Commit 0104f910 authored by Neel Kant's avatar Neel Kant
Browse files

Move InverseClozeDataset to bert_dataset

parent 1e01b3a2
...@@ -26,7 +26,7 @@ from megatron import get_tokenizer ...@@ -26,7 +26,7 @@ from megatron import get_tokenizer
from megatron import mpu from megatron import mpu
from megatron.data.dataset_utils import build_training_sample from megatron.data.dataset_utils import build_training_sample
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
from megatron.data.ict_dataset import InverseClozeDataset from megatron.data.realm_dataset import InverseClozeDataset
from megatron import print_rank_0 from megatron import print_rank_0
DATASET_TYPES = ['standard_bert', 'ict', 'realm'] DATASET_TYPES = ['standard_bert', 'ict', 'realm']
......
import itertools
import random
import os
import time
import numpy as np
import torch
from torch.utils.data import Dataset
from megatron import get_tokenizer
from megatron import print_rank_0
from megatron import mpu
from megatron.data import helpers
class InverseClozeDataset(Dataset):
"""Dataset containing sentences and their blocks for an inverse cloze task."""
def __init__(self, name, block_dataset, title_dataset, data_prefix,
num_epochs, max_num_samples, max_seq_length,
short_seq_prob, seed):
self.name = name
self.seed = seed
self.max_seq_length = max_seq_length
self.block_dataset = block_dataset
self.title_dataset = title_dataset
self.short_seq_prob = short_seq_prob
self.rng = random.Random(self.seed)
self.samples_mapping = self.get_samples_mapping(
data_prefix, num_epochs, max_num_samples)
self.tokenizer = get_tokenizer()
self.vocab_id_list = list(self.tokenizer.inv_vocab.keys())
self.vocab_id_to_token_list = self.tokenizer.inv_vocab
self.cls_id = self.tokenizer.cls
self.sep_id = self.tokenizer.sep
self.mask_id = self.tokenizer.mask
self.pad_id = self.tokenizer.pad
def __len__(self):
return self.samples_mapping.shape[0]
def __getitem__(self, idx):
start_idx, end_idx, doc_idx, block_idx = self.samples_mapping[idx]
title = list(self.title_dataset[int(doc_idx)])
block = [list(self.block_dataset[i]) for i in range(start_idx, end_idx)]
assert len(block) > 1
# avoid selecting the first or last sentence to be the query.
if len(block) == 2:
rand_sent_idx = int(self.rng.random() > 0.5)
else:
rand_sent_idx = self.rng.randint(1, len(block) - 2)
# keep the query in the context 10% of the time.
if self.rng.random() < 1:
query = block[rand_sent_idx].copy()
else:
query = block.pop(rand_sent_idx)
# still need to truncate because blocks are concluded when
# the sentence lengths have exceeded max_seq_length.
query = query[:self.max_seq_length - 2]
block = list(itertools.chain(*block))[:self.max_seq_length - (3 + len(title))]
query_tokens, query_pad_mask = self.concat_and_pad_tokens(query)
block_tokens, block_pad_mask = self.concat_and_pad_tokens(block, title)
sample = {
'query_tokens': np.array(query_tokens),
'query_pad_mask': np.array(query_pad_mask),
'block_tokens': np.array(block_tokens),
'block_pad_mask': np.array(block_pad_mask),
'block_data': np.array([start_idx, end_idx, doc_idx, block_idx]).astype(np.int64)
}
return sample
def encode_text(self, text):
return self.tokenizer.tokenize(text)
def decode_tokens(self, token_ids):
tokens = self.tokenizer.tokenizer.convert_ids_to_tokens(token_ids)
return ' '.join(token for token in tokens if token != '[PAD]')
def get_block(self, start_idx, end_idx, doc_idx):
"""Get the IDs for an evidence block plus the title of the corresponding document"""
block = [list(self.block_dataset[i]) for i in range(start_idx, end_idx)]
title = list(self.title_dataset[int(doc_idx)])
block = list(itertools.chain(*block))[:self.max_seq_length - (3 + len(title))]
block_tokens, block_pad_mask = self.concat_and_pad_tokens(block, title)
return (block_tokens, block_pad_mask)
def concat_and_pad_tokens(self, tokens, title=None):
"""concat with special tokens and pad sequence to self.max_seq_length"""
tokens = [self.cls_id] + tokens + [self.sep_id]
if title is not None:
tokens += title + [self.sep_id]
assert len(tokens) <= self.max_seq_length, len(tokens)
num_pad = self.max_seq_length - len(tokens)
pad_mask = [1] * len(tokens) + [0] * num_pad
tokens += [self.pad_id] * num_pad
return tokens, pad_mask
def get_samples_mapping(self, data_prefix, num_epochs, max_num_samples):
if not num_epochs:
if not max_num_samples:
raise ValueError("Need to specify either max_num_samples "
"or num_epochs")
num_epochs = np.iinfo(np.int32).max - 1
if not max_num_samples:
max_num_samples = np.iinfo(np.int64).max - 1
# Filename of the index mapping
indexmap_filename = data_prefix
indexmap_filename += '_{}_indexmap'.format(self.name)
if num_epochs != (np.iinfo(np.int32).max - 1):
indexmap_filename += '_{}ep'.format(num_epochs)
if max_num_samples != (np.iinfo(np.int64).max - 1):
indexmap_filename += '_{}mns'.format(max_num_samples)
indexmap_filename += '_{}msl'.format(self.max_seq_length)
indexmap_filename += '_{}s'.format(self.seed)
indexmap_filename += '.npy'
# Build the indexed mapping if not exist.
if torch.distributed.get_rank() == 0 and \
not os.path.isfile(indexmap_filename):
print(' > WARNING: could not find index map file {}, building '
'the indices on rank 0 ...'.format(indexmap_filename))
# Make sure the types match the helpers input types.
assert self.block_dataset.doc_idx.dtype == np.int64
assert self.block_dataset.sizes.dtype == np.int32
# Build samples mapping
verbose = torch.distributed.get_rank() == 0
start_time = time.time()
print_rank_0(' > building samples index mapping for {} ...'.format(
self.name))
samples_mapping = helpers.build_blocks_mapping(
self.block_dataset.doc_idx,
self.block_dataset.sizes,
self.title_dataset.sizes,
num_epochs,
max_num_samples,
self.max_seq_length-3, # account for added tokens
self.seed,
verbose)
print_rank_0(' > done building samples index mapping')
np.save(indexmap_filename, samples_mapping, allow_pickle=True)
print_rank_0(' > saved the index mapping in {}'.format(
indexmap_filename))
# Make sure all the ranks have built the mapping
print_rank_0(' > elapsed time to build and save samples mapping '
'(seconds): {:4f}'.format(
time.time() - start_time))
# This should be a barrier but nccl barrier assumes
# device_index=rank which is not the case for model
# parallel case
counts = torch.cuda.LongTensor([1])
torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
assert counts[0].item() == torch.distributed.get_world_size(
group=mpu.get_data_parallel_group())
# Load indexed dataset.
print_rank_0(' > loading indexed mapping from {}'.format(
indexmap_filename))
start_time = time.time()
samples_mapping = np.load(indexmap_filename, allow_pickle=True)
print_rank_0(' loaded indexed file in {:3.3f} seconds'.format(
time.time() - start_time))
print_rank_0(' total number of samples: {}'.format(
samples_mapping.shape[0]))
return samples_mapping
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment