Commit 21d2b0fe authored by rprenger's avatar rprenger
Browse files

Allowing for a 0 tokens/just scoring mode

parent 8d405805
......@@ -37,7 +37,8 @@ def generate_and_post_process(model,
top_p_sampling=0.0,
temperature=1.0,
add_BOS=False,
use_eod_token_for_early_termination=True):
use_eod_token_for_early_termination=True,
just_score=False):
"""Run inference and post-process outputs, i.e., detokenize,
move to cpu and convert to list."""
......@@ -53,7 +54,8 @@ def generate_and_post_process(model,
top_p_sampling=top_p_sampling,
temperature=temperature,
add_BOS=add_BOS,
use_eod_token_for_early_termination=use_eod_token_for_early_termination)
use_eod_token_for_early_termination=use_eod_token_for_early_termination,
just_score=just_score)
# Only post-process on first stage.
if mpu.is_pipeline_first_stage():
......@@ -83,7 +85,8 @@ def generate(model,
top_p_sampling=0.0,
temperature=1.0,
add_BOS=False,
use_eod_token_for_early_termination=True):
use_eod_token_for_early_termination=True,
just_score=False):
"""Given prompts and input parameters, run inference and return:
tokens: prompts plus the generated tokens.
lengths: length of the prompt + generations. Note that we can
......@@ -97,8 +100,8 @@ def generate(model,
values = [tokens_to_generate,
return_output_log_probs, return_all_log_probs,
greedy_sampling, top_k_sampling, top_p_sampling,
temperature, add_BOS, use_eod_token_for_early_termination]
values_float_tensor = broadcast_float_list(9, float_list=values)
temperature, add_BOS, use_eod_token_for_early_termination, just_score]
values_float_tensor = broadcast_float_list(10, float_list=values)
tokens_to_generate = int(values_float_tensor[0].item())
return_output_log_probs = bool(values_float_tensor[1].item())
return_all_log_probs = bool(values_float_tensor[2].item())
......@@ -108,12 +111,13 @@ def generate(model,
temperature = values_float_tensor[6].item()
add_BOS = bool(values_float_tensor[7].item())
use_eod_token_for_early_termination = bool(values_float_tensor[8].item())
just_score = bool(values_float_tensor[9].item())
# Tokenize prompts and get the batch.
# Note that these tensors are broadcaseted to all ranks.
if torch.distributed.get_rank() == 0:
assert prompts is not None
assert tokens_to_generate > 0
#assert tokens_to_generate > 0
context_tokens_tensor, context_length_tensor = tokenize_prompts(
prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS)
......@@ -125,4 +129,5 @@ def generate(model,
return_all_log_probs=return_all_log_probs,
greedy=greedy_sampling, top_k=top_k_sampling, top_p=top_p_sampling,
temperature=temperature,
use_eod_token_for_early_termination=use_eod_token_for_early_termination)
use_eod_token_for_early_termination=use_eod_token_for_early_termination,
just_score=just_score)
......@@ -34,7 +34,8 @@ def generate_tokens_probs_and_return_on_first_stage(
return_all_log_probs=False,
greedy=False, top_k=0, top_p=0.0,
temperature=1.0,
use_eod_token_for_early_termination=True):
use_eod_token_for_early_termination=True,
just_score=False):
"""Main token generation function.
Arguments:
model: no interleaving is supported.
......@@ -109,6 +110,7 @@ def generate_tokens_probs_and_return_on_first_stage(
generated_sequence_lengths = torch.ones(
batch_size, dtype=torch.int64,
device=torch.cuda.current_device()) * max_sequence_length
# Whether we have reached a termination id.
is_generation_done = torch.zeros(batch_size, dtype=torch.uint8,
device=torch.cuda.current_device())
......@@ -207,7 +209,7 @@ def generate_tokens_probs_and_return_on_first_stage(
tokens = tokens[:, :(context_length + 1)]
if mpu.is_pipeline_last_stage():
if return_output_log_probs:
output_log_probs = output_log_probs[:, :context_length]
output_log_probs = output_log_probs[:, :context_length].contiguous()
if return_all_log_probs:
all_log_probs = all_log_probs[:, :context_length, :]
......
......@@ -54,12 +54,15 @@ class MegatronGenerate(Resource):
return "Maximum number of prompts is 128", 400
tokens_to_generate = 64 # Choosing hopefully sane default. Full sequence is slow
just_score=False
if "tokens_to_generate" in request.get_json():
tokens_to_generate = request.get_json()["tokens_to_generate"]
if not isinstance(tokens_to_generate, int):
return "tokens_to_generate must be an integer greater than 0"
if tokens_to_generate < 1:
return "tokens_to_generate must be an integer greater than 0"
if tokens_to_generate < 0:
return "tokens_to_generate must be an integer greater than or equal to 0"
if tokens_to_generate == 0:
just_score = True
logprobs = False
if "logprobs" in request.get_json():
......@@ -113,7 +116,8 @@ class MegatronGenerate(Resource):
top_p_sampling=top_p,
temperature=temperature,
add_BOS=add_BOS,
use_eod_token_for_early_termination=True)
use_eod_token_for_early_termination=True,
just_score=just_score)
return jsonify({"text": response,
"segments": response_seg,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment