# Serving a model ## Serving [LLaMA-2](https://github.com/facebookresearch/llama) You can download [llama-2 models from huggingface](https://huggingface.co/meta-llama) and serve them like below:
7B ```shell lmdeploy convert llama2 /path/to/llama-2-7b-chat-hf bash workspace/service_docker_up.sh ```
13B ```shell lmdeploy convert llama2 /path/to/llama-2-13b-chat-hf --tp 2 bash workspace/service_docker_up.sh ```
70B ```shell lmdeploy convert llama2 /path/to/llama-2-70b-chat-hf --tp 8 bash workspace/service_docker_up.sh ```
## Serving [LLaMA](https://github.com/facebookresearch/llama) Weights for the LLaMA models can be obtained from by filling out [this form](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform)
7B ```shell lmdeploy convert llama /path/to/llama-7b llama \ --tokenizer_path /path/to/tokenizer/model bash workspace/service_docker_up.sh ```
13B ```shell lmdeploy convert llama /path/to/llama-13b llama \ --tokenizer_path /path/to/tokenizer/model --tp 2 bash workspace/service_docker_up.sh ```
30B ```shell lmdeploy convert llama /path/to/llama-30b llama \ --tokenizer_path /path/to/tokenizer/model --tp 4 bash workspace/service_docker_up.sh ```
65B ```shell lmdeploy convert llama /path/to/llama-65b llama \ --tokenizer_path /path/to/tokenizer/model --tp 8 bash workspace/service_docker_up.sh ```
### Serving [Vicuna](https://lmsys.org/blog/2023-03-30-vicuna/)
7B ```shell python3 -m pip install fschat python3 -m fastchat.model.apply_delta \ --base-model-path /path/to/llama-7b \ --target-model-path /path/to/vicuna-7b \ --delta-path lmsys/vicuna-7b-delta-v1.1 lmdeploy convert vicuna /path/to/vicuna-7b bash workspace/service_docker_up.sh ```
13B ```shell python3 -m pip install fschat python3 -m fastchat.model.apply_delta \ --base-model-path /path/to/llama-13b \ --target-model-path /path/to/vicuna-13b \ --delta-path lmsys/vicuna-13b-delta-v1.1 lmdeploy convert vicuna /path/to/vicuna-13b bash workspace/service_docker_up.sh ```