#
LMdeploy
## 简介
LMDeploy 由 [MMDeploy](https://github.com/open-mmlab/mmdeploy) 和 [MMRazor](https://github.com/open-mmlab/mmrazor) 团队联合开发,是涵盖了 LLM 任务的全套轻量化、部署和服务解决方案。
这个强大的工具箱提供以下核心功能:
- **高效推理引擎 TurboMind**:基于 [FasterTransformer](https://github.com/NVIDIA/FasterTransformer),我们实现了高效推理引擎 TurboMind,支持 InternLM、LLaMA、vicuna等模型在 NVIDIA GPU 上的推理。
- **交互推理方式**:通过缓存多轮对话过程中 attention 的 k/v,记住对话历史,从而避免重复处理历史会话。
- **多 GPU 部署和量化**:我们提供了全面的模型部署和量化支持,已在不同规模上完成验证。
- **persistent batch 推理**:进一步优化模型执行效率。
persistent batch 推理:进一步优化模型执行效率。
LMdeploy官方github地址:[https://github.com/InternLM/lmdeploy](https://github.com/InternLM/lmdeploy)
## 支持模型
| 模型 | 模型并行 | FP16 | KV INT8 |
| :----------: | :------: | :--: | :-----: |
| Llama | Yes | Yes | Yes |
| Llama2 | Yes | Yes | Yes |
| InternLM-7B | Yes | Yes | Yes |
| InternLM-20B | Yes | Yes | Yes |
| QWen-7B | Yes | Yes | Yes |
| QWen-14B | Yes | Yes | Yes |
| Baichuan-7B | Yes | Yes | Yes |
| Baichuan2-7B | Yes | Yes | No |
## 安装
### 使用源码编译方式安装
#### 编译环境准备
下载光源的镜像,起dcoker
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:lmdeploy-dtk2310-torch1.13-py38
# 用上面拉取docker镜像的ID替换
# 主机端路径
# 容器映射路径
docker run -it --name baichuan --shm-size=1024G --device=/dev/kfd -v /opt/hyhal:/opt/hyhal --device=/dev/dri/ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v : /bin/bash
```
注:
1、docker启动 -v /opt/hyhal:/opt/hyhal 这个变量不能少
2、要是非光源提供镜像,配置环境:(若安装过慢,可以添加源:pip3 install xxx -i https://pypi.tuna.tsinghua.edu.cn/simple/)
```
pip3 install -r requirements.txt
pip3 install urllib3==1.24
yum install rapidjson
# gcc版本需要>=9 安装高版本gcc 要是必须使用gcc7,可以下载对应的gcc7的分支
yum install -y centos-release-scl
yum install -y devtoolset-9
scl enable devtoolset-9 bash
# 执行nccl环境变量
export NCCL_LAUNCH_MODE=GROUP
```
#### 源码编译安装
- 代码下载
根据不同的需求下载不同的分支
- 提供2种源码编译方式(进入lmdeploy目录):
```
1. 源码编译安装
mkdir build && cd build
sh ../generate.sh
make -j 32 && make install
cd .. && python3 setup.py install
2. 编译成whl包安装
# 安装wheel
pip3 install wheel
mkdir build && cd build
sh ../generate.sh
make -j 32 && make install
cd .. && python3 setup.py bdist_wheel
cd dist && pip3 install lmdeploy*
```
## 模型服务
### 部署 [LLaMA](https://huggingface.co/huggyllama) 服务
请从[这里](https://huggingface.co/huggyllama) 下载 llama 模型,参考如下命令部署服务:
以7B为例:
```
1、模型转换
# 模型的名字 ('llama', 'internlm', 'vicuna', 'internlm-chat-7b', 'internlm-chat', 'internlm-chat-7b-8k', 'internlm-chat-20b', 'internlm-20b', 'baichuan-7b', 'baichuan2-7b', 'llama2', 'qwen-7b', 'qwen-14b',)
# 模型路径
# 模型的格式 ('llama', 'hf', 'qwen')
# tokenizer模型的路径(默认None,会去model_path里面找qwen.tiktoken)
# 保存输出的目标路径(默认./workspace)
# 用于张量并行的GPU数量应该是2^n
lmdeploy convert --model_name llama --model_path /path/to/model --model_format hf --tokenizer_path None --dst_path ./workspace_llama --tp 1
2、运行
# bash界面运行
lmdeploy chat turbomind --model_path ./workspace_llama --tp 1 # 输入问题后执行2次回车进行推理
# 在服务器界面运行:
在bash端运行:
# 部署模型的路径或tritonserver URL或restful api URL。前者用于与gradio直接运行服务。后者用于默认情况下使用tritonserver运行。如果输入URL是restful api。请启用另一个标志“restful_api”。
# gradio服务器的ip地址
# gradio服务器的ip的端口
# 于直接运行Turbomind的batch大小 (默认32)
# 用于张量并行的GPU数量应该是2^n (和模型转换的时候保持一致)
# modelpath_or_server的标志(默认是False)
lmdeploy serve gradio --model_path_or_server ./workspace_llama --server_name {ip} --server_port {pord} --batch_size 32 --tp 1 --restful_api False
在网页上输入{ip}:{pord}即可进行对话
```
### 部署 [llama2](https://huggingface.co/meta-llama) 服务
请从[这里](https://huggingface.co/meta-llama) 下载 llama2 模型,参考如下命令部署服务:
以7B为例:
```
1、模型转换
lmdeploy convert --model_name llama2 --model_path /path/to/model --model_format hf --tokenizer_path None --dst_path ./workspace_llama2 --tp 1 #
2、运行
# bash界面运行
lmdeploy chat turbomind --model_path ./workspace_llama2 --tp 1
# 在服务器界面运行:
在bash端运行:
lmdeploy serve gradio --model_path_or_server ./workspace_llama2 --server_name {ip} --server_port {pord} --batch_size 32 --tp 1 --restful_api False
在网页上输入{ip}:{pord}即可进行对话
```
### 部署 [internlm](https://huggingface.co/internlm/) 服务
请从[这里](https://huggingface.co/internlm) 下载 internlm 模型,参考如下命令部署服务:
以7B为例:
```
1、模型转换
lmdeploy convert --model_name model_name --model_path /path/to/model --model_format hf --tokenizer_path None --dst_path ./workspace_intern --tp 1 # 根据模型的类型选择model_name是internlm-chat还是internlm
2、运行
# bash界面运行
lmdeploy chat turbomind --model_path ./workspace_intern --tp 1
# 在服务器界面运行:
在bash端运行:
lmdeploy serve gradio --model_path_or_server ./workspace_intern --server_name {ip} --server_port {pord} --batch_size 32 --tp 1 --restful_api False
在网页上输入{ip}:{pord}即可进行对话
```
### 部署 [baichuan](https://huggingface.co/baichuan-inc) 服务
请从[这里](https://huggingface.co/baichuan-inc) 下载 baichuan 模型,参考如下命令部署服务:
以7B为例:
```
1、模型转换
lmdeploy convert --model_name baichuan-7b --model_path /path/to/model --model_format hf --tokenizer_path None --dst_path ./workspace_baichuan --tp 1
2、运行
# bash界面运行
lmdeploy chat turbomind --model_path ./workspace_baichuan --tp 1
# 在服务器界面运行:
在bash端运行:
lmdeploy serve gradio --model_path_or_server ./workspace_baichuan --server_name {ip} --server_port {pord} --batch_size 32 --tp 1 --restful_api False
在网页上输入{ip}:{pord}即可进行对话
```
### 部署 [baichuan2](https://huggingface.co/baichuan-inc) 服务
请从[这里](https://huggingface.co/baichuan-inc) 下载 baichuan2 模型,参考如下命令部署服务:
以7B为例:
```
1、模型转换
lmdeploy convert --model_name baichuan2-7b --model_path /path/to/model --model_format hf --tokenizer_path None --dst_path ./workspace_baichuan2 --tp 1
2、运行
# bash界面运行
lmdeploy chat turbomind --model_path ./workspace_baichuan2 --tp 1
# 在服务器界面运行:
在bash端运行:
lmdeploy serve gradio --model_path_or_server ./workspace_baichuan2 --server_name {ip} --server_port {pord} --batch_size 32 --tp 1 --restful_api False
在网页上输入{ip}:{pord}即可进行对话
```
### 部署 [qwen](https://huggingface.co/Qwen) 服务
请从[这里](https://huggingface.co/Qwen) 下载 qwen 模型,参考如下命令部署服务:
以7B为例:
```
1、模型转换
lmdeploy convert --model_name qwen-7b --model_path /path/to/model --model_format qwen --tokenizer_path None --dst_path ./workspace_qwen --tp 1
2、运行
# bash界面运行
lmdeploy chat turbomind --model_path ./workspace_qwen --tp 1
# 在服务器界面运行:
在bash端运行:
lmdeploy serve gradio --model_path_or_server ./workspace_qwen --server_name {ip} --server_port {pord} --batch_size 32 --tp 1 --restful_api False
在网页上输入{ip}:{pord}即可进行对话
```
## result

### 详细可参考 [docs](./docs/zh_cn/serving.md)
## 版本号查询
- python -c "import lmdeploy; lmdeploy.\_\_version__",版本号与官方版本同步,查询该软件的版本号,例如0.0.6;
## Known Issue
- 无
## Note
+ 若使用pip install下载安装过慢,可添加pypi清华源:-i https://pypi.tuna.tsinghua.edu.cn/simple/
## 其他参考
- [README_origin](README_origin.md)
- [README_zh-CN](README_zh-CN.md)