/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "src/turbomind/utils/gemm_test/encoder_gemm_func.h" namespace turbomind { template void generate_encoder_gemm_config( int batch_size, int seq_len, int head_num, int size_per_head, void* buffer_in, bool isAppend, int tensor_para_size) { void* cublas_workspace; void* buffer; int workSpaceSize; #ifdef ENABLE_BF16 if (std::is_same::value || std::is_same::value) { #else if (std::is_same::value) { #endif // ENABLE_BF16 // cublas_workspace_ should be the start pointer of cudaMalloc() // to ensure 16B alignemnet cublas_workspace = buffer_in; buffer = (void*)((char*)cublas_workspace + CUBLAS_WORKSPACE_SIZE); workSpaceSize = CUBLAS_WORKSPACE_SIZE; } else { cublas_workspace = nullptr; buffer = buffer_in; workSpaceSize = 0; } struct cudaDeviceProp prop; check_cuda_error(cudaGetDeviceProperties(&prop, 0)); printf("Device %s\n", prop.name); // check config FILE* fd; int line_count = 0; if (!isAppend) { fd = fopen(GEMM_CONFIG, "w+"); } else { fd = fopen(GEMM_CONFIG, "a+"); std::vector config; char line[1024]; while (fgets(line, 1024, fd) != NULL) { config.push_back(std::string(line)); } line_count = config.size(); if (config.size() >= (MAX_CONFIG_NUM * GEMM_NUM + 1)) // 6 cublas/cublasLt, first row is not included { int startIdx = config.size() - ((MAX_CONFIG_NUM - 1) * GEMM_NUM); fclose(fd); fd = fopen(GEMM_CONFIG, "w+"); fprintf(fd, "%s", config[0].c_str()); for (uint i = startIdx; i < config.size(); i++) { fprintf(fd, "%s", config[i].c_str()); } line_count = config.size() - (GEMM_NUM + 3); } } const int gemm_num = 7; int M[gemm_num]; int N[gemm_num]; int K[gemm_num]; int batchCount[gemm_num] = {1, 1, 1, 1, 1, 1, 1}; char mess[gemm_num][256]; float exec_times[gemm_num]; // gemm1 M[0] = batch_size * seq_len; K[0] = head_num * size_per_head; N[0] = (head_num / tensor_para_size) * size_per_head; strcpy(mess[0], "from_tensor * weightQ/K/V"); // gemm2 M[1] = M[0]; K[1] = head_num * size_per_head; N[1] = 4 * head_num * size_per_head / tensor_para_size; strcpy(mess[1], "attr_output * inter_kernel"); // gemm3 M[2] = M[0]; K[2] = 4 * head_num * size_per_head / tensor_para_size; N[2] = head_num * size_per_head; strcpy(mess[2], "inter_matmul * output_kernel"); M[3] = seq_len; N[3] = seq_len; K[3] = size_per_head; batchCount[3] = batch_size * (head_num / tensor_para_size); strcpy(mess[3], "attention batched Gemm1"); M[4] = seq_len; N[4] = size_per_head; K[4] = seq_len; batchCount[4] = batch_size * (head_num / tensor_para_size); strcpy(mess[4], "attention batched Gemm2"); M[5] = batch_size * seq_len; N[5] = (head_num / tensor_para_size) * size_per_head; K[5] = head_num * size_per_head; batchCount[5] = 3; strcpy(mess[5], "from_tensor * weight_QKV in BatchGemm"); M[6] = batch_size * seq_len; K[6] = (head_num / tensor_para_size) * size_per_head; N[6] = head_num * size_per_head; strcpy(mess[6], "attr * output_kernel"); cublasHandle_t cublas_handle; check_cuda_error(cublasCreate(&cublas_handle)); cublasLtHandle_t ltHandle; check_cuda_error(cublasLtCreate(<Handle)); cudaDataType_t AType; cudaDataType_t BType; cudaDataType_t CType; cudaDataType_t computeType; int startAlgo, endAlgo; const int ites = 100; struct timeval start, end; CublasDataType data_type; if (std::is_same::value) { data_type = FLOAT_DATATYPE; AType = CUDA_R_32F; BType = CUDA_R_32F; CType = CUDA_R_32F; computeType = CUDA_R_32F; startAlgo = (int)CUBLAS_GEMM_DEFAULT; endAlgo = (int)CUBLAS_GEMM_ALGO23; } else if (std::is_same::value) { data_type = HALF_DATATYPE; AType = CUDA_R_16F; BType = CUDA_R_16F; CType = CUDA_R_16F; computeType = CUDA_R_32F; startAlgo = (int)CUBLAS_GEMM_DEFAULT_TENSOR_OP; endAlgo = (int)CUBLAS_GEMM_ALGO15_TENSOR_OP; } #ifdef ENABLE_BF16 else if (std::is_same::value) { data_type = BFLOAT16_DATATYPE; AType = CUDA_R_16BF; BType = CUDA_R_16BF; CType = CUDA_R_16BF; computeType = CUDA_R_32F; startAlgo = (int)CUBLAS_GEMM_DEFAULT_TENSOR_OP; endAlgo = (int)CUBLAS_GEMM_ALGO15_TENSOR_OP; } #endif using scaleT = typename ScaleTypeConverter::Type; scaleT alpha = (scaleT)1.0f; scaleT beta = (scaleT)0.0f; printf("***Encoder Gemm Testing Begin***\n"); printf("***Cublas Gemm Testing Begin***\n"); if (line_count == 0) { fprintf(fd, "batch_size, seq_len, head_num, size_per_head dataType ### batchCount, n, m, k, algoId, " "customOption, tile, numSplitsK, swizzle, reductionScheme, workspaceSize, stages, exec_time\n"); } for (int i = 0; i < gemm_num; ++i) { // if(i != 0 && i != 5) continue; int m = M[i], n = N[i], k = K[i]; printf("\n-----------------------------\n"); printf("GEMM test %d: [M: %d, K: %d, N: %d] %s\n", i, m, k, n, mess[i]); T* d_A = (T*)buffer; T* d_B = d_A + m * k * batchCount[i]; T* d_C = d_B + k * n * batchCount[i]; // array of pointer for batchedGemm T* harray[12]; harray[0] = (T*)buffer; harray[1] = (T*)((char*)buffer + sizeof(T) * m * k); harray[2] = (T*)((char*)buffer + 2 * sizeof(T) * m * k); harray[4] = (T*)((char*)buffer + 3 * sizeof(T) * m * k); harray[5] = (T*)((char*)buffer + 3 * sizeof(T) * m * k + sizeof(T) * k * n); harray[6] = (T*)((char*)buffer + 3 * sizeof(T) * m * k + 2 * sizeof(T) * k * n); harray[8] = (T*)((char*)buffer + 3 * sizeof(T) * m * k + 3 * sizeof(T) * k * n); harray[9] = (T*)((char*)buffer + 3 * sizeof(T) * m * k + 3 * sizeof(T) * k * n + sizeof(T) * m * n); harray[10] = (T*)((char*)buffer + 3 * sizeof(T) * m * k + 3 * sizeof(T) * k * n + 2 * sizeof(T) * m * n); T** darray = 0; check_cuda_error(cudaMalloc((void**)&darray, sizeof(T*) * 12)); cudaMemcpy((void*)darray, (void*)harray, sizeof(T*) * 12, cudaMemcpyHostToDevice); T** dAarray = darray; T** dBarray = darray + 4; T** dCarray = darray + 8; float exec_time = 99999.0f; int fast_algo = 0; for (int algo = startAlgo; algo <= endAlgo; algo++) { cublasStatus_t status; cudaDeviceSynchronize(); gettimeofday(&start, NULL); for (int ite = 0; ite < ites; ++ite) { if (i < 3) { status = cublasGemmEx(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, n, m, k, &alpha, d_B, BType, n, d_A, AType, k, &beta, d_C, CType, n, computeType, static_cast(algo)); } else if (i == 3) { status = cublasGemmStridedBatchedEx(cublas_handle, CUBLAS_OP_T, CUBLAS_OP_N, seq_len, seq_len, size_per_head, &alpha, d_B, BType, size_per_head, seq_len * size_per_head, d_A, AType, size_per_head, seq_len * size_per_head, &beta, d_C, CType, seq_len, seq_len * seq_len, batch_size * head_num, computeType, static_cast(algo)); } else if (i == 4) { status = cublasGemmStridedBatchedEx(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, size_per_head, seq_len, seq_len, &alpha, d_B, BType, size_per_head, seq_len * size_per_head, d_A, AType, seq_len, seq_len * seq_len, &beta, d_C, CType, size_per_head, seq_len * size_per_head, batch_size * head_num, computeType, static_cast(algo)); } else if (i == 5) { status = cublasGemmBatchedEx(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, n, m, k, &alpha, (const void* const*)dBarray, BType, n, (const void* const*)dAarray, AType, k, &beta, (void* const*)dCarray, CType, n, 3, computeType, static_cast(algo)); } if (status != CUBLAS_STATUS_SUCCESS) { break; } } cudaDeviceSynchronize(); gettimeofday(&end, NULL); if (status == CUBLAS_STATUS_SUCCESS) { printf("algo_%d costs %.3fms \n", algo, diffTime(start, end) / ites); if (diffTime(start, end) / ites < exec_time) { exec_time = diffTime(start, end) / ites; fast_algo = algo; } } } printf("fast_algo %d costs %.3f ms\n", fast_algo, exec_time); // for fp16 and bf16, we compare cublasLt if (i < 3 && data_type != FLOAT_DATATYPE) { printf("***cublasLt Gemm Testing Begin***\n"); // Let try a fixed number of combinations int ALGO_COMBINATIONS = 5000; customMatmulPerf_t perfResults[ALGO_COMBINATIONS]; LtHgemmCustomFind(ltHandle, batch_size, seq_len, head_num, size_per_head, n, m, k, &alpha, d_B, d_A, &beta, d_C, cublas_workspace, workSpaceSize, fd, perfResults, ALGO_COMBINATIONS); if (perfResults[0].time < exec_time) { printPerfStructure( batch_size, seq_len, head_num, size_per_head, n, m, k, perfResults[0], fd, data_type, 0); exec_time = perfResults[0].time; } else { fprintf(fd, "%d %d %d %d %d ### %d %d %d %d %d -1 -1 -1 -1 -1 -1 -1 " #if (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH >= 3) "-1 -1 " #elif (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH < 3) "-1 -1 -1 " #endif "%f\n", batch_size, seq_len, head_num, size_per_head, data_type, batchCount[i], n, m, k, fast_algo, exec_time); } printf("***cublasLt Gemm Testing End***\n"); } else { fprintf(fd, "%d %d %d %d %d ### %d %d %d %d %d -1 -1 -1 -1 -1 -1 -1 " #if (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH >= 3) "-1 -1 " #elif (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH < 3) "-1 -1 -1 " #endif "%f\n", batch_size, seq_len, head_num, size_per_head, data_type, batchCount[i], n, m, k, fast_algo, exec_time); } exec_times[i] = exec_time; cudaFree(darray); } printf("***cublas Gemm Testing End***\n\n"); fclose(fd); printf("***Encoder Gemm Testing End***\n"); #ifdef SPARSITY_ENABLED bool do_sparse_test = false; if (prop.major == 8 && (prop.minor == 0 || prop.minor == 6)) { do_sparse_test = true; } if (do_sparse_test && sizeof(T) == sizeof(half)) { printf("***cusparseLt Gemm Testing Begin***\n"); // only first 3 cases can be sparse const int spgemm_num = 3; if (!isAppend) { fd = fopen(SPGEMM_CONFIG, "w+"); } else { fd = fopen(SPGEMM_CONFIG, "a+"); std::vector config; char line[1024]; while (fgets(line, 1024, fd) != NULL) { config.push_back(std::string(line)); } line_count = config.size(); if (config.size() >= (MAX_CONFIG_NUM * spgemm_num + 1)) // 6 cublas/cublasLt, first row is not included { int startIdx = config.size() - ((MAX_CONFIG_NUM - 1) * spgemm_num); fclose(fd); fd = fopen(SPGEMM_CONFIG, "w+"); fprintf(fd, "%s", config[0].c_str()); for (uint i = startIdx; i < config.size(); i++) { fprintf(fd, "%s", config[i].c_str()); } line_count = config.size() - (spgemm_num + 3); } } if (line_count == 0) { fprintf( fd, "batch_size, seq_len, head_num, size_per_head dataType ### batchCount, m, n, k, algoId, exec_time\n"); } cusparseLtHandle_t handle; CHECK_CUSPARSE(cusparseLtInit(&handle)); cusparseOrder_t order = CUSPARSE_ORDER_COL; cusparseOperation_t opA = CUSPARSE_OPERATION_NON_TRANSPOSE; cusparseOperation_t opB = CUSPARSE_OPERATION_NON_TRANSPOSE; cusparseComputeType compute_type = CUSPARSE_COMPUTE_16F; unsigned alignment = 16; cudaStream_t stream = 0; float alpha2 = 1.0f; float beta2 = 0.0f; for (int i = 0; i < spgemm_num; ++i) { // to be compatible with spgemm wrapper, we let A be the weight matrix // so m and n are swapped // A: mxk B: kxn C:mxn int m = N[i], n = M[i], k = K[i]; printf("\n-----------------------------\n"); printf("GEMM test %d: [M: %d, K: %d, N: %d]\n", i, m, k, n); T* d_A = (T*)buffer; T* d_B = d_A + m * k * batchCount[i]; T* d_C = d_B + k * n * batchCount[i]; T* dA_compressed; { cusparseLtMatDescriptor_t mat_A; CHECK_CUSPARSE(cusparseLtStructuredDescriptorInit( &handle, &mat_A, m, k, m, alignment, CUDA_R_16F, order, CUSPARSELT_SPARSITY_50_PERCENT)) CHECK_CUSPARSE( cusparseLtSpMMAPrune2(&handle, &mat_A, true, opA, d_A, d_A, CUSPARSELT_PRUNE_SPMMA_STRIP, stream)) size_t compressed_size; CHECK_CUSPARSE(cusparseLtSpMMACompressedSize2(&handle, &mat_A, &compressed_size)) check_cuda_error(cudaMalloc((void**)&dA_compressed, compressed_size)); CHECK_CUSPARSE(cusparseLtSpMMACompress2(&handle, &mat_A, true, opA, d_A, dA_compressed, stream)) } float exec_time = 99999.0f; int fast_algo = 0; for (int alg = 0; alg < 4; ++alg) { cudaDeviceSynchronize(); cusparseLtMatDescriptor_t mat_A, mat_B, mat_C; void* d_workspace = nullptr; int num_streams = 1; cudaStream_t streams[1] = {stream}; CHECK_CUSPARSE(cusparseLtStructuredDescriptorInit( &handle, &mat_A, m, k, m, alignment, CUDA_R_16F, order, CUSPARSELT_SPARSITY_50_PERCENT)) CHECK_CUSPARSE(cusparseLtDenseDescriptorInit(&handle, &mat_B, k, n, k, alignment, CUDA_R_16F, order)) CHECK_CUSPARSE(cusparseLtDenseDescriptorInit(&handle, &mat_C, m, n, m, alignment, CUDA_R_16F, order)) gettimeofday(&start, NULL); for (int ite = 0; ite < ites; ++ite) { // initializing MatDesc takes a lot of time // and these descs can be stored to other place // whereas storing MatMulPlan to other place will cause errors cusparseLtMatmulDescriptor_t matmul; cusparseLtMatmulAlgSelection_t alg_sel; cusparseLtMatmulPlan_t plan; CHECK_CUSPARSE(cusparseLtMatmulDescriptorInit( &handle, &matmul, opA, opB, &mat_A, &mat_B, &mat_C, &mat_C, compute_type)) CHECK_CUSPARSE( cusparseLtMatmulAlgSelectionInit(&handle, &alg_sel, &matmul, CUSPARSELT_MATMUL_ALG_DEFAULT)) CHECK_CUSPARSE(cusparseLtMatmulAlgSetAttribute( &handle, &alg_sel, CUSPARSELT_MATMUL_ALG_CONFIG_ID, &alg, sizeof(alg))) size_t workspace_size; CHECK_CUSPARSE(cusparseLtMatmulGetWorkspace(&handle, &alg_sel, &workspace_size)) CHECK_CUSPARSE(cusparseLtMatmulPlanInit(&handle, &plan, &matmul, &alg_sel, workspace_size)) CHECK_CUSPARSE(cusparseLtMatmul(&handle, &plan, &alpha2, dA_compressed, d_B, &beta2, d_C, d_C, d_workspace, streams, num_streams)) CHECK_CUSPARSE(cusparseLtMatmulPlanDestroy(&plan)) } cudaDeviceSynchronize(); gettimeofday(&end, NULL); printf("algo_%d costs %.3fms \n", alg, diffTime(start, end) / ites); if (diffTime(start, end) < exec_time) { exec_time = diffTime(start, end); fast_algo = alg; } } exec_time /= ites; if (exec_time >= exec_times[i]) { fast_algo = -1; } printf("fast_algo %d\n", fast_algo); fprintf(fd, "%d %d %d %d %d ### %d %d %d %d %d %f\n", batch_size, seq_len, head_num, size_per_head, HALF_DATATYPE, batchCount[i], m, n, k, fast_algo, exec_time); cudaFree(dA_compressed); } CHECK_CUSPARSE(cusparseLtDestroy(&handle)) fclose(fd); printf("***cusparseLt Gemm Testing End***\n"); } #endif return; } template void generate_encoder_gemm_config( int batch_size, int seq_len, int head_num, int size_per_head, void* buffer, bool isAppend, int tensor_para_size); template void generate_encoder_gemm_config( int batch_size, int seq_len, int head_num, int size_per_head, void* buffer, bool isAppend, int tensor_para_size); #ifdef ENABLE_BF16 template void generate_encoder_gemm_config<__nv_bfloat16>( int batch_size, int seq_len, int head_num, int size_per_head, void* buffer, bool isAppend, int tensor_para_size); #endif } // namespace turbomind