Commit 0d99ae1f authored by silencealiang's avatar silencealiang
Browse files

add

parent c271aaae
Pipeline #2498 canceled with stages
......@@ -3,12 +3,12 @@ from typing import Dict, List
import torch
from megatron.core.inference.common_inference_params import CommonInferenceParams
from megatron.core.inference.engines.abstract_engine import AbstractEngine
from megatron.core.inference.inference_request import InferenceRequest
from megatron.core.inference.sampling_params import SamplingParams
from megatron.core.inference.scheduler import Scheduler
from megatron.core.inference.text_generation_controllers.simple_text_generation_controller import (
SimpleTextGenerationController,
from megatron.core.inference.text_generation_controllers.text_generation_controller import (
TextGenerationController,
)
......@@ -19,7 +19,7 @@ class MCoreEngine(AbstractEngine):
Supports any model that is callable (Accepts the inputs and outputs the tensor)
Args:
text_generation_controller (SimpleTextGenerationController): A text generation
text_generation_controller (TextGenerationController): A text generation
controller that will be used to define how to preprocess prompts, generate
outputs and detokenizer the output tokens.
max_batch_size : The maxinum number of requests to process at once
......@@ -29,7 +29,7 @@ class MCoreEngine(AbstractEngine):
def __init__(
self,
text_generation_controller: SimpleTextGenerationController,
text_generation_controller: TextGenerationController,
max_batch_size,
random_seed: int = None,
):
......@@ -42,7 +42,8 @@ class MCoreEngine(AbstractEngine):
prompts: List[str],
add_BOS: bool = False,
encoder_prompts: List[str] = None,
common_inference_params: CommonInferenceParams = None,
common_inference_params: SamplingParams = None,
sampling_params: SamplingParams = None,
) -> dict:
"""The megatron core inference backend generate function
......@@ -54,13 +55,19 @@ class MCoreEngine(AbstractEngine):
prompts (List[str]): All the prompts as a list of strings
add_BOS (bool): Whether to add BOS token to beginning of prompts
encoder_prompts (List[dict]): All the encoder prompts as a list of strings
common_inference_params (CommonInferenceParams): The inference parameters
common_inference_params: Deprecated. Only used for backward compatibility with
MCore <= 0.9.0. Use `sampling_params` going forward.
sampling_params (SamplingParams): The request-level sampling parameters
Returns:
List[InferenceRequest]: The output is list of inference requests containing the
generated tokens, texts and log probs if required
"""
# TODO :M core- get rng state tracker
if common_inference_params:
sampling_params = common_inference_params
if self.random_seed:
torch.random.manual_seed(self.random_seed)
......@@ -73,7 +80,7 @@ class MCoreEngine(AbstractEngine):
prompt=prompt,
prompt_tokens=prompt_tokens,
encoder_prompt=encoder_prompt,
inference_parameters=common_inference_params,
inference_parameters=sampling_params,
)
self.run_engine()
......
......@@ -5,7 +5,7 @@ from typing import List
import torch
from megatron.core.inference.common_inference_params import CommonInferenceParams
from megatron.core.inference.sampling_params import SamplingParams
# class syntax
......@@ -28,7 +28,7 @@ class InferenceRequest:
request_id: str
prompt: str
inference_parameters: CommonInferenceParams
inference_parameters: SamplingParams
prompt_tokens: List[int]
arrival_time: float
status: Status
......
File mode changed from 100755 to 100644
File mode changed from 100755 to 100644
File mode changed from 100755 to 100644
File mode changed from 100755 to 100644
File mode changed from 100755 to 100644
File mode changed from 100755 to 100644
File mode changed from 100755 to 100644
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from dataclasses import dataclass
@dataclass
class SamplingParams:
"""Inference parameters sent along with the prompts.
This class contains request-level attributes that control the sampling techniques used when
generating text. This is distinct from megatron.core.InferenceParams, which is sets model-level
inference attributes such as the maximum sequence length, and contains the KV cache.
For an explanation of these parameters refer to this blog
https://ivibudh.medium.com/a-guide-to-controlling-llm-model-output-exploring-top-k-top-p-and-
temperature-parameters-ed6a31313910
"""
temperature: float = 1.0
top_k: int = 0
top_p: float = 0.0
return_log_probs: bool = False
num_tokens_to_generate: int = 30
def add_attributes(self, attribute_value_pair: dict):
"""Utility to add more attributes to sampling params
Use this method to pass in a custom dictionary to add more sampling parameter attributes.
c = SamplingParams
c.add_attributes({'min_length':4, 'eod_id':153})
Args:
attribute_value_pair (dict): A dictionary containing attributes as the key names and
their values as the values.
"""
for key, value in attribute_value_pair.items():
setattr(self, key, value)
......@@ -6,8 +6,8 @@ from typing import Dict
import torch
from megatron.core.inference.common_inference_params import CommonInferenceParams
from megatron.core.inference.inference_request import InferenceRequest, Status
from megatron.core.inference.sampling_params import SamplingParams
from megatron.core.inference.utils import Counter
......@@ -33,7 +33,7 @@ class Scheduler:
prompt: str,
prompt_tokens: torch.Tensor,
encoder_prompt: str = None,
inference_parameters: CommonInferenceParams = None,
inference_parameters: SamplingParams = None,
arrival_time: float = None,
):
"""Add an incoming request
......@@ -45,7 +45,7 @@ class Scheduler:
prompt (str): Input prompt string
prompt_tokens (torch.Tensor): A torch tensor having the input prompts tokenized
encoder_prompt (str): Encoder input string
inference_parameters (CommonInferenceParams): The inference parameters
inference_parameters (SamplingParams): The inference parameters
arrival_time (float, optional): The incoming request time. Defaults to None.
"""
request_id = str(next(self.request_counter))
......
File mode changed from 100755 to 100644
......@@ -4,15 +4,15 @@ from typing import OrderedDict
import torch
from megatron.core.inference.inference_request import InferenceRequest
from megatron.core.inference.text_generation_controllers.simple_text_generation_controller import (
SimpleTextGenerationController,
from megatron.core.inference.text_generation_controllers.text_generation_controller import (
TextGenerationController,
)
class EncoderDecoderTextGenerationController(SimpleTextGenerationController):
class EncoderDecoderTextGenerationController(TextGenerationController):
"""The text generation controller for encoder-decoder architecture
This class ingherits from SimpleTextGenerationController, adding features
This class inherits from TextGenerationController, adding features
relating to encoder input encoder_prompt
"""
......
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from typing import List, OrderedDict, Tuple
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
import torch
import torch.nn.functional as F
from megatron.core import parallel_state
from megatron.core.inference.common_inference_params import CommonInferenceParams
from megatron.core.inference.communication_utils import broadcast_from_last_pipeline_stage
from megatron.core.inference.inference_request import InferenceRequest, Status
from megatron.core.inference.model_inference_wrappers.abstract_model_inference_wrapper import (
AbstractModelInferenceWrapper,
from megatron.core.inference.text_generation_controllers.text_generation_controller import ( # noqa: F401 # pylint: disable=unused-import
TextGenerationController as SimpleTextGenerationController,
)
class SimpleTextGenerationController:
"""The basic text generation controller
This class is responsible for tokenizing the input , running the inference, sampling
and also detokenizing the output
Args:
inference_wrapped_model (AbstractModelInferenceWrapper): A model that
is wrapped using the specs given in the abstract_model_inference_wrapper.py
tokenizer (_type_): Tokenizer used for tokenizing and detokenizing the prompts
"""
def __init__(self, inference_wrapped_model: AbstractModelInferenceWrapper, tokenizer):
self.inference_wrapped_model = inference_wrapped_model
self.tokenizer = tokenizer
# For models without pipeline parallelism, is_first_stage and is_last_stage returns True
self.model_is_pipeline_parallel = not (
parallel_state.is_pipeline_first_stage() and parallel_state.is_pipeline_last_stage()
)
def tokenize_prompt(
self, prompt: str, add_BOS: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Utility to tokenize the input prompts
Args:
prompt (str): The input prompt
Returns:
torch.Tensor: Returns the tokenized prompt
"""
prompt_tokens = self.tokenizer.tokenize(prompt)
if add_BOS:
prompt_tokens = [self.tokenizer.bos] + prompt_tokens
return prompt_tokens
def detokenize_generations(self, prompt_tokens_with_generated_tokens: torch.Tensor) -> str:
"""Detokenize the output generations
Args:
prompt_tokens_with_generated_tokens (torch.Tensor): The input prompt
tokens plus the generated tokens
Returns:
str: The detokenized output
"""
tokens = prompt_tokens_with_generated_tokens.cpu().numpy().tolist()
return self.tokenizer.detokenize(tokens)
def sample_from_logits(
self,
last_token_logits: torch.Tensor,
common_inference_params: CommonInferenceParams,
vocab_size: int = None,
) -> torch.Tensor:
"""Samples the logits to generate outputs
Given the logits of the last token, this function samples it
according to the parameters defined in common_inference_params
and returns the samples
Args:
last_token_logits (torch.Tensor): The last token logits. A tensor of
size [batch_size, vocab_size]
common_inference_params (CommonInferenceParams): The paramters to use
for inference
vocab_size (int): Obtained from the tokenizer. Defaults to None
Returns:
torch.Tensor: 1D tensor of the sampled logits with [batch_size] elements
"""
top_p = common_inference_params.top_p
top_k = common_inference_params.top_k
temperature = common_inference_params.temperature
assert not (top_k > 0 and top_p > 0), 'Cannot have top-p and top-k both greater than zero'
assert top_p <= 1.0, 'top-p should be in (0,1]'
def modify_logits_for_top_k_filtering(logits, top_k):
"""Set the logits for none top-k values to -inf."""
filter_ = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits.masked_fill_(filter_, float('-Inf'))
def modify_logits_for_top_p_filtering(logits, top_p):
"""Set the logits for none top-p values to -inf."""
# First sort and calculate cumulative sum of probabilities.
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
# Filteration based on the cumulative sum.
filter_ = cumulative_probs > top_p
# This shift by 1 is weird and I cannot justify it. This existed
# in the original implementation:
# https://github.com/ari-holtzman/degen/blob/master/gen.py
# and I guess it is needed so keeping it for now.
filter_[:, 1:] = filter_[:, :-1].clone()
# Make sure we at least have one token to select from.
filter_[..., 0] = 0
# Fill in the filtered part
filter_ = filter_.scatter(1, sorted_indices, filter_)
logits.masked_fill_(filter_, float('-Inf'))
# Greedy sampling
if top_k == 1:
sampled_logits = torch.argmax(last_token_logits, dim=-1)
else:
last_token_logits = last_token_logits.clone()
if temperature != 1.0:
last_token_logits.div_(temperature)
if top_k > 1:
assert top_k <= last_token_logits.size(1), 'top-k is larger than logit size.'
if vocab_size:
assert top_k < vocab_size, 'top-k is larger than vocab size.'
modify_logits_for_top_k_filtering(last_token_logits, top_k)
elif top_p > 0.0:
modify_logits_for_top_p_filtering(last_token_logits, top_p)
# After filtering, we need to recalculate the distribution.
probabilities = last_token_logits.softmax(dim=-1)
sampled_logits = torch.multinomial(probabilities, num_samples=1).view(-1)
# If vocab size is provided, make sure the samples are in in the range [0, vocab-size).
if vocab_size:
sampled_logits = torch.clamp(sampled_logits, min=0, max=(vocab_size - 1))
return sampled_logits
def update_generation_status(
self,
updated_prompts_tokens: torch.Tensor,
generation_started: torch.Tensor,
current_context_end_position: int,
is_generation_done_tensor: torch.Tensor,
generated_sequence_lengths: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Checks which prompts have reached an end condition
We check which prompts have reached an end condition and set the corresponding
flags of the is_generation_done_tensor to True. The generated sequence lengths
increase as we keep generating, until that prompts hits an end condition. The
generation_started tensor determines which prompts have started generating.
Args:
updated_prompts_tokens (torch.Tensor): The prompts tokens updated with the latest
generated tokens. A tensor of shape [batch_size, max_seq_len]
(i.e max_seq_len = max_prompt_len + tokens_to_generate)
generation_started (torch.Tensor): A boolean tensor of shape [batch_size]. True
indicates the prompt at that index has started generating tokens.
current_context_end_position (int): An integer indicating which position to
extract from the prompts tokens to get the latest generated tokens.
is_generation_done_tensor (torch.Tensor): A boolean tensor of shape [batch_size].
True indicates the prompt at that index has reached end condition.
generated_sequence_lengths (torch.Tensor): A int tensor of shape [batch_size].
Each value represents the generated sequence lengths for that prompt.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Returns the boolean
is_generation_done_tensor and the generated_sequence_lengths after updating it
"""
latest_samples = updated_prompts_tokens[:, current_context_end_position]
# Make sure we are checking eod criterion only for prompts that have started generating
# (i.e) We only look at the generated tokenns and not the input tokens.
reached_eod = (latest_samples == self.tokenizer.eod) & generation_started
is_generation_done_tensor = is_generation_done_tensor | reached_eod
# We increment generated sequence lengths when that prompt has not hit the
# EOD and generation has started
generated_sequence_lengths += ~is_generation_done_tensor & generation_started
return is_generation_done_tensor, generated_sequence_lengths
def pad_input_prompt_tokens(
self,
batch_prompt_tokens_list: List[List[int]],
max_prompt_length_in_batch: int,
num_tokens_to_generate: int,
) -> torch.Tensor:
"""Method to pad input prompts
Given a list of prompts, pad them all to uniform length
Args:
batch_prompt_tokens_list (List[List[int]]): A list containing the prompt tokens
max_prompt_length_in_batch (int): Maximum of the length of the input prompt tokens
num_tokens_togenerate (int): The number of tokens to generate for each prompt
Returns:
torch.Tensor: A torch tensor of shape [bs, max_seq_len] (i.e)
max_seq_len = max_prompt_length_in_batch + num_tokens_to_generate,
with extra indices for each tensor padded with mask id.
"""
max_seq_len = max_prompt_length_in_batch + num_tokens_to_generate
for prompt_tokens in batch_prompt_tokens_list:
padding_size = max_seq_len - len(prompt_tokens)
prompt_tokens.extend([self.tokenizer.eod] * padding_size)
return torch.tensor(batch_prompt_tokens_list).cuda()
def generate_output_tokens_dynamic_batch(
self, active_requests: OrderedDict[int, InferenceRequest]
) -> OrderedDict[int, InferenceRequest]:
"""Utility to generate the output tokens and probabilities for the prompts
This utility generates the output tokens for a dynamic batch. It will run one forward step
at a time, and pass control back to the engine, which will update the request pool and call
this method again.
Args:
active_requests (OrderedDict[int, InferenceRequest]): The input active requests.
Returns:
OrderedDict[int, InferenceRequest]: The result for each of the incoming requests
after running one forward step.
"""
raise Exception("Not implemented yet")
def generate_all_output_tokens_static_batch(
self, active_requests: OrderedDict[int, InferenceRequest]
) -> OrderedDict[int, InferenceRequest]:
"""Utility to generate the all the output tokens and probabilities for the prompts .
This utility generates the output tokens for a static batch. It runs the forward steps till
all prompts complete generation, updates the status of these requests to completed, adds
the generated result and returns these requests
Args:
active_requests (OrderedDict[int, InferenceRequest]): The input active requests.
Returns:
OrderedDict[int, InferenceRequest]: The result for each of the incoming requests
"""
batch_prompt_tokens_list = list(
map(lambda request: request.prompt_tokens, active_requests.values())
)
prompt_lengths_in_batch = torch.tensor(
[len(prompt_tokens) for prompt_tokens in batch_prompt_tokens_list]
).cuda()
max_prompt_length_in_batch = max(prompt_lengths_in_batch)
min_prompt_length_in_batch = min(prompt_lengths_in_batch)
# For batch inference the inference params are the same for all request
common_inference_params: CommonInferenceParams = list(active_requests.values())[
0
].inference_parameters
# max_seq_len = max_prompt_length_in_batch + num_tokens_to_generate
batch_prompt_tokens = self.pad_input_prompt_tokens(
batch_prompt_tokens_list,
max_prompt_length_in_batch=max_prompt_length_in_batch,
num_tokens_to_generate=common_inference_params.num_tokens_to_generate,
)
batch_size, max_sequence_length = batch_prompt_tokens.shape
# Pre allocate log probs tensor
output_log_probs = None
if common_inference_params.return_log_probs:
output_log_probs = torch.empty(
(batch_size, max_sequence_length - 1), dtype=torch.float32
).cuda()
# An array to check which of the prompts have reached end of generation condition
is_generation_done_tensor = torch.zeros(batch_size, dtype=torch.bool).cuda()
# An array to act as a counter to keep track of generated sequence lengths
generated_sequence_lengths = torch.zeros(batch_size).cuda()
with torch.no_grad():
self.prep_model_for_inference(
prompts_tokens=batch_prompt_tokens, active_requests=active_requests
)
context_start_position = 0
# Pick the context window that we need to pass through the network.
for context_end_position in range(min_prompt_length_in_batch, max_sequence_length):
inference_input = self.inference_wrapped_model.get_batch_for_context_window(
context_start_position, context_end_position
)
# Returns the final logits of shape [batch_size, context_length, vocab_size]
# Note: This is returned in all TP ranks or last PP stage in PP models
logits = self.inference_wrapped_model.run_one_forward_step(inference_input)
if self.model_is_pipeline_parallel:
context_length = context_end_position - context_start_position
logits = broadcast_from_last_pipeline_stage(
[batch_size, context_length, self.tokenizer.vocab_size],
dtype=self.inference_wrapped_model.inference_wrapper_config.params_dtype,
tensor=logits,
)
# Indicates which of the input prompts have started generating tokens.
# A 1D boolean tensor with [batch_size] elements (i.e) The shortest
# prompts will start generating first and so on
generation_started = prompt_lengths_in_batch <= context_end_position
last_token_logits = logits[:, -1, :]
sampled_logits = self.sample_from_logits(
last_token_logits, common_inference_params, self.tokenizer.vocab_size
)
# Substitute the sampled logits only for only the prompts that
# have started generating tokens
batch_prompt_tokens[generation_started, context_end_position] = sampled_logits[
generation_started
]
if common_inference_params.return_log_probs:
log_probs = F.log_softmax(logits, dim=2)
indices = torch.unsqueeze(
batch_prompt_tokens[
:, (context_start_position + 1) : (context_end_position + 1)
],
2,
)
# Get the log probabilities for only the prompt tokens
output_log_probs[:, context_start_position:context_end_position] = torch.gather(
log_probs, 2, indices
).squeeze(2)
context_start_position = context_end_position
# Check end of generation status for each tensor
# and update generated sequence lengths
(is_generation_done_tensor, generated_sequence_lengths) = (
self.update_generation_status(
updated_prompts_tokens=batch_prompt_tokens,
generation_started=generation_started,
current_context_end_position=context_end_position,
is_generation_done_tensor=is_generation_done_tensor,
generated_sequence_lengths=generated_sequence_lengths,
)
)
# Boolean flag indicating if all prompts are finished
all_prompts_done = torch.all(is_generation_done_tensor)
if all_prompts_done:
break
# Include all the generated tokens
batch_prompt_tokens_with_generations = batch_prompt_tokens[:, : (context_end_position + 1)]
if common_inference_params.return_log_probs:
output_log_probs = output_log_probs[:, :context_end_position]
generated_sequence_lengths[
generated_sequence_lengths > common_inference_params.num_tokens_to_generate
] = common_inference_params.num_tokens_to_generate
for idx, request in enumerate(active_requests.values()):
input_prompt_length = int(prompt_lengths_in_batch[idx])
# Shorter prompts might have generated more than required tokens. So we trim them down
required_sequence_length = int(
min(generated_sequence_lengths[idx], common_inference_params.num_tokens_to_generate)
)
# Extract only the generated tokens
required_result_tokens = batch_prompt_tokens_with_generations[
idx, input_prompt_length : (input_prompt_length + required_sequence_length)
]
request.generated_length = required_sequence_length
request.generated_tokens = required_result_tokens
request.generated_log_probs = (
None
if output_log_probs is None
else output_log_probs[idx, input_prompt_length:required_sequence_length]
)
request.status = Status.COMPLETED
request.generated_text = self.detokenize_generations(required_result_tokens)
return active_requests
def prep_model_for_inference(
self, prompts_tokens: torch.Tensor, active_requests: OrderedDict[int, InferenceRequest]
):
"""Preparing batch for inference, using respective wrapper's prep_model_for_inference method
Args:
prompts_tokens (torch.Tensor): A tensor of shape [batch_size, max_sequence_length]
active_requests (OrderedDict[int, InferenceRequest]): The input active requests
"""
self.inference_wrapped_model.prep_model_for_inference(prompts_tokens=prompts_tokens)
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
from typing import List, OrderedDict, Tuple
import torch
import torch.nn.functional as F
from megatron.core import parallel_state
from megatron.core.inference.communication_utils import broadcast_from_last_pipeline_stage
from megatron.core.inference.inference_request import InferenceRequest, Status
from megatron.core.inference.model_inference_wrappers.abstract_model_inference_wrapper import (
AbstractModelInferenceWrapper,
)
from megatron.core.inference.sampling_params import SamplingParams
class TextGenerationController:
"""The text generation controller (the main sampling loop)
This class tokenizes the input, runs inference, samples from logits, and detokenizes the output.
Args:
inference_wrapped_model (AbstractModelInferenceWrapper): A model that
is wrapped using the specs given in the abstract_model_inference_wrapper.py
tokenizer (_type_): Tokenizer used for tokenizing and detokenizing the prompts
"""
def __init__(self, inference_wrapped_model: AbstractModelInferenceWrapper, tokenizer):
self.inference_wrapped_model = inference_wrapped_model
self.tokenizer = tokenizer
# For models without pipeline parallelism, is_first_stage and is_last_stage returns True
self.model_is_pipeline_parallel = not (
parallel_state.is_pipeline_first_stage() and parallel_state.is_pipeline_last_stage()
)
def tokenize_prompt(
self, prompt: str, add_BOS: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Utility to tokenize the input prompts
Args:
prompt (str): The input prompt
Returns:
torch.Tensor: Returns the tokenized prompt
"""
prompt_tokens = self.tokenizer.tokenize(prompt)
if add_BOS:
prompt_tokens = [self.tokenizer.bos] + prompt_tokens
return prompt_tokens
def detokenize_generations(self, prompt_tokens_with_generated_tokens: torch.Tensor) -> str:
"""Detokenize the output generations
Args:
prompt_tokens_with_generated_tokens (torch.Tensor): The input prompt
tokens plus the generated tokens
Returns:
str: The detokenized output
"""
tokens = prompt_tokens_with_generated_tokens.cpu().numpy().tolist()
return self.tokenizer.detokenize(tokens)
def sample_from_logits(
self,
last_token_logits: torch.Tensor,
sampling_params: SamplingParams = None,
vocab_size: int = None,
**kwargs
) -> torch.Tensor:
"""Samples the logits to generate outputs
Given the logits of the last token, this function samples it
according to the parameters defined in sampling_params
and returns the samples
Args:
last_token_logits (torch.Tensor): The last token logits. A tensor of
size [batch_size, vocab_size]
sampling_params (SamplingParams): The parameters to use for inference.
vocab_size (int): Obtained from the tokenizer. Defaults to None
Returns:
torch.Tensor: 1D tensor of the sampled logits with [batch_size] elements
"""
if kwargs.get('common_inference_params'):
sampling_params = kwargs['common_inference_params']
top_p = sampling_params.top_p
top_k = sampling_params.top_k
temperature = sampling_params.temperature
assert not (top_k > 0 and top_p > 0), 'Cannot have top-p and top-k both greater than zero'
assert top_p <= 1.0, 'top-p should be in (0,1]'
def modify_logits_for_top_k_filtering(logits, top_k):
"""Set the logits for none top-k values to -inf."""
filter_ = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits.masked_fill_(filter_, float('-Inf'))
def modify_logits_for_top_p_filtering(logits, top_p):
"""Set the logits for none top-p values to -inf."""
# First sort and calculate cumulative sum of probabilities.
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
# Filteration based on the cumulative sum.
filter_ = cumulative_probs > top_p
# This shift by 1 is weird and I cannot justify it. This existed
# in the original implementation:
# https://github.com/ari-holtzman/degen/blob/master/gen.py
# and I guess it is needed so keeping it for now.
filter_[:, 1:] = filter_[:, :-1].clone()
# Make sure we at least have one token to select from.
filter_[..., 0] = 0
# Fill in the filtered part
filter_ = filter_.scatter(1, sorted_indices, filter_)
logits.masked_fill_(filter_, float('-Inf'))
# Greedy sampling
if top_k == 1:
sampled_logits = torch.argmax(last_token_logits, dim=-1)
else:
last_token_logits = last_token_logits.clone()
if temperature != 1.0:
last_token_logits.div_(temperature)
if top_k > 1:
assert top_k <= last_token_logits.size(1), 'top-k is larger than logit size.'
if vocab_size:
assert top_k < vocab_size, 'top-k is larger than vocab size.'
modify_logits_for_top_k_filtering(last_token_logits, top_k)
elif top_p > 0.0:
modify_logits_for_top_p_filtering(last_token_logits, top_p)
# After filtering, we need to recalculate the distribution.
probabilities = last_token_logits.softmax(dim=-1)
sampled_logits = torch.multinomial(probabilities, num_samples=1).view(-1)
# If vocab size is provided, make sure the samples are in in the range [0, vocab-size).
if vocab_size:
sampled_logits = torch.clamp(sampled_logits, min=0, max=(vocab_size - 1))
return sampled_logits
def update_generation_status(
self,
updated_prompts_tokens: torch.Tensor,
generation_started: torch.Tensor,
current_context_end_position: int,
is_generation_done_tensor: torch.Tensor,
generated_sequence_lengths: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Checks which prompts have reached an end condition
We check which prompts have reached an end condition and set the corresponding
flags of the is_generation_done_tensor to True. The generated sequence lengths
increase as we keep generating, until that prompts hits an end condition. The
generation_started tensor determines which prompts have started generating.
Args:
updated_prompts_tokens (torch.Tensor): The prompts tokens updated with the latest
generated tokens. A tensor of shape [batch_size, max_seq_len]
(i.e max_seq_len = max_prompt_len + tokens_to_generate)
generation_started (torch.Tensor): A boolean tensor of shape [batch_size]. True
indicates the prompt at that index has started generating tokens.
current_context_end_position (int): An integer indicating which position to
extract from the prompts tokens to get the latest generated tokens.
is_generation_done_tensor (torch.Tensor): A boolean tensor of shape [batch_size].
True indicates the prompt at that index has reached end condition.
generated_sequence_lengths (torch.Tensor): A int tensor of shape [batch_size].
Each value represents the generated sequence lengths for that prompt.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Returns the boolean
is_generation_done_tensor and the generated_sequence_lengths after updating it
"""
latest_samples = updated_prompts_tokens[:, current_context_end_position]
# Make sure we are checking eod criterion only for prompts that have started generating
# (i.e) We only look at the generated tokenns and not the input tokens.
reached_eod = (latest_samples == self.tokenizer.eod) & generation_started
is_generation_done_tensor = is_generation_done_tensor | reached_eod
# We increment generated sequence lengths when that prompt has not hit the
# EOD and generation has started
generated_sequence_lengths += ~is_generation_done_tensor & generation_started
return is_generation_done_tensor, generated_sequence_lengths
def pad_input_prompt_tokens(
self,
batch_prompt_tokens_list: List[List[int]],
max_prompt_length_in_batch: int,
num_tokens_to_generate: int,
) -> torch.Tensor:
"""Method to pad input prompts
Given a list of prompts, pad them all to uniform length
Args:
batch_prompt_tokens_list (List[List[int]]): A list containing the prompt tokens
max_prompt_length_in_batch (int): Maximum of the length of the input prompt tokens
num_tokens_togenerate (int): The number of tokens to generate for each prompt
Returns:
torch.Tensor: A torch tensor of shape [bs, max_seq_len] (i.e)
max_seq_len = max_prompt_length_in_batch + num_tokens_to_generate,
with extra indices for each tensor padded with mask id.
"""
max_seq_len = max_prompt_length_in_batch + num_tokens_to_generate
for prompt_tokens in batch_prompt_tokens_list:
padding_size = max_seq_len - len(prompt_tokens)
prompt_tokens.extend([self.tokenizer.eod] * padding_size)
return torch.tensor(batch_prompt_tokens_list).cuda()
def generate_output_tokens_dynamic_batch(
self, active_requests: OrderedDict[int, InferenceRequest]
) -> OrderedDict[int, InferenceRequest]:
"""Utility to generate the output tokens and probabilities for the prompts
This utility generates the output tokens for a dynamic batch. It will run one forward step
at a time, and pass control back to the engine, which will update the request pool and call
this method again.
Args:
active_requests (OrderedDict[int, InferenceRequest]): The input active requests.
Returns:
OrderedDict[int, InferenceRequest]: The result for each of the incoming requests
after running one forward step.
"""
raise Exception("Not implemented yet")
def generate_all_output_tokens_static_batch(
self, active_requests: OrderedDict[int, InferenceRequest]
) -> OrderedDict[int, InferenceRequest]:
"""Utility to generate the all the output tokens and probabilities for the prompts .
This utility generates the output tokens for a static batch. It runs the forward steps till
all prompts complete generation, updates the status of these requests to completed, adds
the generated result and returns these requests
Args:
active_requests (OrderedDict[int, InferenceRequest]): The input active requests.
Returns:
OrderedDict[int, InferenceRequest]: The result for each of the incoming requests
"""
batch_prompt_tokens_list = list(
map(lambda request: request.prompt_tokens, active_requests.values())
)
prompt_lengths_in_batch = torch.tensor(
[len(prompt_tokens) for prompt_tokens in batch_prompt_tokens_list]
).cuda()
max_prompt_length_in_batch = max(prompt_lengths_in_batch)
min_prompt_length_in_batch = min(prompt_lengths_in_batch)
# For batch inference the inference params are the same for all request
sampling_params: SamplingParams = list(active_requests.values())[0].inference_parameters
# max_seq_len = max_prompt_length_in_batch + num_tokens_to_generate
batch_prompt_tokens = self.pad_input_prompt_tokens(
batch_prompt_tokens_list,
max_prompt_length_in_batch=max_prompt_length_in_batch,
num_tokens_to_generate=sampling_params.num_tokens_to_generate,
)
batch_size, max_sequence_length = batch_prompt_tokens.shape
# Pre allocate log probs tensor
output_log_probs = None
if sampling_params.return_log_probs:
output_log_probs = torch.empty(
(batch_size, max_sequence_length - 1), dtype=torch.float32
).cuda()
# An array to check which of the prompts have reached end of generation condition
is_generation_done_tensor = torch.zeros(batch_size, dtype=torch.bool).cuda()
# An array to act as a counter to keep track of generated sequence lengths
generated_sequence_lengths = torch.zeros(batch_size).cuda()
with torch.no_grad():
self.prep_model_for_inference(
prompts_tokens=batch_prompt_tokens, active_requests=active_requests
)
context_start_position = 0
# Pick the context window that we need to pass through the network.
for context_end_position in range(min_prompt_length_in_batch, max_sequence_length):
inference_input = self.inference_wrapped_model.get_batch_for_context_window(
context_start_position, context_end_position
)
# Returns the final logits of shape [batch_size, context_length, vocab_size]
# Note: This is returned in all TP ranks or last PP stage in PP models
logits = self.inference_wrapped_model.run_one_forward_step(inference_input)
if self.model_is_pipeline_parallel:
context_length = context_end_position - context_start_position
logits = broadcast_from_last_pipeline_stage(
[batch_size, context_length, self.tokenizer.vocab_size],
dtype=self.inference_wrapped_model.inference_wrapper_config.params_dtype,
tensor=logits,
)
# Indicates which of the input prompts have started generating tokens.
# A 1D boolean tensor with [batch_size] elements (i.e) The shortest
# prompts will start generating first and so on
generation_started = prompt_lengths_in_batch <= context_end_position
last_token_logits = logits[:, -1, :]
sampled_logits = self.sample_from_logits(
last_token_logits, sampling_params, self.tokenizer.vocab_size
)
# Substitute the sampled logits only for only the prompts that
# have started generating tokens
batch_prompt_tokens[generation_started, context_end_position] = sampled_logits[
generation_started
]
if sampling_params.return_log_probs:
log_probs = F.log_softmax(logits, dim=2)
indices = torch.unsqueeze(
batch_prompt_tokens[
:, (context_start_position + 1) : (context_end_position + 1)
],
2,
)
# Get the log probabilities for only the prompt tokens
output_log_probs[:, context_start_position:context_end_position] = torch.gather(
log_probs, 2, indices
).squeeze(2)
context_start_position = context_end_position
# Check end of generation status for each tensor
# and update generated sequence lengths
(is_generation_done_tensor, generated_sequence_lengths) = (
self.update_generation_status(
updated_prompts_tokens=batch_prompt_tokens,
generation_started=generation_started,
current_context_end_position=context_end_position,
is_generation_done_tensor=is_generation_done_tensor,
generated_sequence_lengths=generated_sequence_lengths,
)
)
# Boolean flag indicating if all prompts are finished
all_prompts_done = torch.all(is_generation_done_tensor)
if all_prompts_done:
break
# Include all the generated tokens
batch_prompt_tokens_with_generations = batch_prompt_tokens[:, : (context_end_position + 1)]
if sampling_params.return_log_probs:
output_log_probs = output_log_probs[:, :context_end_position]
generated_sequence_lengths[
generated_sequence_lengths > sampling_params.num_tokens_to_generate
] = sampling_params.num_tokens_to_generate
for idx, request in enumerate(active_requests.values()):
input_prompt_length = int(prompt_lengths_in_batch[idx])
# Shorter prompts might have generated more than required tokens. So we trim them down
required_sequence_length = int(
min(generated_sequence_lengths[idx], sampling_params.num_tokens_to_generate)
)
# Extract only the generated tokens
required_result_tokens = batch_prompt_tokens_with_generations[
idx, input_prompt_length : (input_prompt_length + required_sequence_length)
]
request.generated_length = required_sequence_length
request.generated_tokens = required_result_tokens
request.generated_log_probs = (
None
if output_log_probs is None
else output_log_probs[idx, input_prompt_length:required_sequence_length]
)
request.status = Status.COMPLETED
request.generated_text = self.detokenize_generations(required_result_tokens)
return active_requests
def prep_model_for_inference(
self, prompts_tokens: torch.Tensor, active_requests: OrderedDict[int, InferenceRequest]
):
"""Preparing batch for inference, using respective wrapper's prep_model_for_inference method
Args:
prompts_tokens (torch.Tensor): A tensor of shape [batch_size, max_sequence_length]
active_requests (OrderedDict[int, InferenceRequest]): The input active requests
"""
self.inference_wrapped_model.prep_model_for_inference(prompts_tokens=prompts_tokens)
File mode changed from 100755 to 100644
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment