/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved. * Copyright (c) 2021, NAVER Corp. Authored by CLOVA. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "src/fastertransformer/kernels/sampling_topk_kernels.h" #include "src/fastertransformer/kernels/sampling_topp_kernels.h" #include "src/fastertransformer/layers/sampling_layers/TopKSamplingLayer.h" #include "src/fastertransformer/utils/logger.h" #include "src/fastertransformer/utils/memory_utils.h" namespace fastertransformer { template __global__ void setup_topk_runtime_args(int batch_size, uint top_k, uint* top_ks, int top_ks_size, float top_p, float* top_ps, int top_ps_size, bool* skip_decode) { int index = blockIdx.x * blockDim.x + threadIdx.x; for (int i = index; i < batch_size; i += gridDim.x * blockDim.x) { uint k = top_ks_size > 1 ? top_ks[i] : top_k; float p = top_ps_size > 1 ? top_ps[i] : top_p; if (k == 0 && p == 0.0f) { // FT's topp implementation does not support topp = 0.0f, but it equivalent to greedy search. // So, we set the topk = 1 as an alternative solution. k = 1; } if (k > 0 && p == 0.0f) { // for compatibility <= FT5.0. // This case corresponds to the old topk sampling, which is equivalent to // the old topk_topp sampling with topp=1.0f. TopKSamplingLayer and // TopKTopPSamplingLayer are now merged by TopKSamplingLayer. Thus, we // replace the case topk>0 and topp=0.0f by topk>0 and topp=1.0f for the // compatibility. p = 1.0f; } // Clip k value. A topk sampling kernel supports up to TOP_K_MAX=64. top_ks[i] = k > TOP_K_MAX ? TOP_K_MAX : k; if (k > TOP_K_MAX) { printf("[WARNING] topk (%d) is larger than max supported number (%d) for token %d" " clip to max supported number %d. \n", k, TOP_K_MAX, i, top_ks[i]); } // Clip p value if it is out of range. range = [0.0, 1.0]. top_ps[i] = p < 0.0f ? 0.0f : (p > 1.0f ? 1.0f : p); if (p < 0.0f || p > 1.0f) { printf("[WARNING] topp (%f) is out of range ([0.0, 1.0f]) for token %d" " clip to closest number %f.\n", p, i, top_ps[i]); } skip_decode[i] = k == 0; } } template void TopKSamplingLayer::allocateBuffer() { FT_CHECK(false); } template void TopKSamplingLayer::allocateBuffer(size_t batch_size, Tensor top_k, Tensor top_p) { FT_LOG_DEBUG(__PRETTY_FUNCTION__); BaseSamplingLayer::allocateBuffer(batch_size, top_k, top_p); uint max_top_k = top_k.size() > 0 ? top_k.max() : 1; if (max_top_k == 0) { // for safety. TopKSamplingLayer handles a case of top_k=0 and top_p=0 as // a greedy decode, i.e. top_k=1, although such case has max_top_k=0. max_top_k = 1; } invokeTopKSampling(nullptr, sampling_workspace_size_, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, max_top_k, 1.0f, vocab_size_padded_, nullptr, stream_, batch_size, skip_decode_buf_); sampling_workspace_ = allocator_->reMalloc(sampling_workspace_, sampling_workspace_size_, false); runtime_top_k_buf_ = reinterpret_cast(allocator_->reMalloc(runtime_top_k_buf_, sizeof(uint) * batch_size, false)); runtime_top_p_buf_ = reinterpret_cast(allocator_->reMalloc(runtime_top_p_buf_, sizeof(float) * batch_size, false)); is_allocate_buffer_ = true; } template void TopKSamplingLayer::freeBuffer() { FT_LOG_DEBUG(__PRETTY_FUNCTION__); if (is_allocate_buffer_) { allocator_->free((void**)(&sampling_workspace_)); allocator_->free((void**)(&runtime_top_k_buf_)); allocator_->free((void**)(&runtime_top_p_buf_)); } BaseSamplingLayer::freeBuffer(); is_allocate_buffer_ = false; } template void TopKSamplingLayer::setup(const size_t batch_size, const size_t beam_width, TensorMap* runtime_args) { // Setup runtime topk and topp arguments. // // runtime_args: // runtime_top_k [1] or [batch_size] on cpu, optional, uint. // runtime_top_p [1] or [batch_size] on cpu, optional, float. // temperature [1] or [batch_size] on cpu, optional // repetition_penalty [1] or [batch_size] on cpu, optional FT_LOG_DEBUG(__PRETTY_FUNCTION__); BaseSamplingLayer::setup(batch_size, beam_width, runtime_args); uint tmp_top_k = 0; const Tensor runtime_top_k = runtime_args->isExist("runtime_top_k") ? runtime_args->at("runtime_top_k") : Tensor(MEMORY_CPU, TYPE_UINT32, {1}, &tmp_top_k); const Tensor runtime_top_p = runtime_args->isExist("runtime_top_p") ? runtime_args->at("runtime_top_p") : Tensor(); const size_t runtime_top_k_size = runtime_top_k.size(); const size_t runtime_top_p_size = runtime_top_p.size(); uint top_k = runtime_top_k.max(); float top_p = runtime_top_p_size == 0 ? 0.0f : runtime_top_p.getVal(); if (runtime_top_k_size > 1) { FT_CHECK_WITH_INFO( runtime_top_k.size() == batch_size, fmtstr("runtime_top_k.size() (%d) == batch_size (%d) is not satisfied!", runtime_top_k.size(), batch_size)); cudaAutoCpy(runtime_top_k_buf_, runtime_top_k.getPtr(), batch_size, stream_); } if (runtime_top_p_size > 1) { FT_CHECK_WITH_INFO( runtime_top_p.size() == batch_size, fmtstr("runtime_top_p.size() (%d) == batch_size (%d) is not satisfied!", runtime_top_p.size(), batch_size)); cudaAutoCpy(runtime_top_p_buf_, runtime_top_p.getPtr(), batch_size, stream_); } dim3 block(std::min((int)batch_size, 256)); dim3 grid(div_up((int)batch_size, (int)block.x)); // support top_k up to 1024. setup_topk_runtime_args<1024><<>>(batch_size, top_k, runtime_top_k_buf_, runtime_top_k_size, top_p, runtime_top_p_buf_, runtime_top_p_size, skip_decode_buf_); cudaAutoCpy(skip_decode_, skip_decode_buf_, batch_size, stream_); uint* runtime_top_ks = new uint[batch_size]; cudaAutoCpy(runtime_top_ks, runtime_top_k_buf_, batch_size, stream_); runtime_max_top_k_ = static_cast(*std::max_element(runtime_top_ks, runtime_top_ks + batch_size)); delete[] runtime_top_ks; } template void TopKSamplingLayer::runSampling(TensorMap* output_tensors, TensorMap* input_tensors) { // input_tensors: // logits [local_batch_size, vocab_size_padded] // embedding_bias [vocab_size_padded], optional // step [1] on cpu // max_input_length [1] on cpu // input_lengths [local_batch_size], optional // ite [1] on cpu // output_tensors: // output_ids [max_seq_len, batch_size] // finished [local_batch_size], optional // sequence_length [local_batch_size], optional // cum_log_probs [batch_size], must be float*, optional // The cumultative log probability of generated tokens. // output_log_probs [local_batch_size], must be float*, optional // The log probs at the current step. FT_LOG_DEBUG(__PRETTY_FUNCTION__); FT_CHECK(input_tensors->size() >= 4); FT_CHECK(output_tensors->size() >= 1); const int batch_size = output_tensors->at("output_ids").shape[1]; const int local_batch_size = input_tensors->at("logits").shape[0]; const int ite = input_tensors->at("ite").getVal(); const int step = input_tensors->at("step").getVal(); // in case of skip any, the logit value is already copied and processed. T* logits = !skip_any_ ? input_tensors->at("logits").getPtr() : runtime_logits_buf_; invokeAddBiasEndMask(logits, (T*)(nullptr), input_tensors->at("end_id").getPtr(), output_tensors->at("finished", Tensor{MEMORY_GPU, TYPE_INVALID, {}, nullptr}).getPtr(), local_batch_size, vocab_size_, vocab_size_padded_, stream_); sync_check_cuda_error(); float* cum_log_probs = output_tensors->isExist("cum_log_probs") ? output_tensors->at("cum_log_probs").getPtr() : nullptr; float* output_log_probs = output_tensors->isExist("output_log_probs") ? output_tensors->at("output_log_probs").getPtr() : nullptr; if (cum_log_probs != nullptr || output_log_probs != nullptr) { invokeAddBiasSoftMax( logits, (T*)(nullptr), input_tensors->at("end_id").getPtr(), output_tensors->at("finished", Tensor{MEMORY_GPU, TYPE_INVALID, {}, nullptr}).getPtr(), local_batch_size, vocab_size_padded_, vocab_size_, stream_); sync_check_cuda_error(); } invokeBatchTopKSampling( sampling_workspace_, sampling_workspace_size_, logits, output_tensors->at("output_ids").getPtrWithOffset(step * batch_size + ite * local_batch_size), output_tensors->at("sequence_length", Tensor{MEMORY_GPU, TYPE_INVALID, {}, nullptr}).getPtr(), output_tensors->at("finished", Tensor{MEMORY_GPU, TYPE_INVALID, {}, nullptr}).getPtr(), cum_log_probs, output_log_probs, curandstate_buf_ + ite * local_batch_size, (int)runtime_max_top_k_, // useless because runtime_top_k_buf_ is never nullptr. Keep for legacy. (int*)(runtime_top_k_buf_ + ite * local_batch_size), 1.0f, // useless because runtime_top_p_buf_ is never nullptr. Keep for legacy. runtime_top_p_buf_ + ite * local_batch_size, vocab_size_padded_, input_tensors->at("end_id").getPtr(), stream_, local_batch_size, skip_decode_buf_ + ite * local_batch_size); sync_check_cuda_error(); } template TopKSamplingLayer::TopKSamplingLayer(size_t max_batch_size, size_t vocab_size, size_t vocab_size_padded, int end_id, size_t top_k, unsigned long long random_seed, float temperature, float len_penalty, float repetition_penalty, cudaStream_t stream, cublasMMWrapper* cublas_wrapper, IAllocator* allocator, bool is_free_buffer_after_forward): BaseSamplingLayer(max_batch_size, vocab_size, vocab_size_padded, end_id, top_k, 0.0f, random_seed, temperature, len_penalty, repetition_penalty, stream, cublas_wrapper, allocator, is_free_buffer_after_forward, nullptr) { } template TopKSamplingLayer::TopKSamplingLayer(TopKSamplingLayer const& top_k_sampling_layer): BaseSamplingLayer(top_k_sampling_layer) { } template TopKSamplingLayer::~TopKSamplingLayer() { FT_LOG_DEBUG(__PRETTY_FUNCTION__); freeBuffer(); } template class TopKSamplingLayer; template class TopKSamplingLayer; } // namespace fastertransformer