Commit 0c8e8cce authored by Lawrence McAfee's avatar Lawrence McAfee
Browse files

removed several 'assert_viewless_tensor' calls.

parent a1fe4805
......@@ -307,7 +307,6 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat
model[model_chunk_id],
input_tensor, losses_reduced)
output_tensors[model_chunk_id].append(output_tensor)
assert_viewless_tensor(output_tensor)
# if forward-only, no need to save tensors for a backward pass
if forward_only:
......@@ -341,7 +340,6 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat
mpu.set_virtual_pipeline_model_parallel_rank(0)
input_tensors[0].append(
p2p_communication.recv_forward(tensor_shape, timers=timers))
assert_viewless_tensor(input_tensors[0][-1])
for k in range(num_warmup_microbatches):
output_tensor = forward_step_helper(k)
......@@ -373,7 +371,6 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat
tensor_shape=tensor_shape,
timers=timers)
output_tensor_grads[num_model_chunks-1].append(output_tensor_grad)
assert_viewless_tensor(output_tensor_grad)
else:
input_tensor = \
p2p_communication.send_forward_recv_forward(
......@@ -382,7 +379,6 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat
timers=timers)
free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
input_tensors[next_forward_model_chunk_id].append(input_tensor)
assert_viewless_tensor(input_tensor)
# Run 1F1B in steady state.
for k in range(num_microbatches_remaining):
......@@ -452,18 +448,15 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat
# right location.
if recv_prev:
input_tensors[next_forward_model_chunk_id].append(input_tensor)
assert_viewless_tensor(input_tensor)
if recv_next:
output_tensor_grads[next_backward_model_chunk_id].append(
output_tensor_grad)
assert_viewless_tensor(output_tensor_grad)
# Run cooldown backward passes (flush out pipeline).
if not forward_only:
if all_warmup_microbatches:
output_tensor_grads[num_model_chunks-1].append(
p2p_communication.recv_backward(tensor_shape, timers=timers))
assert_viewless_tensor(output_tensor_grads[num_model_chunks-1][-1])
for k in range(num_microbatches_remaining, num_microbatches):
input_tensor_grad = backward_step_helper(k)
next_backward_model_chunk_id = get_model_chunk_id(k+1, forward=False)
......@@ -478,7 +471,6 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat
input_tensor_grad, recv_next=recv_next,
tensor_shape=tensor_shape,
timers=timers))
assert_viewless_tensor(output_tensor_grads[next_backward_model_chunk_id][-1])
return losses_reduced
......@@ -624,8 +616,8 @@ def forward_backward_pipelining_without_interleaving(forward_step_func, data_ite
send_forward(output_tensor, send_tensor_shapes, timers=timers)
if not forward_only:
input_tensors.append(mpu.assert_viewless_tensor(input_tensor))
output_tensors.append(mpu.assert_viewless_tensor(output_tensor))
input_tensors.append(input_tensor)
output_tensors.append(output_tensor)
free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
# Before running 1F1B, need to receive first forward tensor.
......@@ -653,8 +645,8 @@ def forward_backward_pipelining_without_interleaving(forward_step_func, data_ite
timers=timers)
# Add input_tensor and output_tensor to end of list.
input_tensors.append(mpu.assert_viewless_tensor(input_tensor))
output_tensors.append(mpu.assert_viewless_tensor(output_tensor))
input_tensors.append(input_tensor)
output_tensors.append(output_tensor)
free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
# Pop input_tensor and output_tensor from the start of the list for
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment