Commit 0b5cd1a0 authored by liangjing's avatar liangjing
Browse files

update

parent 5352a639
Pipeline #1848 passed with stage
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [2024-] [Unsloth AI, Daniel Han-Chen & Michael Han-Chen]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
<div align="center">
<a href="https://unsloth.ai"><picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20logo%20white%20text.png">
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20logo%20black%20text.png">
<img alt="unsloth logo" src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20logo%20black%20text.png" height="110" style="max-width: 100%;">
</picture></a>
<a href="https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing"><img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/start free finetune button.png" height="48"></a>
<a href="https://discord.gg/unsloth"><img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord button.png" height="48"></a>
<a href="https://ko-fi.com/unsloth"><img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/buy me a coffee button.png" height="48"></a>
### Finetune Llama 3.2, Mistral, Phi-3.5 & Gemma 2-5x faster with 80% less memory!
![](https://i.ibb.co/sJ7RhGG/image-41.png)
</div>
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, Ollama, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------|---------|--------|----------|
| **Llama 3.2 (3B)** | [▶️ Start for free](https://colab.research.google.com/drive/1T5-zKWM_5OD21QHwXHiV9ixTRR7k3iB9?usp=sharing) | 2x faster | 60% less |
| **Llama 3.1 (8B)** | [▶️ Start for free](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2x faster | 60% less |
| **Phi-3.5 (mini)** | [▶️ Start for free](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
| **Gemma 2 (9B)** | [▶️ Start for free](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2x faster | 63% less |
| **Mistral Small (22B)** | [▶️ Start for free](https://colab.research.google.com/drive/1oCEHcED15DzL8xXGU1VTx5ZfOJM8WY01?usp=sharing) | 2x faster | 60% less |
| **Ollama** | [▶️ Start for free](https://colab.research.google.com/drive/1WZDi7APtQ9VsvOrQSSC5DDtxq159j8iZ?usp=sharing) | 1.9x faster | 43% less |
| **Mistral v0.3 (7B)** | [▶️ Start for free](https://colab.research.google.com/drive/1_yNCks4BTD5zOnjozppphh5GzMFaMKq_?usp=sharing) | 2.2x faster | 73% less |
| **ORPO** | [▶️ Start for free](https://colab.research.google.com/drive/11t4njE3c4Lxl-07OD8lJSMKkfyJml3Tn?usp=sharing) | 1.9x faster | 43% less |
| **DPO Zephyr** | [▶️ Start for free](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 43% less |
- **Kaggle Notebooks** for [Llama 3.1 (8B)](https://www.kaggle.com/danielhanchen/kaggle-llama-3-1-8b-unsloth-notebook), [Gemma 2 (9B)](https://www.kaggle.com/code/danielhanchen/kaggle-gemma-7b-unsloth-notebook/), [Mistral (7B)](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)
- Run [Llama 3.2 1B 3B notebook](https://colab.research.google.com/drive/1hoHFpf7ROqk_oZHzxQdfPW9yvTxnvItq?usp=sharing) and [Llama 3.2 conversational notebook](https://colab.research.google.com/drive/1T5-zKWM_5OD21QHwXHiV9ixTRR7k3iB9?usp=sharing)
- Run [Llama 3.1 conversational notebook](https://colab.research.google.com/drive/15OyFkGoCImV9dSsewU1wa2JuKB4-mDE_?usp=sharing) and [Mistral v0.3 ChatML](https://colab.research.google.com/drive/15F1xyn8497_dUbxZP4zWmPZ3PJx1Oymv?usp=sharing)
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for continued pretraining / raw text
- This [continued pretraining notebook](https://colab.research.google.com/drive/1tEd1FrOXWMnCU9UIvdYhs61tkxdMuKZu?usp=sharing) is for learning another language
- Click [here](https://github.com/unslothai/unsloth/wiki) for detailed documentation for Unsloth.
## 🦥 Unsloth.ai News
- 📣 NEW! We found and helped fix a [gradient accumulation bug](https://unsloth.ai/blog/gradient)! Please update Unsloth and transformers.
- 📣 NEW! [Llama 3.2 Conversational notebook](https://colab.research.google.com/drive/1T5-zKWM_5OD21QHwXHiV9ixTRR7k3iB9?usp=sharing) includes training only on completions / outputs (increase accuracy), ShareGPT standardization and more!
- 📣 NEW! [Llama 3.2 Kaggle notebook](https://www.kaggle.com/danielhanchen/kaggle-llama-3-2-1b-3b-unsloth-notebook) and [Llama 3.2 Kaggle conversational notebook](https://www.kaggle.com/code/danielhanchen/kaggle-llama-3-2-1b-3b-conversational-unsloth/notebook)
- 📣 NEW! [Qwen 2.5 7b notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing) finetuning is supported! Qwen 2.5 comes in multiple sizes - check our [4bit uploads](https://huggingface.co/unsloth) for 4x faster downloads!. 14b fits in a Colab GPU! [Qwen 2.5 conversational notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing)
- 📣 NEW! [Mistral Small 22b notebook](https://colab.research.google.com/drive/1oCEHcED15DzL8xXGU1VTx5ZfOJM8WY01?usp=sharing) finetuning fits in under 16GB of VRAM!
- 📣 NEW! [Phi-3.5 (mini)](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) now supported
- 📣 NEW! [Gemma-2-2b](https://colab.research.google.com/drive/1weTpKOjBZxZJ5PQ-Ql8i6ptAY2x-FWVA?usp=sharing) now supported! Try out [Chat interface](https://colab.research.google.com/drive/1i-8ESvtLRGNkkUQQr_-z_rcSAIo9c3lM?usp=sharing)!
- 📣 NEW! [Llama 3.1 8b, 70b](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) & [Mistral Nemo-12b](https://colab.research.google.com/drive/17d3U-CAIwzmbDRqbZ9NnpHxCkmXB6LZ0?usp=sharing) both Base and Instruct are now supported
<details>
<summary>Click for more news</summary>
- 📣 NEW! `pip install unsloth` now works! Head over to [pypi](https://pypi.org/project/unsloth/) to check it out! This allows non git pull installs. Use `pip install unsloth[colab-new]` for non dependency installs.
- 📣 NEW! [Gemma-2-9b](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) and Gemma-2-27b now supported
- 📣 UPDATE! [Phi-3 mini](https://colab.research.google.com/drive/1hhdhBa1j_hsymiW9m-WzxQtgqTH_NHqi?usp=sharing) model updated. [Phi-3 Medium](https://colab.research.google.com/drive/1hhdhBa1j_hsymiW9m-WzxQtgqTH_NHqi?usp=sharing) 2x faster finetuning.
- 📣 NEW! Continued Pretraining [notebook](https://colab.research.google.com/drive/1tEd1FrOXWMnCU9UIvdYhs61tkxdMuKZu?usp=sharing) for other languages like Korean!
- 📣 NEW! Qwen2 now works
- 📣 [Mistral v0.3 Base](https://colab.research.google.com/drive/1_yNCks4BTD5zOnjozppphh5GzMFaMKq_?usp=sharing) and [Mistral v0.3 Instruct]
- 📣 [ORPO support](https://colab.research.google.com/drive/11t4njE3c4Lxl-07OD8lJSMKkfyJml3Tn?usp=sharing) is here + [2x faster inference](https://colab.research.google.com/drive/1aqlNQi7MMJbynFDyOQteD2t0yVfjb9Zh?usp=sharing) added for all our models
- 📣 We cut memory usage by a [further 30%](https://unsloth.ai/blog/long-context) and now support [4x longer context windows](https://unsloth.ai/blog/long-context)!
-
</details>
## 🔗 Links and Resources
| Type | Links |
| ------------------------------- | --------------------------------------- |
| 📚 **Documentation & Wiki** | [Read Our Docs](https://docs.unsloth.ai) |
| <img height="14" src="https://upload.wikimedia.org/wikipedia/commons/6/6f/Logo_of_Twitter.svg" />&nbsp; **Twitter (aka X)** | [Follow us on X](https://twitter.com/unslothai)|
| 💾 **Installation** | [unsloth/README.md](https://github.com/unslothai/unsloth/tree/main#-installation-instructions)|
| 🥇 **Benchmarking** | [Performance Tables](https://github.com/unslothai/unsloth/tree/main#-performance-benchmarking)
| 🌐 **Released Models** | [Unsloth Releases](https://huggingface.co/unsloth)|
| ✍️ **Blog** | [Read our Blogs](https://unsloth.ai/blog)|
## ⭐ Key Features
- All kernels written in [OpenAI's Triton](https://openai.com/research/triton) language. **Manual backprop engine**.
- **0% loss in accuracy** - no approximation methods - all exact.
- No change of hardware. Supports NVIDIA GPUs since 2018+. Minimum CUDA Capability 7.0 (V100, T4, Titan V, RTX 20, 30, 40x, A100, H100, L40 etc) [Check your GPU!](https://developer.nvidia.com/cuda-gpus) GTX 1070, 1080 works, but is slow.
- Works on **Linux** and **Windows** via WSL.
- Supports 4bit and 16bit QLoRA / LoRA finetuning via [bitsandbytes](https://github.com/TimDettmers/bitsandbytes).
- Open source trains 5x faster - see [Unsloth Pro](https://unsloth.ai/) for up to **30x faster training**!
- If you trained a model with 🦥Unsloth, you can use this cool sticker! &nbsp; <img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/made with unsloth.png" height="50" align="center" />
## 🥇 Performance Benchmarking
- For the full list of **reproducible** benchmarking tables, [go to our website](https://unsloth.ai/blog/mistral-benchmark#Benchmark%20tables)
| 1 A100 40GB | 🤗Hugging Face | Flash Attention | 🦥Unsloth Open Source | 🦥[Unsloth Pro](https://unsloth.ai/pricing) |
|--------------|--------------|-----------------|---------------------|-----------------|
| Alpaca | 1x | 1.04x | 1.98x | **15.64x** |
| LAION Chip2 | 1x | 0.92x | 1.61x | **20.73x** |
| OASST | 1x | 1.19x | 2.17x | **14.83x** |
| Slim Orca | 1x | 1.18x | 2.22x | **14.82x** |
- Benchmarking table below was conducted by [🤗Hugging Face](https://huggingface.co/blog/unsloth-trl).
| Free Colab T4 | Dataset | 🤗Hugging Face | Pytorch 2.1.1 | 🦥Unsloth | 🦥 VRAM reduction |
| --- | --- | --- | --- | --- | --- |
| Llama-2 7b | OASST | 1x | 1.19x | 1.95x | -43.3% |
| Mistral 7b | Alpaca | 1x | 1.07x | 1.56x | -13.7% |
| Tiny Llama 1.1b | Alpaca | 1x | 2.06x | 3.87x | -73.8% |
| DPO with Zephyr | Ultra Chat | 1x | 1.09x | 1.55x | -18.6% |
![](https://i.ibb.co/sJ7RhGG/image-41.png)
## 💾 Installation Instructions
For stable releases, use `pip install unsloth`. We recommend `pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"` for most installations though.
### Conda Installation
`⚠️Only use Conda if you have it. If not, use Pip`. Select either `pytorch-cuda=11.8,12.1` for CUDA 11.8 or CUDA 12.1. We support `python=3.10,3.11,3.12`.
```bash
conda create --name unsloth_env \
python=3.11 \
pytorch-cuda=12.1 \
pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers \
-y
conda activate unsloth_env
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
pip install --no-deps trl peft accelerate bitsandbytes
```
<details>
<summary>If you're looking to install Conda in a Linux environment, <a href="https://docs.anaconda.com/miniconda/">read here</a>, or run the below 🔽</summary>
```bash
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
~/miniconda3/bin/conda init zsh
```
</details>
### Pip Installation
`⚠️Do **NOT** use this if you have Conda.` Pip is a bit more complex since there are dependency issues. The pip command is different for `torch 2.2,2.3,2.4,2.5` and CUDA versions.
For other torch versions, we support `torch211`, `torch212`, `torch220`, `torch230`, `torch240` and for CUDA versions, we support `cu118` and `cu121` and `cu124`. For Ampere devices (A100, H100, RTX3090) and above, use `cu118-ampere` or `cu121-ampere` or `cu124-ampere`.
For example, if you have `torch 2.4` and `CUDA 12.1`, use:
```bash
pip install --upgrade pip
pip install "unsloth[cu121-torch240] @ git+https://github.com/unslothai/unsloth.git"
```
Another example, if you have `torch 2.5` and `CUDA 12.4`, use:
```bash
pip install --upgrade pip
pip install "unsloth[cu124-torch250] @ git+https://github.com/unslothai/unsloth.git"
```
And other examples:
```bash
pip install "unsloth[cu121-ampere-torch240] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu118-ampere-torch240] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu121-torch240] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu118-torch240] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu121-torch230] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu121-ampere-torch230] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu121-torch250] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu124-ampere-torch250] @ git+https://github.com/unslothai/unsloth.git"
```
Or, run the below in a terminal to get the **optimal** pip installation command:
```bash
wget -qO- https://raw.githubusercontent.com/unslothai/unsloth/main/unsloth/_auto_install.py | python -
```
Or, run the below manually in a Python REPL:
```python
try: import torch
except: raise ImportError('Install torch via `pip install torch`')
from packaging.version import Version as V
v = V(torch.__version__)
cuda = str(torch.version.cuda)
is_ampere = torch.cuda.get_device_capability()[0] >= 8
if cuda != "12.1" and cuda != "11.8" and cuda != "12.4": raise RuntimeError(f"CUDA = {cuda} not supported!")
if v <= V('2.1.0'): raise RuntimeError(f"Torch = {v} too old!")
elif v <= V('2.1.1'): x = 'cu{}{}-torch211'
elif v <= V('2.1.2'): x = 'cu{}{}-torch212'
elif v < V('2.3.0'): x = 'cu{}{}-torch220'
elif v < V('2.4.0'): x = 'cu{}{}-torch230'
elif v < V('2.5.0'): x = 'cu{}{}-torch240'
elif v < V('2.6.0'): x = 'cu{}{}-torch250'
else: raise RuntimeError(f"Torch = {v} too new!")
x = x.format(cuda.replace(".", ""), "-ampere" if is_ampere else "")
print(f'pip install --upgrade pip && pip install "unsloth[{x}] @ git+https://github.com/unslothai/unsloth.git"')
```
### Windows Installation
To run Unsloth directly on Windows:
- Install Triton from this Windows fork and follow the instructions: https://github.com/woct0rdho/triton-windows
- In the SFTTrainer, set `dataset_num_proc=1` to avoid a crashing issue:
```python
trainer = SFTTrainer(
dataset_num_proc=1,
...
)
```
For **advanced installation instructions** or if you see weird errors during installations:
1. Install `torch` and `triton`. Go to https://pytorch.org to install it. For example `pip install torch torchvision torchaudio triton`
2. Confirm if CUDA is installated correctly. Try `nvcc`. If that fails, you need to install `cudatoolkit` or CUDA drivers.
3. Install `xformers` manually. You can try installing `vllm` and seeing if `vllm` succeeds. Check if `xformers` succeeded with `python -m xformers.info` Go to https://github.com/facebookresearch/xformers. Another option is to install `flash-attn` for Ampere GPUs.
4. Finally, install `bitsandbytes` and check it with `python -m bitsandbytes`
## 📜 [Documentation](https://docs.unsloth.ai)
- Go to our official [Documentation](https://docs.unsloth.ai) for saving to GGUF, checkpointing, evaluation and more!
- We support Huggingface's TRL, Trainer, Seq2SeqTrainer or even Pytorch code!
- We're in 🤗Hugging Face's official docs! Check out the [SFT docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth) and [DPO docs](https://huggingface.co/docs/trl/main/en/dpo_trainer#accelerate-dpo-fine-tuning-using-unsloth)!
```python
from unsloth import FastLanguageModel
from unsloth import is_bfloat16_supported
import torch
from trl import SFTTrainer
from transformers import TrainingArguments
from datasets import load_dataset
max_seq_length = 2048 # Supports RoPE Scaling interally, so choose any!
# Get LAION dataset
url = "https://huggingface.co/datasets/laion/OIG/resolve/main/unified_chip2.jsonl"
dataset = load_dataset("json", data_files = {"train" : url}, split = "train")
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = [
"unsloth/mistral-7b-v0.3-bnb-4bit", # New Mistral v3 2x faster!
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"unsloth/llama-3-8b-bnb-4bit", # Llama-3 15 trillion tokens model 2x faster!
"unsloth/llama-3-8b-Instruct-bnb-4bit",
"unsloth/llama-3-70b-bnb-4bit",
"unsloth/Phi-3-mini-4k-instruct", # Phi-3 2x faster!
"unsloth/Phi-3-medium-4k-instruct",
"unsloth/mistral-7b-bnb-4bit",
"unsloth/gemma-7b-bnb-4bit", # Gemma 2.2x faster!
] # More models at https://huggingface.co/unsloth
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/llama-3-8b-bnb-4bit",
max_seq_length = max_seq_length,
dtype = None,
load_in_4bit = True,
)
# Do model patching and add fast LoRA weights
model = FastLanguageModel.get_peft_model(
model,
r = 16,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 16,
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
random_state = 3407,
max_seq_length = max_seq_length,
use_rslora = False, # We support rank stabilized LoRA
loftq_config = None, # And LoftQ
)
trainer = SFTTrainer(
model = model,
train_dataset = dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
tokenizer = tokenizer,
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
warmup_steps = 10,
max_steps = 60,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
logging_steps = 1,
output_dir = "outputs",
optim = "adamw_8bit",
seed = 3407,
),
)
trainer.train()
# Go to https://github.com/unslothai/unsloth/wiki for advanced tips like
# (1) Saving to GGUF / merging to 16bit for vLLM
# (2) Continued training from a saved LoRA adapter
# (3) Adding an evaluation loop / OOMs
# (4) Customized chat templates
```
<a name="DPO"></a>
## DPO Support
DPO (Direct Preference Optimization), PPO, Reward Modelling all seem to work as per 3rd party independent testing from [Llama-Factory](https://github.com/hiyouga/LLaMA-Factory). We have a preliminary Google Colab notebook for reproducing Zephyr on Tesla T4 here: [notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing).
We're in 🤗Hugging Face's official docs! We're on the [SFT docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth) and the [DPO docs](https://huggingface.co/docs/trl/main/en/dpo_trainer#accelerate-dpo-fine-tuning-using-unsloth)!
```python
from unsloth import FastLanguageModel, PatchDPOTrainer
from unsloth import is_bfloat16_supported
PatchDPOTrainer()
import torch
from transformers import TrainingArguments
from trl import DPOTrainer
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/zephyr-sft-bnb-4bit",
max_seq_length = max_seq_length,
dtype = None,
load_in_4bit = True,
)
# Do model patching and add fast LoRA weights
model = FastLanguageModel.get_peft_model(
model,
r = 64,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 64,
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
random_state = 3407,
max_seq_length = max_seq_length,
)
dpo_trainer = DPOTrainer(
model = model,
ref_model = None,
args = TrainingArguments(
per_device_train_batch_size = 4,
gradient_accumulation_steps = 8,
warmup_ratio = 0.1,
num_train_epochs = 3,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
logging_steps = 1,
optim = "adamw_8bit",
seed = 42,
output_dir = "outputs",
),
beta = 0.1,
train_dataset = YOUR_DATASET_HERE,
# eval_dataset = YOUR_DATASET_HERE,
tokenizer = tokenizer,
max_length = 1024,
max_prompt_length = 512,
)
dpo_trainer.train()
```
## 🥇 Detailed Benchmarking Tables
- Click "Code" for fully reproducible examples
- "Unsloth Equal" is a preview of our PRO version, with code stripped out. All settings and the loss curve remains identical.
- For the full list of benchmarking tables, [go to our website](https://unsloth.ai/blog/mistral-benchmark#Benchmark%20tables)
| 1 A100 40GB | 🤗Hugging Face | Flash Attention 2 | 🦥Unsloth Open | Unsloth Equal | Unsloth Pro | Unsloth Max |
|--------------|-------------|-------------|-----------------|--------------|---------------|-------------|
| Alpaca | 1x | 1.04x | 1.98x | 2.48x | 5.32x | **15.64x** |
| code | [Code](https://colab.research.google.com/drive/1u4dBeM-0vGNVmmO6X7cScAut-Hyt4KDF?usp=sharing) | [Code](https://colab.research.google.com/drive/1fgTOxpMbVjloQBvZyz4lF4BacKSZOB2A?usp=sharing) | [Code](https://colab.research.google.com/drive/1YIPY_18xm-K0iJDgvNkRoJsgkPMPAO3G?usp=sharing) | [Code](https://colab.research.google.com/drive/1ANW8EFL3LVyTD7Gq4TkheC1Z7Rxw-rHp?usp=sharing) | | |
| seconds| 1040 | 1001 | 525 | 419 | 196 | 67 |
| memory MB| 18235 | 15365 | 9631 | 8525 | | |
| % saved| | 15.74 | 47.18 | 53.25 | | | |
### Llama-Factory 3rd party benchmarking
- [Link to performance table.](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-Comparison) TGS: tokens per GPU per second. Model: LLaMA2-7B. GPU: NVIDIA A100 * 1. Batch size: 4. Gradient accumulation: 2. LoRA rank: 8. Max length: 1024.
| Method | Bits | TGS | GRAM | Speed |
| --- | --- | --- | --- | --- |
| HF | 16 | 2392 | 18GB | 100% |
| HF+FA2 | 16 | 2954 | 17GB | 123% |
| Unsloth+FA2 | 16 | 4007 | 16GB | **168%** |
| HF | 4 | 2415 | 9GB | 101% |
| Unsloth+FA2 | 4 | 3726 | 7GB | **160%** |
### Performance comparisons between popular models
<details>
<summary>Click for specific model benchmarking tables (Mistral 7b, CodeLlama 34b etc.)</summary>
### Mistral 7b
| 1 A100 40GB | Hugging Face | Flash Attention 2 | Unsloth Open | Unsloth Equal | Unsloth Pro | Unsloth Max |
|--------------|-------------|-------------|-----------------|--------------|---------------|-------------|
| Mistral 7B Slim Orca | 1x | 1.15x | 2.15x | 2.53x | 4.61x | **13.69x** |
| code | [Code](https://colab.research.google.com/drive/1mePk3KzwTD81hr5mcNcs_AX3Kbg_Ha0x?usp=sharing) | [Code](https://colab.research.google.com/drive/1dgHxjvTmX6hb0bPcLp26RXSE6_n9DKj7?usp=sharing) | [Code](https://colab.research.google.com/drive/1SKrKGV-BZoU4kv5q3g0jtE_OhRgPtrrQ?usp=sharing) | [Code](https://colab.research.google.com/drive/18yOiyX0T81mTwZqOALFSCX_tSAqju6aD?usp=sharing) | |
| seconds | 1813 | 1571 | 842 | 718 | 393 | 132 |
| memory MB | 32853 | 19385 | 12465 | 10271 | | |
| % saved| | 40.99 | 62.06 | 68.74 | | |
### CodeLlama 34b
| 1 A100 40GB | Hugging Face | Flash Attention 2 | Unsloth Open | Unsloth Equal | Unsloth Pro | Unsloth Max |
|--------------|-------------|-------------|-----------------|--------------|---------------|-------------|
| Code Llama 34B | OOM ❌ | 0.99x | 1.87x | 2.61x | 4.27x | 12.82x |
| code | [▶️ Code](https://colab.research.google.com/drive/1ykfz3BqrtC_AUFegCzUQjjfUNlxp6Otc?usp=sharing) | [Code](https://colab.research.google.com/drive/12ZypxQh7OC6kBXvWZI-5d05I4m-B_hoR?usp=sharing) | [Code](https://colab.research.google.com/drive/1gdHyAx8XJsz2yNV-DHvbHjR1iCef5Qmh?usp=sharing) | [Code](https://colab.research.google.com/drive/1fm7wqx9MJ0kRrwKOfmLkK1Rmw-pySahB?usp=sharing) | |
| seconds | 1953 | 1982 | 1043 | 748 | 458 | 152 |
| memory MB | 40000 | 33217 | 27413 | 22161 | | |
| % saved| | 16.96| 31.47 | 44.60 | | | |
### 1 Tesla T4
| 1 T4 16GB | Hugging Face | Flash Attention | Unsloth Open | Unsloth Pro Equal | Unsloth Pro | Unsloth Max |
|--------------|-------------|-----------------|-----------------|---------------|---------------|-------------|
| Alpaca | 1x | 1.09x | 1.69x | 1.79x | 2.93x | **8.3x** |
| code | [▶️ Code](https://colab.research.google.com/drive/1XpLIV4s8Bj5uryB-X2gqM88oRGHEGdaB?usp=sharing) | [Code](https://colab.research.google.com/drive/1LyXu6CjuymQg6ddHX8g1dpUvrMa1nn4L?usp=sharing) | [Code](https://colab.research.google.com/drive/1gsv4LpY7C32otl1rgRo5wXTk4HIitXoM?usp=sharing) | [Code](https://colab.research.google.com/drive/1VtULwRQwhEnVdNryjm27zXfdSM1tNfFK?usp=sharing) | | |
| seconds | 1599 | 1468 | 942 | 894 | 545 | 193 |
| memory MB | 7199 | 7059 | 6459 | 5443 | | |
| % saved | | 1.94 | 10.28 | 24.39 | | |
### 2 Tesla T4s via DDP
| 2 T4 DDP | Hugging Face | Flash Attention | Unsloth Open | Unsloth Equal | Unsloth Pro | Unsloth Max |
|--------------|----------|-------------|-----------------|--------------|---------------|-------------|
| Alpaca | 1x | 0.99x | 4.95x | 4.44x | 7.28x | **20.61x** |
| code | [▶️ Code](https://www.kaggle.com/danielhanchen/hf-original-alpaca-t4-ddp) | [Code](https://www.kaggle.com/danielhanchen/hf-sdpa-alpaca-t4-ddp) | [Code](https://www.kaggle.com/danielhanchen/unsloth-alpaca-t4-ddp) | | |
| seconds | 9882 | 9946 | 1996 | 2227 | 1357 | 480 |
| memory MB| 9176 | 9128 | 6904 | 6782 | | |
| % saved | | 0.52 | 24.76 | 26.09 | | | |
</details>
### Performance comparisons on 1 Tesla T4 GPU:
<details>
<summary>Click for Time taken for 1 epoch</summary>
One Tesla T4 on Google Colab
`bsz = 2, ga = 4, max_grad_norm = 0.3, num_train_epochs = 1, seed = 3047, lr = 2e-4, wd = 0.01, optim = "adamw_8bit", schedule = "linear", schedule_steps = 10`
| System | GPU | Alpaca (52K) | LAION OIG (210K) | Open Assistant (10K) | SlimOrca (518K) |
| --- | --- | --- | --- | --- | --- |
| Huggingface | 1 T4 | 23h 15m | 56h 28m | 8h 38m | 391h 41m |
| Unsloth Open | 1 T4 | 13h 7m (1.8x) | 31h 47m (1.8x) | 4h 27m (1.9x) | 240h 4m (1.6x) |
| Unsloth Pro | 1 T4 | 3h 6m (7.5x) | 5h 17m (10.7x) | 1h 7m (7.7x) | 59h 53m (6.5x) |
| Unsloth Max | 1 T4 | 2h 39m (8.8x) | 4h 31m (12.5x) | 0h 58m (8.9x) | 51h 30m (7.6x) |
**Peak Memory Usage**
| System | GPU | Alpaca (52K) | LAION OIG (210K) | Open Assistant (10K) | SlimOrca (518K) |
| --- | --- | --- | --- | --- | --- |
| Huggingface | 1 T4 | 7.3GB | 5.9GB | 14.0GB | 13.3GB |
| Unsloth Open | 1 T4 | 6.8GB | 5.7GB | 7.8GB | 7.7GB |
| Unsloth Pro | 1 T4 | 6.4GB | 6.4GB | 6.4GB | 6.4GB |
| Unsloth Max | 1 T4 | 11.4GB | 12.4GB | 11.9GB | 14.4GB |
</details>
<details>
<summary>Click for Performance Comparisons on 2 Tesla T4 GPUs via DDP:</summary>
**Time taken for 1 epoch**
Two Tesla T4s on Kaggle
`bsz = 2, ga = 4, max_grad_norm = 0.3, num_train_epochs = 1, seed = 3047, lr = 2e-4, wd = 0.01, optim = "adamw_8bit", schedule = "linear", schedule_steps = 10`
| System | GPU | Alpaca (52K) | LAION OIG (210K) | Open Assistant (10K) | SlimOrca (518K) * |
| --- | --- | --- | --- | --- | --- |
| Huggingface | 2 T4 | 84h 47m | 163h 48m | 30h 51m | 1301h 24m * |
| Unsloth Pro | 2 T4 | 3h 20m (25.4x) | 5h 43m (28.7x) | 1h 12m (25.7x) | 71h 40m (18.1x) * |
| Unsloth Max | 2 T4 | 3h 4m (27.6x) | 5h 14m (31.3x) | 1h 6m (28.1x) | 54h 20m (23.9x) * |
**Peak Memory Usage on a Multi GPU System (2 GPUs)**
| System | GPU | Alpaca (52K) | LAION OIG (210K) | Open Assistant (10K) | SlimOrca (518K) * |
| --- | --- | --- | --- | --- | --- |
| Huggingface | 2 T4 | 8.4GB \| 6GB | 7.2GB \| 5.3GB | 14.3GB \| 6.6GB | 10.9GB \| 5.9GB * |
| Unsloth Pro | 2 T4 | 7.7GB \| 4.9GB | 7.5GB \| 4.9GB | 8.5GB \| 4.9GB | 6.2GB \| 4.7GB * |
| Unsloth Max | 2 T4 | 10.5GB \| 5GB | 10.6GB \| 5GB | 10.6GB \| 5GB | 10.5GB \| 5GB * |
* Slim Orca `bsz=1` for all benchmarks since `bsz=2` OOMs. We can handle `bsz=2`, but we benchmark it with `bsz=1` for consistency.
</details>
![](https://i.ibb.co/sJ7RhGG/image-41.png)
<br>
### Thank You to
- [HuyNguyen-hust](https://github.com/HuyNguyen-hust) for making [RoPE Embeddings 28% faster](https://github.com/unslothai/unsloth/pull/238)
- [RandomInternetPreson](https://github.com/RandomInternetPreson) for confirming WSL support
- [152334H](https://github.com/152334H) for experimental DPO support
- [atgctg](https://github.com/atgctg) for syntax highlighting
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment