Commit 1446bb64 authored by Mohammad's avatar Mohammad
Browse files

working on args

parent 37ff534f
......@@ -20,45 +20,239 @@ import os
import torch
_GLOBAL_ARGS = None
def parse_args(extra_args_provider=None):
global _GLOBAL_ARGS
assert _GLOBAL_ARGS is None, 'args already initializeed'
_GLOBAL_ARGS = get_args_(extra_args_provider=extra_args_provider)
return _GLOBAL_ARGS
def get_args(extra_args_provider=None):
global _GLOBAL_ARGS
if _GLOBAL_ARGS is None:
return parse_args(extra_args_provider=extra_args_provider)
else:
return _GLOBAL_ARGS
def add_network_size_args(parser):
group = parser.add_argument_group(title='network size')
group.add_argument('--num-layers', type=int, required=True,
help='Number of transformer layers.')
group.add_argument('--hidden-size', type=int, required=True,
help='Tansformer hidden size.')
group.add_argument('--num-attention-heads', type=int, required=True,
help='Number of transformer attention heads.')
group.add_argument('--max-position-embeddings', type=int, required=True,
help='Maximum number of position embeddings to use. '
'This is the size of position embedding.')
group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
help='Pad the vocab size to be divisible by this value.'
'This is added for computational efficieny reasons.')
return parser
def add_regularization_args(parser):
group = parser.add_argument_group(title='regularization')
group.add_argument('--attention-dropout', type=float, default=0.1,
help='Post attention dropout ptobability.')
group.add_argument('--hidden-dropout', type=float, default=0.1,
help='Dropout probability for hidden state transformer.')
group.add_argument('--weight-decay', type=float, default=0.01,
help='Weight decay coefficient for L2 regularization.')
group.add_argument('--clip-grad', type=float, default=1.0,
help='Gradient clipping based on global L2 norm.')
return parser
def add_training_args(parser):
group = parser.add_argument_group(title='training')
group.add_argument('--batch-size', type=int, required=True,
help='Batch size per model instance (local batch size). '
'Global batch size is local batch size times data '
'parallel size.')
group.add_argument('--checkpoint-activations', action='store_true',
help='Checkpoint activation to allow for training '
'with larger models, sequences, and batch sizes.')
group.add_argument('--checkpoint-num-layers', type=int, default=1,
help='chunk size (number of layers) for checkpointing.')
group.add_argument('--train-iters', type=int, required=True,
help='Total number of iterations to train over all '
'training runs.')
group.add_argument('--log-interval', type=int, default=100,
help='Report loss and timing interval.')
group.add_argument('--exit-interval', type=int, default=None,
help='Exit the program after the iteration is divisible '
'by this value.')
group.add_argument('--tensorboard-dir', type=str, default=None,
help='Write TensorBoard logs to this directory.')
return parser
def add_initialization_args(parser):
group = parser.add_argument_group(title='initialization')
group.add_argument('--seed', type=int, default=1234,
help='Random seed used for python, numpy, '
'pytorch, and cuda.')
group.add_argument('--init-method-std', type=float, default=0.02,
help='Standard deviation of the zero mean normal '
'distribution used for weight initialization.')
return parser
def add_learning_rate_args(parser):
group = parser.add_argument_group(title='learning rate')
group.add_argument('--lr', type=float, required=True,
help='Initial learning rate. Depending on decay style '
'and initial warmup, the learing rate at each '
'iteration would be different.')
group.add_argument('--lr-decay-style', type=str, default='linear',
choices=['constant', 'linear', 'cosine', 'exponential'],
help='Learning rate decay function.')
group.add_argument('--lr-decay-iters', type=int, default=None,
help='number of iterations to decay learning rate over,'
' If None defaults to `--train-iters`')
group.add_argument('--min-lr', type=float, default=0.0,
help='Minumum value for learning rate. The scheduler'
'clip values below this threshold.')
group.add_argument('--warmup', type=float, default=0.01,
help='Percentage of total iterations to warmup on '
'(.01 = 1 percent of all training iters).')
group.add_argument('--override-lr-scheduler', action='store_true',
help='Reset the values of the scheduler (learning rate,'
'warmup iterations, minimum learning rate, maximum '
'number of iterations, and decay style from input '
'arguments and ignore values from checkpoints. Note'
'that all the above values will be reset.')
group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
help='Use checkpoint to set the values of the scheduler '
'(learning rate, warmup iterations, minimum learning '
'rate, maximum number of iterations, and decay style '
'from checkpoint and ignore input arguments.')
return parser
def add_checkpointing_args(parser):
group = parser.add_argument_group(title='checkpointing')
group.add_argument('--save', type=str, default=None,
help='Output directory to save checkpoints to.')
group.add_argument('--save-interval', type=int, default=None,
help='Number of iterations between checkpoint saves.')
group.add_argument('--no-save-optim', action='store_true',
help='Do not save current optimizer.')
group.add_argument('--no-save-rng', action='store_true',
help='Do not save current rng state.')
group.add_argument('--load', type=str, default=None,
help='Directory containing a model checkpoint.')
group.add_argument('--no-load-optim', action='store_true',
help='Do not load optimizer when loading checkpoint.')
group.add_argument('--no-load-rng', action='store_true',
help='Do not load rng state when loading checkpoint.')
group.add_argument('--finetune', action='store_true',
help='Load model for finetuning. Do not load optimizer '
'or rng state from checkpoint and set iteration to 0. '
'Assumed when loading a release checkpoint.')
return parser
def add_mixed_precision_args(parser):
group = parser.add_argument_group(title='mixed precision')
group.add_argument('--fp16', action='store_true',
help='Run model in fp16 mode.')
group.add_argument('--apply-query-key-layer-scaling', action='store_true',
help='Scale Q * K^T by 1 / layer-number. If this flag '
'is set, then it will automatically set '
'attention-softmax-in-fp32 to true')
group.add_argument('--attention-softmax-in-fp32', action='store_true',
help='Run attention masking and softmax in fp32.')
group.add_argument('--hysteresis', type=int, default=2,
help='hysteresis for dynamic loss scaling')
group.add_argument('--loss-scale', type=float, default=None,
help='Static loss scaling, positive power of 2 '
'values can improve fp16 convergence. If None, dynamic'
'loss scaling is used.')
group.add_argument('--loss-scale-window', type=float, default=1000,
help='Window over which to raise/lower dynamic scale.')
group.add_argument('--min-scale', type=float, default=1,
help='Minimum loss scale for dynamic loss scale.')
return parser
def add_distributed_args(parser):
group = parser.add_argument_group(title='mixed precision')
group.add_argument('--distributed-backend', default='nccl',
choices=['nccl', 'gloo'],
help='Which backend to use for distributed training.')
group.add_argument('--DDP-impl', default='local',
choices=['local', 'torch'],
help='which DistributedDataParallel implementation '
'to use.')
group.add_argument('--local_rank', type=int, default=None,
help='local rank passed from distributed launcher.')
return parser
def add_validation_args(parser):
group = parser.add_argument_group(title='validation')
group.add_argument('--eval-iters', type=int, default=100,
help='Number of iterations to run for evaluation'
'validation/test for.')
group.add_argument('--eval-interval', type=int, default=1000,
help='Interval between running evaluation on '
'validation set.')
return parser
########################
def add_model_config_args(parser):
"""Model arguments"""
group = parser.add_argument_group('model', 'model configuration')
group.add_argument('--pretrained-bert', action='store_true',
help='use a pretrained bert-large-uncased model instead'
'of initializing from scratch. See '
'--tokenizer-model-type to specify which pretrained '
'BERT model to use')
group.add_argument('--attention-dropout', type=float, default=0.1,
help='dropout probability for attention weights')
group.add_argument('--num-attention-heads', type=int, default=16,
help='num of transformer attention heads')
group.add_argument('--hidden-size', type=int, default=1024,
help='tansformer hidden size')
group.add_argument('--intermediate-size', type=int, default=None,
help='transformer embedding dimension for FFN'
'set to 4*`--hidden-size` if it is None')
group.add_argument('--num-layers', type=int, default=24,
help='num decoder layers')
group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
help='layer norm epsilon')
group.add_argument('--hidden-dropout', type=float, default=0.1,
help='dropout probability for hidden state transformer')
group.add_argument('--max-position-embeddings', type=int, default=512,
help='maximum number of position embeddings to use')
group.add_argument('--vocab-size', type=int, default=None,
help='vocab size to use for non-character-level '
'tokenization. This value will only be used when '
'creating a tokenizer')
group.add_argument('--deep-init', action='store_true',
help='initialize bert model similar to gpt2 model.'
'scales initialization of projection layers by a '
'factor of 1/sqrt(2N). Necessary to train bert '
'models larger than BERT-Large.')
group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
help='Pad the vocab size to be divisible by this value.'
'This is added for computational efficieny reasons.')
group.add_argument('--vocab-size', type=int, default=None,
help='vocabulary size to use for non-character-level '
'tokenization. This value will only be used when '
'creating a tokenizer')
return parser
......@@ -68,14 +262,6 @@ def add_fp16_config_args(parser):
group = parser.add_argument_group('fp16', 'fp16 configurations')
group.add_argument('--fp16', action='store_true',
help='Run model in fp16 mode')
group.add_argument('--apply-query-key-layer-scaling', action='store_true',
help='Scale Q * K^T by 1 / layer-number. If this flag '
'is set, then it will automatically set '
'attention-softmax-in-fp32 to true')
group.add_argument('--attention-softmax-in-fp32', action='store_true',
help='Run attention masking and softmax in fp32.')
group.add_argument('--fp32-embedding', action='store_true',
help='embedding in fp32')
group.add_argument('--fp32-layernorm', action='store_true',
......@@ -84,46 +270,15 @@ def add_fp16_config_args(parser):
help='embedding token types in fp32')
group.add_argument('--fp32-allreduce', action='store_true',
help='all-reduce in fp32')
group.add_argument('--hysteresis', type=int, default=2,
help='hysteresis for dynamic loss scaling')
group.add_argument('--loss-scale', type=float, default=None,
help='Static loss scaling, positive power of 2 '
'values can improve fp16 convergence. If None, dynamic'
'loss scaling is used.')
group.add_argument('--loss-scale-window', type=float, default=1000,
help='Window over which to raise/lower dynamic scale')
group.add_argument('--min-scale', type=float, default=1,
help='Minimum loss scale for dynamic loss scale')
return parser
def add_training_args(parser):
def add_training_args_(parser):
"""Training arguments."""
group = parser.add_argument_group('train', 'training configurations')
group.add_argument('--batch-size', type=int, default=4,
help='Data Loader batch size')
group.add_argument('--weight-decay', type=float, default=0.01,
help='weight decay coefficient for L2 regularization')
group.add_argument('--checkpoint-activations', action='store_true',
help='checkpoint activation to allow for training '
'with larger models and sequences')
group.add_argument('--checkpoint-num-layers', type=int, default=1,
help='chunk size (number of layers) for checkpointing')
group.add_argument('--clip-grad', type=float, default=1.0,
help='gradient clipping')
group.add_argument('--train-iters', type=int, default=1000000,
help='total number of iterations to train over all training runs')
group.add_argument('--log-interval', type=int, default=100,
help='report interval')
group.add_argument('--exit-interval', type=int, default=None,
help='Exit the program after this many new iterations.')
group.add_argument('--tensorboard-dir', type=str, default=None,
help='Write TensorBoard logs to this directory')
group.add_argument('--seed', type=int, default=1234,
help='random seed')
# Batch prodecuer arguments
group.add_argument('--reset-position-ids', action='store_true',
help='Reset posistion ids after end-of-document token.')
......@@ -134,65 +289,13 @@ def add_training_args(parser):
help='Mask loss for the end of document tokens')
# Learning rate.
group.add_argument('--lr-decay-iters', type=int, default=None,
help='number of iterations to decay LR over,'
' If None defaults to `--train-iters`*`--epochs`')
group.add_argument('--lr-decay-style', type=str, default='linear',
choices=['constant', 'linear', 'cosine', 'exponential'],
help='learning rate decay function')
group.add_argument('--lr', type=float, default=1.0e-4,
help='initial learning rate')
group.add_argument('--min-lr', type=float, default=0.0,
help='Minumum value for learning rate. The scheduler'
'clip values below this threshold.')
group.add_argument('--warmup', type=float, default=0.01,
help='percentage of data to warmup on (.01 = 1% of all '
'training iters). Default 0.01')
group.add_argument('--override-lr-scheduler', action='store_true',
help='Reset the values of the scheduler (learning rate,'
'warmup iterations, minimum learning rate, maximum '
'number of iterations, and decay style from input '
'arguments and ignore values from checkpoints. Note'
'that all the above values will be reset.')
group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
help='Use checkpoint to set the values of the scheduler '
'(learning rate, warmup iterations, minimum learning '
'rate, maximum number of iterations, and decay style '
'from input arguments and ignore values from '
'checkpoints. Notethat all the above values will be '
'reset.')
# model checkpointing
group.add_argument('--save', type=str, default=None,
help='Output directory to save checkpoints to.')
group.add_argument('--save-interval', type=int, default=5000,
help='number of iterations between saves')
group.add_argument('--no-save-optim', action='store_true',
help='Do not save current optimizer.')
group.add_argument('--no-save-rng', action='store_true',
help='Do not save current rng state.')
group.add_argument('--load', type=str, default=None,
help='Path to a directory containing a model checkpoint.')
group.add_argument('--no-load-optim', action='store_true',
help='Do not load optimizer when loading checkpoint.')
group.add_argument('--no-load-rng', action='store_true',
help='Do not load rng state when loading checkpoint.')
group.add_argument('--finetune', action='store_true',
help='Load model for finetuning. Do not load optimizer '
'or rng state from checkpoint and set iteration to 0. '
'Assumed when loading a release checkpoint.')
group.add_argument('--resume-dataloader', action='store_true',
help='Resume the dataloader when resuming training. '
'Does not apply to tfrecords dataloader, try resuming'
'with a different seed in this case.')
# distributed training args
group.add_argument('--distributed-backend', default='nccl',
help='which backend to use for distributed '
'training. One of [gloo, nccl]')
group.add_argument('--DDP-impl', default='local',
help='which DistributedDataParallel implementation '
'to use. One of [local, torch]')
group.add_argument('--local_rank', type=int, default=None,
help='local rank passed from distributed launcher')
# autoresume
group.add_argument('--adlr-autoresume', action='store_true',
help='enable autoresume on adlr cluster.')
......@@ -211,11 +314,6 @@ def add_evaluation_args(parser):
group.add_argument('--eval-batch-size', type=int, default=None,
help='Data Loader batch size for evaluation datasets.'
'Defaults to `--batch-size`')
group.add_argument('--eval-iters', type=int, default=100,
help='number of iterations to run for evaluation'
'validation/test for')
group.add_argument('--eval-interval', type=int, default=1000,
help='interval between running evaluation on validation set')
group.add_argument('--eval-seq-length', type=int, default=None,
help='Maximum sequence length to process for '
'evaluation. Defaults to `--seq-length`')
......@@ -358,21 +456,42 @@ def add_data_args(parser):
return parser
def get_args(extra_args_provider=None):
def get_args_(extra_args_provider=None):
"""Parse all the args."""
parser = argparse.ArgumentParser(description='PyTorch BERT Model')
parser = argparse.ArgumentParser(description='Megatron-LM Arguments')
parser = add_network_size_args(parser)
parser = add_regularization_args(parser)
parser = add_training_args(parser)
parser = add_initialization_args(parser)
parser = add_learning_rate_args(parser)
parser = add_checkpointing_args(parser)
parser = add_mixed_precision_args(parser)
parser = add_distributed_args(parser)
parser = add_validation_args(parser)
#parser.print_help()
#exit()
parser = add_model_config_args(parser)
parser = add_fp16_config_args(parser)
parser = add_training_args(parser)
parser = add_training_args_(parser)
parser = add_evaluation_args(parser)
parser = add_text_generate_args(parser)
parser = add_data_args(parser)
if extra_args_provider is not None:
parser = extra_args_provider(parser)
args = parser.parse_args()
# Checks.
if args.save is not None:
assert args.save_interval is not None, \
'expected \'--save-interval\' in the input arguments.'
if not args.train_data and not args.data_path:
print('WARNING: No training data specified')
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment