# #!/bin/bash dataset_path="benchmark/ShareGPT_V3_unfiltered_cleaned_split.json" ########################################## TurboMind engine: fp16 or bf16 ########################################## # 7B. gemm_tune -> profile_throughput tp=1 max_batch_size=256 cache_max_entry_count=0.95 model_path="/workspace/models-140/llama2/huggingface/llama-2-7b-chat" CUDA_VISIBLE_DEVICES="6" python3 -m lmdeploy.turbomind.generate_gemm_config --tensor-para-size ${tp} --max-batch-size ${max_batch_size} --model-path ${model_path} CUDA_VISIBLE_DEVICES="6" python3 benchmark/profile_throughput.py ${dataset_path} ${model_path} --tp ${tp} --concurrency ${max_batch_size} --cache-max-entry-count ${cache_max_entry_count} --csv llama2_tb_7b_thr.csv rm gemm_config.in # 13B. gemm_tune -> profile_throughput tp=1 max_batch_size=256 cache_max_entry_count=0.9 model_path="/workspace/models-140/llama2/huggingface/llama-2-13b-chat" CUDA_VISIBLE_DEVICES="6" python3 -m lmdeploy.turbomind.generate_gemm_config --tensor-para-size ${tp} --max-batch-size ${max_batch_size} --model-path ${model_path} CUDA_VISIBLE_DEVICES="6" python3 benchmark/profile_throughput.py ${dataset_path} ${model_path} --tp ${tp} --concurrency ${max_batch_size} --cache-max-entry-count ${cache_max_entry_count} --csv llama2_tb_13b_thr.csv rm gemm_config.in # 20B. gemm_tune -> profile_throughput tp=2 max_batch_size=256 cache_max_entry_count=0.9 model_path="/workspace/models-140/InternLM/internlm-chat-20b" CUDA_VISIBLE_DEVICES="5,6" python3 -m lmdeploy.turbomind.generate_gemm_config --tensor-para-size ${tp} --max-batch-size ${max_batch_size} --model-path ${model_path} CUDA_VISIBLE_DEVICES="5,6" python3 benchmark/profile_throughput.py ${dataset_path} ${model_path} --tp ${tp} --concurrency ${max_batch_size} --cache-max-entry-count ${cache_max_entry_count} --csv internlm_tb_20b_thr.csv rm gemm_config.in # 70B tp=4 max_batch_size=256 cache_max_entry_count=0.9 model_path="/workspace/models-140/llama2/huggingface/llama-2-70b-chat-hf" CUDA_VISIBLE_DEVICES="4,5,6,7" python3 benchmark/profile_throughput.py ${dataset_path} ${model_path} --tp ${tp} --concurrency ${max_batch_size} --cache-max-entry-count ${cache_max_entry_count} --csv llama2_tb_70b_thr.csv # ########################################## TurboMind engine: w4a16 ########################################## # 7B tp=1 max_batch_size=256 cache_max_entry_count=0.95 model_path="/workspace/models/quantization/llama-2-7b-chat-4bit" CUDA_VISIBLE_DEVICES="6" python3 benchmark/profile_throughput.py ${dataset_path} ${model_path} --tp ${tp} --concurrency ${max_batch_size} --cache-max-entry-count ${cache_max_entry_count} --model-format awq --num-prompts 10000 --csv llama2_tb_7b_4bit_thr.csv # 13B tp=1 max_batch_size=256 cache_max_entry_count=0.9 model_path="/workspace/models/quantization/llama-2-13b-chat-4bit" CUDA_VISIBLE_DEVICES="6" python3 benchmark/profile_throughput.py ${dataset_path} ${model_path} --tp ${tp} --concurrency ${max_batch_size} --cache-max-entry-count ${cache_max_entry_count} --model-format awq --num-prompts 10000 --csv llama2_tb_13b_4bit_thr.csv # 20B tp=2 max_batch_size=256 cache_max_entry_count=0.9 model_path="/workspace/models/quantization/internlm-chat-20b-4bit" CUDA_VISIBLE_DEVICES="5,6" python3 benchmark/profile_throughput.py ${dataset_path} ${model_path} --tp ${tp} --concurrency ${max_batch_size} --cache-max-entry-count ${cache_max_entry_count} --model-format awq --num-prompts 10000 --csv internlm_tb_20b_4bit_thr.csv # 70B tp=4 max_batch_size=256 cache_max_entry_count=0.9 model_path="/workspace/models/quantization/llama-2-70b-chat-hf-4bit" CUDA_VISIBLE_DEVICES="4,5,6,7" python3 benchmark/profile_throughput.py ${dataset_path} ${model_path} --tp ${tp} --concurrency ${max_batch_size} --cache-max-entry-count ${cache_max_entry_count} --model-format awq --num-prompts 10000 --csv llama2_tb_70b_4bit_thr.csv