/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "src/turbomind/utils/gemm_test/gpt_gemm_func.h" #include "src/turbomind/macro.h" #include namespace turbomind { bool isSparseGemmAvailable(size_t m, size_t n, size_t k) { return m % 8 == 0 && n % 8 == 0 && k % 8 == 0; } template void generate_gpt_gemm_config(int batch_size, int beam_width, int max_input_len, int head_num, int size_per_head, int inter_size, int vocab_size, int tensor_para_size, void* buffer_in, bool isAppend) { FT_CHECK(head_num % tensor_para_size == 0); void* cublas_workspace; void* buffer; int workSpaceSize; #if 0 bool workspace_flag = std::is_same::value; #ifdef ENABLE_FP8 workspace_flag = workspace_flag || std::is_same::value; #endif #if ENABLE_BF16 workspace_flag = workspace_flag || std::is_same::value; #endif #endif // algorithms with workspace perform worse than evaluated const bool workspace_flag = 0; if (workspace_flag) { // cublas_workspace_ should be the start pointer of cudaMalloc() // to ensure 16B alignemnet cublas_workspace = buffer_in; buffer = (void*)((char*)cublas_workspace + CUBLAS_WORKSPACE_SIZE); workSpaceSize = CUBLAS_WORKSPACE_SIZE; } else { cublas_workspace = nullptr; buffer = buffer_in; workSpaceSize = 0; } struct cudaDeviceProp prop; check_cuda_error(cudaGetDeviceProperties(&prop, 0)); printf("Device %s\n", prop.name); // check config FILE* fd; int line_count = 0; if (!isAppend) { fd = fopen(GEMM_CONFIG, "w+"); } else { fd = fopen(GEMM_CONFIG, "a+"); std::vector config; char line[1024]; while (fgets(line, 1024, fd) != NULL) { config.push_back(std::string(line)); } line_count = config.size(); // if (config.size() >= (MAX_CONFIG_NUM * GEMM_NUM + 1)) // 6 cublas/cublasLt, first row is not included // { // int startIdx = config.size() - ((MAX_CONFIG_NUM - 1) * GEMM_NUM); // fclose(fd); // fd = fopen(GEMM_CONFIG, "w+"); // fprintf(fd, "%s", config[0].c_str()); // for (uint i = startIdx; i < config.size(); i++) { // fprintf(fd, "%s", config[i].c_str()); // } // line_count = config.size() - (GEMM_NUM + 3); // } } const int hidden_units = head_num * size_per_head; const int local_head_num = head_num / tensor_para_size; const int local_hidden_units = local_head_num * size_per_head; const int max_input_len_padded = (max_input_len + 15) / 16 * 16; const int gemm_num = 11; int M[gemm_num]; int N[gemm_num]; int K[gemm_num]; int batchCount[gemm_num]; int64_t strideA[gemm_num]; int64_t strideB[gemm_num]; int64_t strideD[gemm_num]; char mess[gemm_num][256]; float exec_times[gemm_num]; // gemm 0 M[0] = batch_size * beam_width * max_input_len; K[0] = hidden_units; N[0] = 3 * local_hidden_units; batchCount[0] = 1; strideA[0] = 0; strideB[0] = 0; strideD[0] = 0; strcpy(mess[0], "context from_tensor * weightQKV"); // gemm 1 M[1] = max_input_len_padded; K[1] = size_per_head; N[1] = max_input_len_padded; batchCount[1] = batch_size * beam_width * local_head_num; strideA[1] = max_input_len_padded * size_per_head; strideB[1] = max_input_len_padded * size_per_head; strideD[1] = max_input_len_padded * max_input_len_padded; strcpy(mess[1], "context batch gemm Q*K^T"); // gemm 2 M[2] = max_input_len_padded; K[2] = max_input_len_padded; N[2] = size_per_head; batchCount[2] = batch_size * beam_width * local_head_num; strideA[2] = max_input_len_padded * size_per_head; strideB[2] = max_input_len_padded * max_input_len_padded; strideD[2] = max_input_len_padded * size_per_head; strcpy(mess[2], "context batch gemm QK*V^T"); // gemm 3 M[3] = batch_size * beam_width * max_input_len; K[3] = local_hidden_units; N[3] = hidden_units; batchCount[3] = 1; strideA[3] = 0; strideB[3] = 0; strideD[3] = 0; strcpy(mess[3], "context attr * output_kernel"); // gemm 4 M[4] = batch_size * beam_width * max_input_len; K[4] = hidden_units; N[4] = inter_size / tensor_para_size; batchCount[4] = 1; strideA[4] = 0; strideB[4] = 0; strideD[4] = 0; strcpy(mess[4], "context ffn gemm 1"); // gemm 5 M[5] = batch_size * beam_width * max_input_len; K[5] = inter_size / tensor_para_size; N[5] = hidden_units; batchCount[5] = 1; strideA[5] = 0; strideB[5] = 0; strideD[5] = 0; strcpy(mess[5], "context ffn gemm 2"); // gemm 6 M[6] = batch_size * beam_width; K[6] = hidden_units; N[6] = 3 * local_hidden_units; batchCount[6] = 1; strideA[6] = 0; strideB[6] = 0; strideD[6] = 0; strcpy(mess[6], "from_tensor * weightQKV"); // gemm 7 M[7] = batch_size * beam_width; K[7] = local_hidden_units; N[7] = hidden_units; batchCount[7] = 1; strideA[7] = 0; strideB[7] = 0; strideD[7] = 0; strcpy(mess[7], "attr * output_kernel"); // gemm 8 M[8] = batch_size * beam_width; K[8] = hidden_units; N[8] = inter_size / tensor_para_size; batchCount[8] = 1; strideA[8] = 0; strideB[8] = 0; strideD[8] = 0; strcpy(mess[8], "ffn gemm 1"); // gemm 9 M[9] = batch_size * beam_width; K[9] = inter_size / tensor_para_size; N[9] = hidden_units; batchCount[9] = 1; strideA[9] = 0; strideB[9] = 0; strideD[9] = 0; strcpy(mess[9], "ffn gemm 2"); // gemm 10 M[10] = batch_size * beam_width; K[10] = hidden_units; N[10] = ceil(vocab_size / 8.) * 8 / tensor_para_size; batchCount[10] = 1; strideA[10] = 0; strideB[10] = 0; strideD[10] = 0; strcpy(mess[10], "logits gemm"); cublasHandle_t cublas_handle; check_cuda_error(cublasCreate(&cublas_handle)); // cublasLtHandle_t ltHandle; // check_cuda_error(cublasLtCreate(<Handle)); cudaDataType_t AType; cudaDataType_t BType; cudaDataType_t CType; cudaDataType_t DType; cudaDataType_t DType_FP8[gemm_num]; cudaDataType_t computeType; int startAlgo, endAlgo; const int ites = 100; CublasDataType data_type; if (std::is_same::value) { data_type = FLOAT_DATATYPE; AType = CUDA_R_32F; BType = CUDA_R_32F; CType = CUDA_R_32F; DType = CUDA_R_32F; computeType = CUDA_R_32F; startAlgo = (int)CUBLAS_GEMM_DEFAULT; // endAlgo = (int)CUBLAS_GEMM_ALGO23; endAlgo = (int)CUBLAS_GEMM_DEFAULT; } else if (std::is_same::value) { data_type = HALF_DATATYPE; AType = CUDA_R_16F; BType = CUDA_R_16F; CType = CUDA_R_16F; DType = CUDA_R_16F; computeType = CUDA_R_16F; // startAlgo = (int)CUBLAS_GEMM_DEFAULT_TENSOR_OP; // endAlgo = (int)CUBLAS_GEMM_ALGO15_TENSOR_OP; startAlgo = (int)CUBLAS_GEMM_DEFAULT; endAlgo = (int)CUBLAS_GEMM_DEFAULT; } #ifdef ENABLE_BF16 else if (std::is_same::value) { data_type = BFLOAT16_DATATYPE; AType = CUDA_R_16BF; BType = CUDA_R_16BF; CType = CUDA_R_16BF; DType = CUDA_R_16BF; computeType = CUDA_R_32F; // startAlgo = (int)CUBLAS_GEMM_DEFAULT_TENSOR_OP; // endAlgo = (int)CUBLAS_GEMM_ALGO15_TENSOR_OP; startAlgo = (int)CUBLAS_GEMM_DEFAULT; endAlgo = (int)CUBLAS_GEMM_DEFAULT; } #endif #ifdef ENABLE_FP8 else if (std::is_same::value) { data_type = FP8_DATATYPE; AType = CUDA_R_8F_E4M3; BType = CUDA_R_8F_E4M3; CType = CUDA_R_16BF; #ifdef FP8_GEMM_OUTPUT_QUANT_DISABLE DType = CUDA_R_16BF #else DType_FP8[0] = CUDA_R_8F_E4M3; DType_FP8[1] = CUDA_R_16BF; DType_FP8[2] = CUDA_R_8F_E4M3; DType_FP8[3] = CUDA_R_16BF; DType_FP8[4] = CUDA_R_16BF; DType_FP8[5] = CUDA_R_16BF; #ifdef FP8_MHA DType_FP8[6] = CUDA_R_8F_E4M3; #else DType_FP8[6] = CUDA_R_16BF; #endif DType_FP8[7] = CUDA_R_16BF; DType_FP8[8] = CUDA_R_16BF; DType_FP8[9] = CUDA_R_16BF; #endif computeType = CUDA_R_32F; // startAlgo = (int)CUBLAS_GEMM_DEFAULT_TENSOR_OP; // endAlgo = (int)CUBLAS_GEMM_ALGO15_TENSOR_OP; startAlgo = (int)CUBLAS_GEMM_DEFAULT; endAlgo = (int)CUBLAS_GEMM_DEFAULT; } #endif // float alpha = (float)1.0f; // float beta = (float)0.0f; float f_alpha = (float)1.0f; float f_beta = (float)0.0f; half h_alpha = (half)(f_alpha); half h_beta = (half)(f_beta); int is_fp16_computeType = computeType == CUDA_R_16F ? 1 : 0; const void* alpha = is_fp16_computeType ? reinterpret_cast(&h_alpha) : reinterpret_cast(&f_alpha); const void* beta = is_fp16_computeType ? reinterpret_cast(&h_beta) : reinterpret_cast(&f_beta); printf("***Encoder Gemm Testing Begin***\n"); printf("***Cublas Gemm Testing Begin***\n"); if (line_count == 0) { fprintf(fd, "batch_size, seq_len, head_num, size_per_head dataType ### batchCount, n, m, k, algoId, " "customOption, tile, numSplitsK, swizzle, reductionScheme, workspaceSize, stages, " #if (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH >= 3) "inner_shapeId, cluster_shapeId, " #elif (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH < 3) "mma_shapeId, cga_shapeId, schedule_mode, " #endif "exec_time\n"); } for (int i = 0; i < gemm_num; ++i) { // tuning of context gemm and logits gemm is not working yet if (i <= 5 || i == 10) { continue; } int seq_len = i <= 5 ? max_input_len : 1; int m = M[i], n = N[i], k = K[i]; printf("\n-----------------------------\n"); printf("GEMM test %d: [M: %d, K: %d, N: %d] %s\n", i, m, k, n, mess[i]); T* d_A = (T*)buffer; T* d_B = d_A + m * k * batchCount[i]; T* d_C = d_B + k * n * batchCount[i]; float exec_time = 99999.0f; int fast_algo = 0; for (int algo = startAlgo; algo <= endAlgo; algo++) { cublasStatus_t status; cudaDeviceSynchronize(); auto start = std::chrono::high_resolution_clock::now(); for (int ite = 0; ite < ites; ++ite) { if (i == 1) { status = cublasGemmStridedBatchedEx(cublas_handle, CUBLAS_OP_T, CUBLAS_OP_N, max_input_len, max_input_len, size_per_head, &f_alpha, d_B, BType, size_per_head, max_input_len * size_per_head, d_A, AType, size_per_head, max_input_len * size_per_head, &f_beta, d_C, CUDA_R_32F, // CType, max_input_len, max_input_len * max_input_len, batchCount[i], CUDA_R_32F, static_cast(algo)); } else if (i == 2) { status = cublasGemmStridedBatchedEx(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, size_per_head, max_input_len, max_input_len, &alpha, d_B, BType, size_per_head, max_input_len * size_per_head, d_A, AType, max_input_len, max_input_len * max_input_len, &beta, d_C, CType, size_per_head, max_input_len * size_per_head, batchCount[i], computeType, static_cast(algo)); } else if (i == 10) { status = cublasGemmEx(cublas_handle, CUBLAS_OP_T, CUBLAS_OP_N, n, m, k, &alpha, d_B, BType, k, d_A, AType, k, &beta, d_C, CType, n, computeType, static_cast(algo)); } else { status = cublasGemmEx(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, n, m, k, &alpha, d_B, BType, n, d_A, AType, k, &beta, d_C, CType, n, computeType, static_cast(algo)); } if (status != CUBLAS_STATUS_SUCCESS) { break; } } cudaDeviceSynchronize(); auto end = std::chrono::high_resolution_clock::now(); auto dur = std::chrono::duration(end - start); if (status == CUBLAS_STATUS_SUCCESS) { printf("algo_%d costs %.3fms \n", algo, dur.count() / ites); if (dur.count() / ites < exec_time) { exec_time = dur.count() / ites; fast_algo = algo; } } sync_check_cuda_error(); } printf("fast_algo %d costs %.3f ms\n", fast_algo, exec_time); // for fp16 and bf16, we compare cublasLt // for fp8, compare cublaslt for all gemm kernels if ((data_type != FLOAT_DATATYPE && i != 1 && i != 2 && i != 10) || data_type == FP8_DATATYPE) { printf("***cublasLt Gemm Testing Beign***\n"); // Let try a fixed number of combinations const int ALGO_COMBINATIONS = 10000; customMatmulPerf_t perfResults[ALGO_COMBINATIONS]; // for gpt, computeType & scaleType should be FP32 // LtHgemmCustomFind(ltHandle, // batch_size * beam_width, // i == 1 || i == 2 ? max_input_len : 1, // head_num, // size_per_head, // n, // m, // k, // &alpha, // d_B, // d_A, // &beta, // d_C, // cublas_workspace, // workSpaceSize, // fd, // perfResults, // ALGO_COMBINATIONS, // DType_FP8[i], // batchCount[i], // strideA[i], // strideB[i], // strideD[i]); // if (perfResults[0].time < exec_time) { // printPerfStructure(batch_size * beam_width, // seq_len, // head_num, // size_per_head, // n, // m, // k, // perfResults[0], // fd, // data_type, // 0, // batchCount[i]); // } // else { { fprintf(fd, "%d %d %d %d %d ### %d %d %d %d %d -1 -1 -1 -1 -1 -1 -1 " #if (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH >= 3) "-1 -1 " #elif (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH < 3) "-1 -1 -1 " #endif "%f\n", batch_size * beam_width, seq_len, head_num, size_per_head, data_type, batchCount[i], n, m, k, fast_algo, exec_time); } printf("***cublasLt Gemm Testing End***\n"); } else { fprintf(fd, "%d %d %d %d %d ### %d %d %d %d %d -1 -1 -1 -1 -1 -1 -1 " #if (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH >= 3) "-1 -1 " #elif (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH < 3) "-1 -1 -1 " #endif "%f\n", batch_size * beam_width, seq_len, head_num, size_per_head, data_type, batchCount[i], n, m, k, fast_algo, exec_time); } sync_check_cuda_error(); exec_times[i] = exec_time; } printf("***cublas Gemm Testing End***\n\n"); fclose(fd); #ifdef SPARSITY_ENABLED bool do_sparse_test = false; if (prop.major == 8 && (prop.minor == 0 || prop.minor == 6) && sizeof(T) == sizeof(half)) { do_sparse_test = true; } if (do_sparse_test) { printf("***cusparseLt Gemm Testing Begin***\n"); // Only first 8 cases can be sparse // - QKV kernel, Projection, FC1, FC2 in context or decoding. const int spgemm_num = 8; if (!isAppend) { fd = fopen(SPGEMM_CONFIG, "w+"); } else { fd = fopen(SPGEMM_CONFIG, "a+"); std::vector config; char line[1024]; while (fgets(line, 1024, fd) != NULL) { config.push_back(std::string(line)); } line_count = config.size(); // gemm_num configs (cublas/cublasLt), first row is not included if (config.size() >= (MAX_CONFIG_NUM * spgemm_num + 1)) { int startIdx = config.size() - ((MAX_CONFIG_NUM - 1) * spgemm_num); fclose(fd); fd = fopen(SPGEMM_CONFIG, "w+"); fprintf(fd, "%s", config[0].c_str()); for (uint i = startIdx; i < config.size(); i++) { fprintf(fd, "%s", config[i].c_str()); } line_count = config.size() - (spgemm_num + 3); } } if (line_count == 0) { // header line fprintf(fd, "batch_size, seq_len, head_num, size_per_head dataType " "### batchCount, m, n, k, algoId, exec_time\n"); } cusparseLtHandle_t handle; CHECK_CUSPARSE(cusparseLtInit(&handle)); cusparseOrder_t order = CUSPARSE_ORDER_COL; cusparseOperation_t opA = CUSPARSE_OPERATION_NON_TRANSPOSE; cusparseOperation_t opB = CUSPARSE_OPERATION_NON_TRANSPOSE; // let's make this optional cusparseComputeType compute_type = CUSPARSE_COMPUTE_16F; unsigned alignment = 16; cudaStream_t stream = 0; float alpha2 = 1.0f; float beta2 = 0.0f; for (int i = 0; i < gemm_num; ++i) { // skip qk or attn or logit gemms. if (i == 1 || i == 2 || i == 10) { continue; } // seq_len is always 1 except context gemms. int seq_len = i <= 5 ? max_input_len : 1; // to be compatible with spgemm wrapper, we let A be the weight matrix // so m and n are swapped // A: mxk B: kxn C:mxn int m = N[i], n = M[i], k = K[i]; printf("\n-----------------------------\n"); printf("GEMM test %d: [M: %d, K: %d, N: %d]\n", i, m, k, n); if (n % 8 != 0) { n = div_up(n, 8) * 8; // pad n to be multiple of 8 as FT does. } T* d_A = (T*)buffer; T* d_B = d_A + m * k * batchCount[i]; T* d_C = d_B + k * n * batchCount[i]; T* dA_compressed; { cusparseLtMatDescriptor_t mat_A; CHECK_CUSPARSE(cusparseLtStructuredDescriptorInit( &handle, &mat_A, m, k, m, alignment, CUDA_R_16F, order, CUSPARSELT_SPARSITY_50_PERCENT)) CHECK_CUSPARSE( cusparseLtSpMMAPrune2(&handle, &mat_A, true, opA, d_A, d_A, CUSPARSELT_PRUNE_SPMMA_STRIP, stream)) size_t compressed_size; CHECK_CUSPARSE(cusparseLtSpMMACompressedSize2(&handle, &mat_A, &compressed_size)) check_cuda_error(cudaMalloc((void**)&dA_compressed, compressed_size)); CHECK_CUSPARSE(cusparseLtSpMMACompress2(&handle, &mat_A, true, opA, d_A, dA_compressed, stream)) } float exec_time = 99999.0f; int fast_algo = 0; if (isSparseGemmAvailable(m, n, k)) { for (int alg = 0; alg < 4; ++alg) { cudaDeviceSynchronize(); cusparseLtMatDescriptor_t mat_A, mat_B, mat_C; void* d_workspace = nullptr; int num_streams = 1; cudaStream_t streams[1] = {stream}; CHECK_CUSPARSE(cusparseLtStructuredDescriptorInit( &handle, &mat_A, m, k, m, alignment, CUDA_R_16F, order, CUSPARSELT_SPARSITY_50_PERCENT)) CHECK_CUSPARSE( cusparseLtDenseDescriptorInit(&handle, &mat_B, k, n, k, alignment, CUDA_R_16F, order)) CHECK_CUSPARSE( cusparseLtDenseDescriptorInit(&handle, &mat_C, m, n, m, alignment, CUDA_R_16F, order)) cudaDeviceSynchronize(); auto start = std::chrono::high_resolution_clock::now(); for (int ite = 0; ite < ites; ++ite) { // initializing MatDesc takes a lot of time // and these descs can be stored to other place // whereas storing MatMulPlan to other place will cause errors cusparseLtMatmulDescriptor_t matmul; cusparseLtMatmulAlgSelection_t alg_sel; cusparseLtMatmulPlan_t plan; CHECK_CUSPARSE(cusparseLtMatmulDescriptorInit( &handle, &matmul, opA, opB, &mat_A, &mat_B, &mat_C, &mat_C, compute_type)) CHECK_CUSPARSE( cusparseLtMatmulAlgSelectionInit(&handle, &alg_sel, &matmul, CUSPARSELT_MATMUL_ALG_DEFAULT)) CHECK_CUSPARSE(cusparseLtMatmulAlgSetAttribute( &handle, &alg_sel, CUSPARSELT_MATMUL_ALG_CONFIG_ID, &alg, sizeof(alg))) size_t workspace_size; CHECK_CUSPARSE(cusparseLtMatmulGetWorkspace(&handle, &alg_sel, &workspace_size)) CHECK_CUSPARSE(cusparseLtMatmulPlanInit(&handle, &plan, &matmul, &alg_sel, workspace_size)) CHECK_CUSPARSE(cusparseLtMatmul(&handle, &plan, &alpha2, dA_compressed, d_B, &beta2, d_C, d_C, d_workspace, streams, num_streams)) CHECK_CUSPARSE(cusparseLtMatmulPlanDestroy(&plan)) } cudaDeviceSynchronize(); auto end = std::chrono::high_resolution_clock::now(); auto dur = std::chrono::duration(end - start); printf("algo_%d costs %.3fms \n", alg, dur.count() / ites); if (dur.count() < exec_time) { exec_time = dur.count(); fast_algo = alg; } } } exec_time /= ites; if (exec_time >= exec_times[i]) { fast_algo = -1; } printf("fast_algo %d\n", fast_algo); fprintf(fd, "%d %d %d %d %d ### %d %d %d %d %d %f\n", batch_size * beam_width, seq_len, head_num, size_per_head, data_type, batchCount[i], m, n, k, fast_algo, exec_time); cudaFree(dA_compressed); } CHECK_CUSPARSE(cusparseLtDestroy(&handle)) fclose(fd); printf("***cusparseLt Gemm Testing End***\n"); } #endif printf("***GPT Gemm Testing End***\n"); return; } template void generate_gpt_gemm_config(int batch_size, int beam_width, int max_input_len, int head_num, int size_per_head, int inter_size, int vocab_size, int tensor_para_size, void* buffer_in, bool isAppend); template void generate_gpt_gemm_config(int batch_size, int beam_width, int max_input_len, int head_num, int size_per_head, int inter_size, int vocab_size, int tensor_para_size, void* buffer_in, bool isAppend); #ifdef ENABLE_BF16 template void generate_gpt_gemm_config<__nv_bfloat16>(int batch_size, int beam_width, int max_input_len, int head_num, int size_per_head, int inter_size, int vocab_size, int tensor_para_size, void* buffer_in, bool isAppend); #endif #ifdef ENABLE_FP8 template void generate_gpt_gemm_config<__nv_fp8_e4m3>(int batch_size, int beam_width, int max_input_len, int head_num, int size_per_head, int inter_size, int vocab_size, int tensor_para_size, void* buffer_in, bool isAppend); #endif size_t calGptGemmTestBufSizeInByte(int batch_size, int beam_width, int max_input_len, int head_num, int size_per_head, int inter_size, int vocab_size, int tensor_para_size, CublasDataType data_type) { size_t buf_size_in_byte = 0; const size_t hidden_units = head_num * size_per_head; const size_t local_head_num = head_num / tensor_para_size; const size_t local_hidden_units = local_head_num * size_per_head; // int wordSize = (data_type == FLOAT_DATATYPE ? sizeof(float) : sizeof(half)); // Because we always use float for some buffer, set the wordSize to float directly. int wordSize = sizeof(float); size_t m = batch_size * beam_width * max_input_len; std::vector buff_size; // for context qkv gemm buff_size.push_back(m * hidden_units + hidden_units * 3 * local_hidden_units + m * 3 * local_hidden_units); // for context batch gemm buff_size.push_back(m * local_hidden_units + m * local_hidden_units + batch_size * beam_width * head_num * max_input_len * max_input_len); // for context ffn gemm buff_size.push_back(m * inter_size / tensor_para_size + hidden_units * inter_size / tensor_para_size + m * hidden_units); // for vocab buff_size.push_back(m * hidden_units + hidden_units * ceil(vocab_size / 8.) * 8 / tensor_para_size + m * ceil(vocab_size / 8.) * 8 / tensor_para_size); for (auto t : buff_size) { buf_size_in_byte = buf_size_in_byte > t ? buf_size_in_byte : t; } buf_size_in_byte *= wordSize; buf_size_in_byte += ((data_type == HALF_DATATYPE || data_type == BFLOAT16_DATATYPE || data_type == FP8_DATATYPE) ? CUBLAS_WORKSPACE_SIZE : 0); return buf_size_in_byte; } } // namespace turbomind