n2; ++l) {
U curr = static_cast<U>(lvals[l]);
cuWelfordOnlineSum<U>(curr,mu,sigma2,count);
}
// intra-warp reductions
for (int l = 0; l <= 4; ++l) {
int srcLaneB = (threadIdx.x+(1<<l))&31;
U muB = WARP_SHFL(mu, srcLaneB);
U countB = WARP_SHFL(count, srcLaneB);
U sigma2B = WARP_SHFL(sigma2, srcLaneB);
cuChanOnlineSum<U>(muB,sigma2B,countB,mu,sigma2,count);
}
// threadIdx.x == 0 has correct values for each warp
// inter-warp reductions
if (blockDim.y > 1) {
U* ubuf = (U*)buf;
U* ibuf = (U*)(ubuf + blockDim.y);
for (int offset = blockDim.y/2; offset > 0; offset /= 2) {
// upper half of warps write to shared
if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2*offset) {
const int wrt_y = threadIdx.y - offset;
ubuf[2*wrt_y] = mu;
ubuf[2*wrt_y+1] = sigma2;
ibuf[wrt_y] = count;
}
__syncthreads();
// lower half merges
if (threadIdx.x == 0 && threadIdx.y < offset) {
U muB = ubuf[2*threadIdx.y];
U sigma2B = ubuf[2*threadIdx.y+1];
U countB = ibuf[threadIdx.y];
cuChanOnlineSum<U>(muB,sigma2B,countB,mu,sigma2,count);
}
__syncthreads();
}
// threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values
if (threadIdx.x == 0 && threadIdx.y == 0) {
ubuf[0] = mu;
ubuf[1] = sigma2;
}
__syncthreads();
mu = ubuf[0];
sigma2 = ubuf[1]/U(n2);
// don't care about final value of count, we know count == n2
} else {
mu = WARP_SHFL(mu, 0);
sigma2 = WARP_SHFL(sigma2/U(n2), 0);
}
}
}
template<> __device__
void cuWelfordMuSigma2(
const at::Half* __restrict__ vals,
const int n1,
const int n2,
const int i1,
float& mu,
float& sigma2,
float* buf)
{
// Assumptions:
// 1) blockDim.x == warpSize
// 2) Tensor is contiguous
// 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available.
//
// compute variance and mean over n2
float count = 0.0f;
mu= float(0);
sigma2 = float(0);
if (i1 < n1) {
// one warp normalizes one n1 index,
// synchronization is implicit
// initialize with standard Welford algorithm
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
const at::Half* lvals = vals + i1*n2;
int l = 8*thrx;
if ((((size_t)lvals)&3) != 0) {
// 16 bit alignment
// first thread consumes first point
if (thrx == 0) {
float curr = static_cast<float>(lvals[0]);
cuWelfordOnlineSum(curr,mu,sigma2,count);
}
++l;
}
// at this point, lvals[l] are 32 bit aligned for all threads.
for (; l+7 < n2; l+=8*numx) {
for (int k = 0; k < 8; k+=2) {
float2 curr = __half22float2(*((__half2*)(lvals+l+k)));
cuWelfordOnlineSum(curr.x,mu,sigma2,count);
cuWelfordOnlineSum(curr.y,mu,sigma2,count);
}
}
for (; l < n2; ++l) {
float curr = static_cast<float>(lvals[l]);
cuWelfordOnlineSum(curr,mu,sigma2,count);
}
// intra-warp reductions
for (int l = 0; l <= 4; ++l) {
int srcLaneB = (threadIdx.x+(1<<l))&31;
float muB = WARP_SHFL(mu, srcLaneB);
float countB = WARP_SHFL(count, srcLaneB);
float sigma2B = WARP_SHFL(sigma2, srcLaneB);
cuChanOnlineSum(muB,sigma2B,countB,mu,sigma2,count);
}
// threadIdx.x == 0 has correct values for each warp
// inter-warp reductions
if (blockDim.y > 1) {
float* ubuf = (float*)buf;
float* ibuf = (float*)(ubuf + blockDim.y);
for (int offset = blockDim.y/2; offset > 0; offset /= 2) {
// upper half of warps write to shared
if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2*offset) {
const int wrt_y = threadIdx.y - offset;
ubuf[2*wrt_y] = mu;
ubuf[2*wrt_y+1] = sigma2;
ibuf[wrt_y] = count;
}
__syncthreads();
// lower half merges
if (threadIdx.x == 0 && threadIdx.y < offset) {
float muB = ubuf[2*threadIdx.y];
float sigma2B = ubuf[2*threadIdx.y+1];
float countB = ibuf[threadIdx.y];
cuChanOnlineSum(muB,sigma2B,countB,mu,sigma2,count);
}
__syncthreads();
}
// threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values
if (threadIdx.x == 0 && threadIdx.y == 0) {
ubuf[0] = mu;
ubuf[1] = sigma2;
}
__syncthreads();
mu = ubuf[0];
sigma2 = ubuf[1]/float(n2);
// don't care about final value of count, we know count == n2
} else {
mu = WARP_SHFL(mu, 0);
sigma2 = WARP_SHFL(sigma2/float(n2), 0);
}
}
}
template<typename U> U rsqrt(U v) {
return U(1) / sqrt(v);
}
template<> float rsqrt(float v) {
return rsqrtf(v);
}
template<> double rsqrt(double v) {
return rsqrt(v);
}
namespace {
// This is the un-specialized struct. Note that we prevent instantiation of this
// struct by putting an undefined symbol in the function body so it won't compile.
// template <typename T>
// struct SharedMemory
// {
// // Ensure that we won't compile any un-specialized types
// __device__ T *getPointer()
// {
// extern __device__ void error(void);
// error();
// return NULL;
// }
// };
// https://github.com/NVIDIA/apex/issues/246
template <typename T>
struct SharedMemory;
template <>
struct SharedMemory <float>
{
__device__ float *getPointer()
{
extern __shared__ float s_float[];
return s_float;
}
};
}
template<typename T, typename U, typename V> __global__
void cuApplyLayerNorm(
V* __restrict__ output_vals,
U* __restrict__ mean,
U* __restrict__ invvar,
const T* __restrict__ vals,
const int n1,
const int n2,
const U epsilon,
const V* __restrict__ gamma,
const V* __restrict__ beta
)
{
// Assumptions:
// 1) blockDim.x == warpSize
// 2) Tensors are contiguous
//
for (auto i1=blockIdx.y; i1 < n1; i1 += gridDim.y) {
SharedMemory<U> shared;
U* buf = shared.getPointer();
U mu,sigma2;
cuWelfordMuSigma2(vals,n1,n2,i1,mu,sigma2,buf);
const T* lvals = vals + i1*n2;
V* ovals = output_vals + i1*n2;
U c_invvar = rsqrt(sigma2 + epsilon);
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
if (gamma != NULL && beta != NULL) {
for (int i = thrx; i < n2; i+=numx) {
U curr = static_cast<U>(lvals[i]);
ovals[i] = gamma[i] * static_cast<V>(c_invvar * (curr - mu)) + beta[i];
}
} else {
for (int i = thrx; i < n2; i+=numx) {
U curr = static_cast<U>(lvals[i]);
ovals[i] = static_cast<V>(c_invvar * (curr - mu));
}
}
if (threadIdx.x == 0 && threadIdx.y == 0) {
mean[i1] = mu;
invvar[i1] = c_invvar;
}
__syncthreads();
}
}
template<typename T, typename U, typename V> __device__
void cuLoadWriteStridedInputs(
const int i1_block,
const int thr_load_row_off,
const int thr_load_col_off,
const int i2_off,
const int row_stride,
U* warp_buf1,
U* warp_buf2,
const T* input,
const V* dout,
const int i1_end,
const int n2,
const U* __restrict__ mean,
const U* __restrict__ invvar
)
{
int i1 = i1_block+thr_load_row_off;
if (i1 < i1_end) {
U curr_mean = mean[i1];
U curr_invvar = invvar[i1];
for (int k = 0; k < blockDim.y; ++k) {
int i2 = i2_off + k;
int load_idx = i1*n2+i2;
int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
if (i2<n2) {
U curr_input = static_cast<U>(input[load_idx]);
U curr_dout = static_cast<U>(dout[load_idx]);
warp_buf1[write_idx] = curr_dout;
warp_buf2[write_idx] = curr_dout * (curr_input - curr_mean) * curr_invvar;
} else {
warp_buf1[write_idx] = U(0);
warp_buf2[write_idx] = U(0);
}
}
} else {
for (int k = 0; k < blockDim.y; ++k) {
int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
warp_buf1[write_idx] = U(0);
warp_buf2[write_idx] = U(0);
}
}
}
template<typename T, typename U, typename V> __device__
void cuLoadAddStridedInputs(
const int i1_block,
const int thr_load_row_off,
const int thr_load_col_off,
const int i2_off,
const int row_stride,
U* warp_buf1,
U* warp_buf2,
const T* input,
const V* dout,
const int i1_end,
const int n2,
const U* __restrict__ mean,
const U* __restrict__ invvar
)
{
int i1 = i1_block+thr_load_row_off;
if (i1 < i1_end) {
U curr_mean = mean[i1];
U curr_invvar = invvar[i1];
for (int k = 0; k < blockDim.y; ++k) {
int i2 = i2_off + k;
int load_idx = i1*n2+i2;
int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
if (i2<n2) {
U curr_input = static_cast<U>(input[load_idx]);
U curr_dout = static_cast<U>(dout[load_idx]);
warp_buf1[write_idx] += curr_dout;
warp_buf2[write_idx] += curr_dout * (curr_input - curr_mean) * curr_invvar;
}
}
}
}
template<typename T, typename U, typename V> __global__
void cuComputePartGradGammaBeta(
const V* __restrict__ dout,
const T* __restrict__ input,
const int n1,
const int n2,
const U* __restrict__ mean,
const U* __restrict__ invvar,
U epsilon,
U* part_grad_gamma,
U* part_grad_beta)
{
const int numsegs_n1 = (n1+blockDim.y*blockDim.y-1) / (blockDim.y*blockDim.y);
const int segs_per_block = (numsegs_n1 + gridDim.y - 1) / gridDim.y;
const int i1_beg = blockIdx.y * segs_per_block * blockDim.y*blockDim.y;
const int i1_beg_plus_one = (blockIdx.y+1) * segs_per_block * blockDim.y*blockDim.y;
const int i1_end = i1_beg_plus_one < n1 ? i1_beg_plus_one : n1;
const int row_stride = blockDim.x+1;
const int thr_load_col_off = (threadIdx.x*blockDim.y)&(blockDim.x-1);
const int thr_load_row_off = (threadIdx.x*blockDim.y)/blockDim.x + threadIdx.y*blockDim.y;
const int i2_off = blockIdx.x * blockDim.x + thr_load_col_off;
SharedMemory<U> shared;
U* buf = shared.getPointer(); // buf has at least blockDim.x * blockDim.y * blockDim.y + (blockDim.y - 1)*(blockDim.x/blockDim.y) elements
U* warp_buf1 = (U*)buf;
U* warp_buf2 = warp_buf1 + blockDim.y * blockDim.y * row_stride;
// compute partial sums from strided inputs
// do this to increase number of loads in flight
cuLoadWriteStridedInputs(i1_beg,thr_load_row_off,thr_load_col_off,i2_off,row_stride,warp_buf1,warp_buf2,input,dout,i1_end,n2,mean,invvar);
for (int i1_block = i1_beg+blockDim.y*blockDim.y; i1_block < i1_end; i1_block+=blockDim.y*blockDim.y) {
cuLoadAddStridedInputs(i1_block,thr_load_row_off,thr_load_col_off,i2_off,row_stride,warp_buf1,warp_buf2,input,dout,i1_end,n2,mean,invvar);
}
__syncthreads();
// inter-warp reductions
// sum within each warp
U acc1 = U(0);
U acc2 = U(0);
for (int k = 0; k < blockDim.y; ++k) {
int row1 = threadIdx.y + k*blockDim.y;
int idx1 = row1*row_stride + threadIdx.x;
acc1 += warp_buf1[idx1];
acc2 += warp_buf2[idx1];
}
warp_buf1[threadIdx.y*row_stride+threadIdx.x] = acc1;
warp_buf2[threadIdx.y*row_stride+threadIdx.x] = acc2;
__syncthreads();
// sum all warps
for (int offset = blockDim.y/2; offset > 1; offset /= 2) {
if (threadIdx.y < offset) {
int row1 = threadIdx.y;
int row2 = threadIdx.y + offset;
int idx1 = row1*row_stride + threadIdx.x;
int idx2 = row2*row_stride + threadIdx.x;
warp_buf1[idx1] += warp_buf1[idx2];
warp_buf2[idx1] += warp_buf2[idx2];
}
__syncthreads();
}
int i2 = blockIdx.x * blockDim.x + threadIdx.x;
if (threadIdx.y == 0 && i2 < n2) {
int row1 = threadIdx.y;
int row2 = threadIdx.y + 1;
int idx1 = row1*row_stride + threadIdx.x;
int idx2 = row2*row_stride + threadIdx.x;
part_grad_beta[blockIdx.y*n2+i2] = warp_buf1[idx1] + warp_buf1[idx2];
part_grad_gamma[blockIdx.y*n2+i2] = warp_buf2[idx1] + warp_buf2[idx2];
}
}
template<typename U, typename V> __global__
void cuComputeGradGammaBeta(
const U* part_grad_gamma,
const U* part_grad_beta,
const int part_size,
const int n1,
const int n2,
V* grad_gamma,
V* grad_beta)
{
// sum partial gradients for gamma and beta
SharedMemory<U> shared;
U* buf = shared.getPointer();
int i2 = blockIdx.x * blockDim.x + threadIdx.x;
if (i2 < n2) {
// each warp does sequential reductions until reduced part_size is num_warps
int num_warp_reductions = part_size / blockDim.y;
U sum_gamma = U(0);
U sum_beta = U(0);
const U* part_grad_gamma_ptr = part_grad_gamma + threadIdx.y * num_warp_reductions * n2 + i2;
const U* part_grad_beta_ptr = part_grad_beta + threadIdx.y * num_warp_reductions * n2 + i2;
for (int warp_offset = 0; warp_offset < num_warp_reductions; ++warp_offset) {
sum_gamma += part_grad_gamma_ptr[warp_offset*n2];
sum_beta += part_grad_beta_ptr[warp_offset*n2];
}
// inter-warp reductions
const int nbsize3 = blockDim.x * blockDim.y / 2;
for (int offset = blockDim.y/2; offset >= 1; offset /= 2) {
// top half write to shared memory
if (threadIdx.y >= offset && threadIdx.y < 2*offset) {
const int write_idx = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
buf[write_idx] = sum_gamma;
buf[write_idx+nbsize3] = sum_beta;
}
__syncthreads();
// bottom half sums
if (threadIdx.y < offset) {
const int read_idx = threadIdx.y * blockDim.x + threadIdx.x;
sum_gamma += buf[read_idx];
sum_beta += buf[read_idx+nbsize3];
}
__syncthreads();
}
// write out fully summed gradients
if (threadIdx.y == 0) {
grad_gamma[i2] = sum_gamma;
grad_beta[i2] = sum_beta;
}
}
}
template<typename T, typename U, typename V> __global__
void cuComputeGradInput(
const V* __restrict__ dout,
const T* __restrict__ input,
const int n1,
const int n2,
const U* __restrict__ mean,
const U* __restrict__ invvar,
U epsilon,
const V* gamma,
T* grad_input)
{
for (auto i1=blockIdx.y; i1 < n1; i1 += gridDim.y) {
U sum_loss1 = U(0);
U sum_loss2 = U(0);
const U c_mean = mean[i1];
const U c_invvar = invvar[i1];
const T* k_input = input + i1*n2;
const V* k_dout = dout + i1*n2;
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
if (gamma != NULL) {
int l = 4*thrx;
for (; l+3 < n2; l+=4*numx) {
for (int k = 0; k < 4; ++k) {
const U c_h = static_cast<U>(k_input[l+k]);
const U c_loss = static_cast<U>(k_dout[l+k]);
sum_loss1 += c_loss * gamma[l+k];
sum_loss2 += c_loss * gamma[l+k] * (c_h - c_mean) * c_invvar;
}
}
for (; l < n2; ++l) {
const U c_h = static_cast<U>(k_input[l]);
const U c_loss = static_cast<U>(k_dout[l]);
sum_loss1 += c_loss * gamma[l];
sum_loss2 += c_loss * gamma[l] * (c_h - c_mean) * c_invvar;
}
} else {
int l = 4*thrx;
for (; l+3 < n2; l+=4*numx) {
for (int k = 0; k < 4; ++k) {
const U c_h = static_cast<U>(k_input[l+k]);
const U c_loss = static_cast<U>(k_dout[l+k]);
sum_loss1 += c_loss;
sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
}
}
for (; l < n2; ++l) {
const U c_h = static_cast<U>(k_input[l]);
const U c_loss = static_cast<U>(k_dout[l]);
sum_loss1 += c_loss;
sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
}
}
// intra-warp reductions
for (int mask = blockDim.x/2; mask > 0; mask /= 2) {
sum_loss1 += WARP_SHFL_XOR(sum_loss1, mask);
sum_loss2 += WARP_SHFL_XOR(sum_loss2, mask);
}
// inter-warp reductions
if (blockDim.y > 1) {
SharedMemory<U> shared;
U* buf = shared.getPointer();
for (int offset = blockDim.y/2; offset > 0; offset /= 2) {
// upper half of warps write to shared
if (threadIdx.y >= offset && threadIdx.y < 2*offset) {
const int wrt_i = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
buf[2*wrt_i] = sum_loss1;
buf[2*wrt_i+1] = sum_loss2;
}
__syncthreads();
// lower half merges
if (threadIdx.y < offset) {
const int read_i = threadIdx.y * blockDim.x + threadIdx.x;
sum_loss1 += buf[2*read_i];
sum_loss2 += buf[2*read_i+1];
}
__syncthreads();
}
if (threadIdx.y == 0) {
buf[2*threadIdx.x] = sum_loss1;
buf[2*threadIdx.x+1] = sum_loss2;
}
__syncthreads();
if (threadIdx.y !=0) {
sum_loss1 = buf[2*threadIdx.x];
sum_loss2 = buf[2*threadIdx.x+1];
}
}
// all threads now have the two sums over l
U fH = (U)n2;
U term1 = (U(1) / fH) * c_invvar;
T* k_grad_input = grad_input + i1*n2;
if (gamma != NULL) {
for (int l = thrx; l < n2; l+=numx) {
const U c_h = static_cast<U>(k_input[l]);
const U c_loss = static_cast<U>(k_dout[l]);
U f_grad_input = fH * c_loss * gamma[l];
f_grad_input -= sum_loss1;
f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
f_grad_input *= term1;
k_grad_input[l] = static_cast<T>(f_grad_input);
}
} else {
for (int l = thrx; l < n2; l+=numx) {
const U c_h = static_cast<U>(k_input[l]);
const U c_loss = static_cast<U>(k_dout[l]);
U f_grad_input = fH * c_loss;
f_grad_input -= sum_loss1;
f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
f_grad_input *= term1;
k_grad_input[l] = static_cast<T>(f_grad_input);
}
}
// prevent race where buf is written again before reads are done
__syncthreads();
}
}
template<typename T, typename U, typename V>
void HostApplyLayerNorm(
V* output,
U* mean,
U* invvar,
const T* input,
int n1,
int n2,
double epsilon,
const V* gamma,
const V* beta
)
{
auto stream = at::cuda::getCurrentCUDAStream().stream();
const dim3 threads(32,4,1);
const uint64_t maxGridY =
at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
const dim3 blocks(1, std::min((uint64_t)n1, maxGridY), 1);
int nshared =
threads.y > 1 ?
threads.y*sizeof(U)+(threads.y/2)*sizeof(U) :
0;
cuApplyLayerNorm<<<blocks, threads, nshared, stream>>>(
output,
mean,
invvar,
input,
n1,n2,
U(epsilon),
gamma,beta);
}
void cuda_layer_norm(
at::Tensor* output,
at::Tensor* mean,
at::Tensor* invvar,
at::Tensor* input,
int n1,
int n2,
#ifdef VERSION_GE_1_1
at::IntArrayRef normalized_shape,
#else
at::IntList normalized_shape,
#endif
at::Tensor* gamma,
at::Tensor* beta,
double epsilon)
{
using namespace at;
DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
input->scalar_type(), output->scalar_type(), "cuda_layer_norm_kernel",
HostApplyLayerNorm(
output->DATA_PTR<scalar_t_out>(),
mean->DATA_PTR<float>(),
invvar->DATA_PTR<float>(),
input->DATA_PTR<scalar_t_in>(),
n1,n2,
epsilon,
gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
beta != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL);
)
}
template<typename T, typename U, typename V>
void HostLayerNormGradient(
const V* dout,
const U* mean,
const U* invvar,
at::Tensor* input,
int n1,
int n2,
const V* gamma,
const V* beta,
double epsilon,
T* grad_input,
V* grad_gamma,
V* grad_beta
)
{
auto stream = at::cuda::getCurrentCUDAStream().stream();
if (gamma != NULL && beta != NULL) {
// compute grad_gamma(j) and grad_beta(j)
const int part_size = 16;
const dim3 threads2(32,4,1);
const dim3 blocks2((n2+threads2.x-1)/threads2.x,part_size,1);
const int nshared2_a = 2 * sizeof(U) * threads2.y * threads2.y *
(threads2.x + 1);
const int nshared2_b = threads2.x * threads2.y * sizeof(U);
const int nshared2 = nshared2_a > nshared2_b ? nshared2_a : nshared2_b;
at::Tensor part_grad_gamma = at::empty(
{part_size,n2}, input->options().dtype(at::ScalarType::Float));
at::Tensor part_grad_beta = at::empty_like(part_grad_gamma);
cuComputePartGradGammaBeta<<<blocks2, threads2, nshared2, stream>>>(
dout,
input->DATA_PTR<T>(),
n1,n2,
mean,
invvar,
U(epsilon),
part_grad_gamma.DATA_PTR<U>(),
part_grad_beta.DATA_PTR<U>());
const dim3 threads3(32,8,1);
const dim3 blocks3((n2+threads2.x-1)/threads2.x,1,1);
const int nshared3 = threads3.x * threads3.y * sizeof(U);
cuComputeGradGammaBeta<<<blocks3, threads3, nshared3, stream>>>(
part_grad_gamma.DATA_PTR<U>(),
part_grad_beta.DATA_PTR<U>(),
part_size,
n1,n2,
grad_gamma,
grad_beta);
}
// compute grad_input
const uint64_t maxGridY =
at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
const dim3 blocks1(1, std::min((uint64_t)n1, maxGridY), 1);
const dim3 threads1(32,4,1);
int nshared =
threads1.y > 1 ?
threads1.y*threads1.x*sizeof(U) :
0;
cuComputeGradInput<<<blocks1, threads1, nshared, stream>>>(
dout,
input->DATA_PTR<T>(),
n1,n2,
mean,
invvar,
U(epsilon),
gamma,
grad_input);
}
void cuda_layer_norm_gradient(
at::Tensor* dout,
at::Tensor* mean,
at::Tensor* invvar,
at::Tensor* input,
int n1,
int n2,
#ifdef VERSION_GE_1_1
at::IntArrayRef normalized_shape,
#else
at::IntList normalized_shape,
#endif
at::Tensor* gamma,
at::Tensor* beta,
double epsilon,
at::Tensor* grad_input,
at::Tensor* grad_gamma,
at::Tensor* grad_beta)
{
using namespace at;
DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
input->scalar_type(), gamma->scalar_type(),
"cuda_layer_norm_gradient_kernel",
HostLayerNormGradient(
dout->DATA_PTR<scalar_t_out>(),
mean->DATA_PTR<float>(),
invvar->DATA_PTR<float>(),
input,
n1,n2,
// TMJ pass NULL argument for gamma, beta, grad_gamma and grad_beta
// if gamma Tensor is NULL on input.
gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
gamma != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL,
epsilon,
grad_input->DATA_PTR<scalar_t_in>(),
gamma != NULL ? grad_gamma->DATA_PTR<scalar_t_out>() : NULL,
gamma != NULL ? grad_beta->DATA_PTR<scalar_t_out>() : NULL);
)
}
......@@ -11,7 +11,7 @@ from megatron.fused_kernels import load
def test_load_fused_kernels():
try:
import fused_mix_prec_layer_norm_cuda
import fused_layer_norm_cuda
import scaled_masked_softmax_cuda
import scaled_upper_triang_masked_softmax_cuda
import torch
......@@ -21,7 +21,6 @@ def test_load_fused_kernels():
print("[Fail] load_fused_kernels")
raise e
def test_fused_softmax():
bert = BertModel.from_pretrained("bert-base-cased").cuda().half()
tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
......@@ -328,7 +327,7 @@ def test_masked_softmax_backward():
def test_allmasked_softmax_forward():
import scaled_masked_softmax_cuda
import scaled_masked_softmax_cuda
batch = 2
attn = 16
......@@ -345,7 +344,7 @@ def test_allmasked_softmax_forward():
def test_allmasked_softmax_backward():
import scaled_masked_softmax_cuda
batch = 2
attn = 16
scale_t = torch.tensor([1.0])
......
......@@ -18,40 +18,11 @@ try:
except:
HAVE_PERSIST_LAYER_NORM = False
global fused_mix_prec_layer_norm_cuda
fused_mix_prec_layer_norm_cuda = None
from apex.normalization.fused_layer_norm import FusedLayerNormAffineFunction
class FusedLayerNormAffineFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, input, weight, bias, normalized_shape, eps):
ctx.normalized_shape = normalized_shape
ctx.eps = eps
input_ = input.contiguous()
weight_ = weight.contiguous()
bias_ = bias.contiguous()
output, mean, invvar = fused_mix_prec_layer_norm_cuda.forward_affine(
input_, ctx.normalized_shape, weight_, bias_, ctx.eps)
ctx.save_for_backward(input_, weight_, bias_, mean, invvar)
return output
@staticmethod
def backward(ctx, grad_output):
input_, weight_, bias_, mean, invvar = ctx.saved_tensors
grad_input = grad_weight = grad_bias = None
grad_input, grad_weight, grad_bias \
= fused_mix_prec_layer_norm_cuda.backward_affine(
grad_output.contiguous(), mean, invvar,
input_, ctx.normalized_shape,
weight_, bias_, ctx.eps)
return grad_input, grad_weight, grad_bias, None, None
global fused_layer_norm_cuda
fused_layer_norm_cuda = None
class MixedFusedLayerNorm(torch.nn.Module):
......@@ -64,9 +35,8 @@ class MixedFusedLayerNorm(torch.nn.Module):
self.apply_layernorm_1p = apply_layernorm_1p
global fused_mix_prec_layer_norm_cuda
fused_mix_prec_layer_norm_cuda = importlib.import_module(
"fused_mix_prec_layer_norm_cuda")
global fused_layer_norm_cuda
fused_layer_norm_cuda = importlib.import_module("fused_layer_norm_cuda")
# List of hiddens sizes supported in the persistent layer norm kernel
# If the hidden size is not supported, fall back to the non-persistent
......@@ -87,7 +57,7 @@ class MixedFusedLayerNorm(torch.nn.Module):
self.reset_parameters()
self.no_persist_layer_norm = no_persist_layer_norm
self.sequence_parallel = sequence_parallel
# set sequence parallelism flag on weight and bias parameters
setattr(self.weight, 'sequence_parallel', self.sequence_parallel)
setattr(self.bias, 'sequence_parallel', self.sequence_parallel)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment