// Copyright 2019-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #pragma once #ifdef TRITON_ENABLE_ENSEMBLE #include #include "metric_model_reporter.h" #include "model_config.pb.h" #include "model_config_utils.h" #include "scheduler.h" #include "status.h" #ifdef TRITON_ENABLE_GPU #include #endif // TRITON_ENABLE_GPU namespace triton { namespace core { #ifndef TRITON_ENABLE_GPU using cudaStream_t = void*; #endif // TRITON_ENABLE_GPU class InferenceServer; struct EnsembleInfo { struct StepInfo { StepInfo(const std::string& model_name, const int64_t model_version) : model_name_(model_name), model_version_(model_version) { } std::string model_name_; int64_t model_version_; std::unordered_map input_to_tensor_; std::unordered_map output_to_tensor_; }; std::string ensemble_name_; bool is_decoupled_; // the ensemble output (re)shape expected by the ensemble std::unordered_map ensemble_output_shape_; // Inputs that is marked optional for the ensemble std::set optional_inputs_; std::vector steps_; // Only include a step if the ensemble tensor is used as input in that step std::unordered_map> tensor_to_step_; // backward path, ensemble tensor to the step that provides its data std::unordered_map tensor_to_prev_step_; }; // Scheduler that implements ensemble scheduling. class EnsembleScheduler : public Scheduler { public: // Create a scheduler to process ensemble requests and // to dispatch requests to models in ensemble internally. static Status Create( InferenceStatsAggregator* const stats_aggregator, InferenceServer* const server, const inference::ModelConfig& config, std::unique_ptr* scheduler); ~EnsembleScheduler(); // \see Scheduler::Enqueue() Status Enqueue(std::unique_ptr& request) override; // \see Scheduler::InflightInferenceCount() size_t InflightInferenceCount() override { return inflight_count_; } // \see Scheduler::Stop() void Stop() override {} private: EnsembleScheduler( InferenceStatsAggregator* const stats_aggregator, InferenceServer* const server, const inference::ModelConfig& config); std::shared_ptr metric_reporter_; InferenceStatsAggregator* const stats_aggregator_; InferenceServer* const is_; // Ensemble information that is built from model config std::unique_ptr info_; // The stream used for data transfer. cudaStream_t stream_; std::atomic inflight_count_; }; }} // namespace triton::core #endif // TRITON_ENABLE_ENSEMBLE