"vscode:/vscode.git/clone" did not exist on "77a6c9d22927fa425e89cdcf672cc61c14b72eaf"
Commit b30f3cdb authored by xiabo's avatar xiabo
Browse files

添加下载的代码

parent e38ee081
#!/usr/bin/python
# Copyright 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import sys
import argparse
import numpy as np
import tritonhttpclient as httpclient
from tritonclientutils import np_to_triton_dtype
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-u',
'--url',
type=str,
required=False,
default='localhost:8000',
help='Inference server URL. Default is localhost:8000.')
FLAGS = parser.parse_args()
model_name = "bls_fp32"
shape = [16]
with httpclient.InferenceServerClient(url=FLAGS.url) as client:
input0_data = np.random.rand(*shape).astype(np.float32)
input1_data = np.random.rand(*shape).astype(np.float32)
inputs = [
httpclient.InferInput("INPUT0", input0_data.shape,
np_to_triton_dtype(input0_data.dtype)),
httpclient.InferInput("INPUT1", input1_data.shape,
np_to_triton_dtype(input1_data.dtype)),
]
inputs[0].set_data_from_numpy(input0_data)
inputs[1].set_data_from_numpy(input1_data)
outputs = [
httpclient.InferRequestedOutput("OUTPUT0"),
httpclient.InferRequestedOutput("OUTPUT1"),
]
response = client.infer(model_name,
inputs,
request_id=str(1),
outputs=outputs)
result = response.get_response()
output0_data = response.as_numpy("OUTPUT0")
output1_data = response.as_numpy("OUTPUT1")
print("INPUT0 ({}) + INPUT1 ({}) = OUTPUT0 ({})".format(
input0_data, input1_data, output0_data))
print("INPUT0 ({}) - INPUT1 ({}) = OUTPUT1 ({})".format(
input0_data, input1_data, output1_data))
if not np.allclose(input0_data + input1_data, output0_data):
print("error: incorrect sum")
sys.exit(1)
if not np.allclose(input0_data - input1_data, output1_data):
print("error: incorrect difference")
sys.exit(1)
print('\nPASS')
sys.exit(0)
#!/usr/bin/env python
# Copyright 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import numpy as np
import tritonclient.http as httpclient
from tritonclient.utils import InferenceServerException
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-u',
'--url',
type=str,
required=False,
default='localhost:8000',
help='Inference server URL. Default is localhost:8000.')
FLAGS = parser.parse_args()
# For the HTTP client, need to specify large enough concurrency to
# issue all the inference requests to the server in parallel. For
# this example we want to be able to send 2 requests concurrently.
try:
concurrent_request_count = 2
triton_client = httpclient.InferenceServerClient(
url=FLAGS.url, concurrency=concurrent_request_count)
except Exception as e:
print("channel creation failed: " + str(e))
sys.exit(1)
# First send a single request to the nonbatching model.
print('=========')
input0_data = np.array([ 1, 2, 3, 4 ], dtype=np.int32)
print('Sending request to nonbatching model: IN0 = {}'.format(input0_data))
inputs = [ httpclient.InferInput('IN0', [4], "INT32") ]
inputs[0].set_data_from_numpy(input0_data)
result = triton_client.infer('nonbatching', inputs)
print('Response: {}'.format(result.get_response()))
print('OUT0 = {}'.format(result.as_numpy('OUT0')))
# Send 2 requests to the batching model. Because these are sent
# asynchronously and Triton's dynamic batcher is configured to
# delay up to 5 seconds when forming a batch for this model, we
# expect these 2 requests to be batched within Triton and sent to
# the minimal backend as a single batch.
print('\n=========')
async_requests = []
input0_data = np.array([[ 10, 11, 12, 13 ]], dtype=np.int32)
print('Sending request to batching model: IN0 = {}'.format(input0_data))
inputs = [ httpclient.InferInput('IN0', [1, 4], "INT32") ]
inputs[0].set_data_from_numpy(input0_data)
async_requests.append(triton_client.async_infer('batching', inputs))
input0_data = np.array([[ 20, 21, 22, 23 ]], dtype=np.int32)
print('Sending request to batching model: IN0 = {}'.format(input0_data))
inputs = [ httpclient.InferInput('IN0', [1, 4], "INT32") ]
inputs[0].set_data_from_numpy(input0_data)
async_requests.append(triton_client.async_infer('batching', inputs))
for async_request in async_requests:
# Get the result from the initiated asynchronous inference
# request. This call will block till the server responds.
result = async_request.get_result()
print('Response: {}'.format(result.get_response()))
print('OUT0 = {}'.format(result.as_numpy('OUT0')))
#!/usr/bin/env python
# Copyright 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import numpy as np
import tritonclient.http as httpclient
from tritonclient.utils import InferenceServerException
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-u',
'--url',
type=str,
required=False,
default='localhost:8000',
help='Inference server URL. Default is localhost:8000.')
FLAGS = parser.parse_args()
# For the HTTP client, need to specify large enough concurrency to
# issue all the inference requests to the server in parallel. For
# this example we want to be able to send 2 requests concurrently.
try:
concurrent_request_count = 2
triton_client = httpclient.InferenceServerClient(
url=FLAGS.url, concurrency=concurrent_request_count)
except Exception as e:
print("channel creation failed: " + str(e))
sys.exit(1)
# Send 2 requests to the batching model. Because these are sent
# asynchronously and Triton's dynamic batcher is configured to
# delay up to 5 seconds when forming a batch for this model, we
# expect these 2 requests to be batched within Triton and sent to
# the backend as a single batch.
#
# The recommended backend can handle any model with 1 input and 1
# output as long as the input and output datatype and shape are
# the same. The batching model uses datatype FP32 and shape
# [ 4, 4 ].
print('\n=========')
async_requests = []
input0_data = np.array([[[ 1.0, 1.1, 1.2, 1.3 ],
[ 2.0, 2.1, 2.2, 2.3 ],
[ 3.0, 3.1, 3.2, 3.3 ],
[ 4.0, 4.1, 4.2, 4.3 ]]], dtype=np.float32)
print('Sending request to batching model: input = {}'.format(input0_data))
inputs = [ httpclient.InferInput('INPUT', [1, 4, 4], "FP32") ]
inputs[0].set_data_from_numpy(input0_data)
async_requests.append(triton_client.async_infer('batching', inputs))
input0_data = np.array([[[ 10.0, 10.1, 10.2, 10.3 ],
[ 20.0, 20.1, 20.2, 20.3 ],
[ 30.0, 30.1, 30.2, 30.3 ],
[ 40.0, 40.1, 40.2, 40.3 ]]], dtype=np.float32)
print('Sending request to batching model: input = {}'.format(input0_data))
inputs = [ httpclient.InferInput('INPUT', [1, 4, 4], "FP32") ]
inputs[0].set_data_from_numpy(input0_data)
async_requests.append(triton_client.async_infer('batching', inputs))
for async_request in async_requests:
# Get the result from the initiated asynchronous inference
# request. This call will block till the server responds.
result = async_request.get_result()
print('Response: {}'.format(result.get_response()))
print('OUTPUT = {}'.format(result.as_numpy('OUTPUT')))
# Copyright 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import json
import triton_python_backend_utils as pb_utils
# This model calculates the sum and difference of the INPUT0 and INPUT1 and put
# the results in OUTPUT0 and OUTPUT1 respectively. For more information
# regarding how this model.py was written, please refer to Python Backend.
class TritonPythonModel:
def initialize(self, args):
self.model_config = model_config = json.loads(args['model_config'])
output0_config = pb_utils.get_output_config_by_name(
model_config, "OUTPUT0")
output1_config = pb_utils.get_output_config_by_name(
model_config, "OUTPUT1")
self.output0_dtype = pb_utils.triton_string_to_numpy(
output0_config['data_type'])
self.output1_dtype = pb_utils.triton_string_to_numpy(
output1_config['data_type'])
def execute(self, requests):
output0_dtype = self.output0_dtype
output1_dtype = self.output1_dtype
responses = []
for request in requests:
in_0 = pb_utils.get_input_tensor_by_name(request, "INPUT0")
in_1 = pb_utils.get_input_tensor_by_name(request, "INPUT1")
out_0, out_1 = (in_0.as_numpy() + in_1.as_numpy(),
in_0.as_numpy() - in_1.as_numpy())
out_tensor_0 = pb_utils.Tensor("OUTPUT0",
out_0.astype(output0_dtype))
out_tensor_1 = pb_utils.Tensor("OUTPUT1",
out_1.astype(output1_dtype))
inference_response = pb_utils.InferenceResponse(
output_tensors=[out_tensor_0, out_tensor_1])
responses.append(inference_response)
return responses
def finalize(self):
print('Cleaning up...')
# Copyright 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
name: "addsub_python"
backend: "python"
max_batch_size: 0
input [
{
name: "INPUT0"
data_type: TYPE_FP32
dims: [ 16 ]
}
]
input [
{
name: "INPUT1"
data_type: TYPE_FP32
dims: [ 16 ]
}
]
output [
{
name: "OUTPUT0"
data_type: TYPE_FP32
dims: [ 16 ]
}
]
output [
{
name: "OUTPUT1"
data_type: TYPE_FP32
dims: [ 16 ]
}
]
name: "addsub_tf"
platform: "tensorflow_savedmodel"
max_batch_size: 0
input [
{
name: "INPUT0"
data_type: TYPE_FP32
dims: [ 16 ]
},
{
name: "INPUT1"
data_type: TYPE_FP32
dims: [ 16 ]
}
]
output [
{
name: "OUTPUT0"
data_type: TYPE_FP32
dims: [ 16 ]
},
{
name: "OUTPUT1"
data_type: TYPE_FP32
dims: [ 16 ]
}
]
# Copyright 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
name: "bls_fp32"
backend: "bls"
max_batch_size: 0
input [
{
name: "INPUT0"
data_type: TYPE_FP32
dims: [ 16 ]
}
]
input [
{
name: "INPUT1"
data_type: TYPE_FP32
dims: [ 16 ]
}
]
output [
{
name: "OUTPUT0"
data_type: TYPE_FP32
dims: [ 16 ]
}
]
output [
{
name: "OUTPUT1"
data_type: TYPE_FP32
dims: [ 16 ]
}
]
instance_group [
{
kind: KIND_CPU
}
]
backend: "minimal"
max_batch_size: 8
dynamic_batching {
max_queue_delay_microseconds: 5000000
}
input [
{
name: "IN0"
data_type: TYPE_INT32
dims: [ 4 ]
}
]
output [
{
name: "OUT0"
data_type: TYPE_INT32
dims: [ 4 ]
}
]
instance_group [
{
kind: KIND_CPU
}
]
backend: "minimal"
max_batch_size: 0
input [
{
name: "IN0"
data_type: TYPE_INT32
dims: [ 4 ]
}
]
output [
{
name: "OUT0"
data_type: TYPE_INT32
dims: [ 4 ]
}
]
instance_group [
{
kind: KIND_CPU
}
]
backend: "recommended"
max_batch_size: 8
dynamic_batching {
max_queue_delay_microseconds: 5000000
}
input [
{
name: "INPUT"
data_type: TYPE_FP32
dims: [ 4, 4 ]
}
]
output [
{
name: "OUTPUT"
data_type: TYPE_FP32
dims: [ 4, 4 ]
}
]
instance_group [
{
kind: KIND_CPU
}
]
// Copyright 2019-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
#include <list>
#include <memory>
#include <string>
#include <vector>
#include "triton/backend/backend_common.h"
#include "triton/backend/backend_memory.h"
#include "triton/common/async_work_queue.h"
#include "triton/common/sync_queue.h"
#include "triton/core/tritonbackend.h"
#ifdef TRITON_ENABLE_GPU
#include <cuda_runtime_api.h>
#endif // TRITON_ENABLE_GPU
namespace triton { namespace backend {
#ifndef TRITON_ENABLE_GPU
using cudaStream_t = void*;
using cudaEvent_t = void*;
#endif // !TRITON_ENABLE_GPU
//
// BackendInputCollector
//
class BackendInputCollector {
public:
// The caller can optionally provide 'event' for internal synchronization
// instead of using 'stream'. If 'host_policy_name' is provided, it must be
// valid for the lifetime of the collector
explicit BackendInputCollector(
TRITONBACKEND_Request** requests, const uint32_t request_count,
std::vector<TRITONBACKEND_Response*>* responses,
TRITONBACKEND_MemoryManager* memory_manager, const bool pinned_enabled,
cudaStream_t stream, cudaEvent_t event = nullptr,
cudaEvent_t buffer_ready_event = nullptr,
const size_t kernel_buffer_threshold = 0,
const char* host_policy_name = nullptr, const bool copy_on_stream = false,
const bool coalesce_request_input = false)
: need_sync_(false), requests_(requests), request_count_(request_count),
responses_(responses), memory_manager_(memory_manager),
pinned_enabled_(pinned_enabled),
use_async_cpu_copy_(triton::common::AsyncWorkQueue::WorkerCount() > 1),
stream_(stream), event_(event), buffer_ready_event_(buffer_ready_event),
kernel_buffer_threshold_(kernel_buffer_threshold),
pending_pinned_byte_size_(0), pending_pinned_offset_(0),
pending_copy_kernel_buffer_byte_size_(0),
pending_copy_kernel_buffer_offset_(0),
pending_copy_kernel_input_buffer_counts_(0), async_task_count_(0),
host_policy_cstr_(host_policy_name), copy_on_stream_(copy_on_stream),
coalesce_request_input_(coalesce_request_input)
{
}
~BackendInputCollector() = default;
// Process all requests for a named input tensor and return the
// concatenated values of those requests in a single contiguous
// buffer. This overload of the function can avoid data copy if the
// tensor values are already contiguous and the caller doesn't
// provide a destination 'buffer'.
//
// 'buffer' is used to determine whether the input should be placed at the
// 'buffer' provided by the caller. If 'buffer' == nullptr, the returned
// buffer will be managed by the BackendInputCollector object and
// has the same lifecycle as the BackendInputCollector object.
// 'buffer_byte_size' is the byte size of 'buffer' if it is not nullptr.
// 'allowed_input_types' is the ordered list of the memory type and id pairs
// that the returned buffer can be. It must only contain the memory type
// and id of 'buffer' if 'buffer' is not nullptr.
// 'dst_buffer' returns the contiguous buffer of the input tensor.
// 'dst_buffer_byte_size' the byte size of 'dst_buffer'.
// 'dst_memory_type' returns the memory type of 'dst_buffer'.
// 'dst_memory_type_id' returns the memory type id of 'dst_buffer'.
TRITONSERVER_Error* ProcessTensor(
const char* input_name, char* buffer, const size_t buffer_byte_size,
const std::vector<std::pair<TRITONSERVER_MemoryType, int64_t>>&
allowed_input_types,
const char** dst_buffer, size_t* dst_buffer_byte_size,
TRITONSERVER_MemoryType* dst_memory_type, int64_t* dst_memory_type_id);
// Process all requests for a named input tensor and return the
// concatenated values of those requests in a single contiguous
// 'buffer'.
//
// 'buffer' The buffer to hold the concatenates tensor value. Must
// be large enough to hold all tensor value.
// 'buffer_byte_size' is the byte size of 'buffer'.
// 'dst_memory_type' The memory type of 'buffer'.
// 'dst_memory_type_id' The memory type id of 'buffer'.
void ProcessTensor(
const char* input_name, char* buffer, const size_t buffer_byte_size,
const TRITONSERVER_MemoryType memory_type, const int64_t memory_type_id);
// Process the batch input and return its shape. Returning error indicates
// that the batch input can't be formed properly and the caller should abort
// the whole batch.
TRITONSERVER_Error* BatchInputShape(
const BatchInput& batch_input, std::vector<int64_t>* shape);
// Process the batch input and derive its value into 'buffer'. Returning
// error indicates that the batch input can't be formed properly and
// the caller should abort the whole batch.
// 'buffer' is used to determine whether the input should be placed at the
// 'buffer' provided by the caller. If 'buffer' == nullptr, the returned
// buffer will be managed by the BackendInputCollector object and
// has the same lifecycle as the BackendInputCollector object.
// 'buffer_byte_size' is the byte size of 'buffer' if it is not nullptr.
// 'allowed_input_types' is the ordered list of the memory type and id pairs
// that the returned buffer can be. It must only contain the memory type
// and id of 'buffer' if it is not nullptr.
// 'dst_buffer' returns the contiguous buffer of the input tensor.
// 'dst_memory_type' returns the memory type of 'dst_buffer'.
// 'dst_memory_type_id' returns the memory type id of 'dst_buffer'.
TRITONSERVER_Error* ProcessBatchInput(
const BatchInput& batch_input, char* buffer,
const size_t buffer_byte_size,
const std::vector<std::pair<TRITONSERVER_MemoryType, int64_t>>&
allowed_input_types,
const char** dst_buffer, size_t* dst_buffer_byte_size,
TRITONSERVER_MemoryType* dst_memory_type, int64_t* dst_memory_type_id);
// Finalize processing of all requests for all input tensors. Return
// true if cudaMemcpyAsync is called, and the caller should call
// cudaStreamSynchronize (or cudaEventSynchronize on 'event') before
// using the data.
bool Finalize();
private:
struct ContiguousBuffer {
ContiguousBuffer() : start_request_idx_(0), end_request_idx_(0) {}
MemoryDesc memory_desc_;
size_t start_request_idx_;
size_t end_request_idx_;
};
class InputIterator {
public:
InputIterator(
TRITONBACKEND_Request** requests, const uint32_t request_count,
std::vector<TRITONBACKEND_Response*>* responses, const char* input_name,
const char* host_policy_name, const bool coalesce_request_input);
// Return false if iterator reaches the end of inputs, 'input' is not set.
bool GetNextContiguousInput(ContiguousBuffer* input);
private:
TRITONBACKEND_Request** requests_;
const uint32_t request_count_;
std::vector<TRITONBACKEND_Response*>* responses_;
const char* input_name_;
const char* host_policy_;
const bool coalesce_request_input_;
TRITONBACKEND_Input* curr_input_;
size_t curr_request_idx_;
size_t curr_buffer_idx_;
uint32_t curr_buffer_cnt_;
bool reach_end_;
};
// Return whether the entire input is in a contiguous buffer. If returns true,
// the properties of the contiguous input buffer will also be returned.
// Otherwise, only 'buffer_byte_size' will be set and return the total byte
// size of the input.
bool GetInputBufferIfContiguous(
const char* input_name, const char** buffer, size_t* buffer_byte_size,
TRITONSERVER_MemoryType* memory_type, int64_t* memory_type_id);
bool FlushPendingPinned(
char* tensor_buffer, const size_t tensor_buffer_byte_size,
const TRITONSERVER_MemoryType tensor_memory_type,
const int64_t tensor_memory_type_id);
bool FlushPendingCopyKernel(
char* tensor_buffer, const size_t tensor_buffer_byte_size,
const TRITONSERVER_MemoryType tensor_memory_type,
const int64_t tensor_memory_type_id);
TRITONSERVER_Error* LaunchCopyKernel(
char* tensor_buffer, const size_t tensor_buffer_byte_size,
const TRITONSERVER_MemoryType tensor_memory_type,
const int64_t tensor_memory_type_id);
bool SetInputTensor(
const char* input_name, const ContiguousBuffer& input,
char* tensor_buffer, const size_t tensor_buffer_byte_size,
const TRITONSERVER_MemoryType tensor_memory_type,
const int64_t tensor_memory_type_id, const size_t tensor_buffer_offset,
const TRITONSERVER_MemoryType use_pinned_memory_type,
const bool use_kernel, const bool wait_buffer);
template <typename T>
TRITONSERVER_Error* SetElementCount(
const std::string& source_input, char* buffer,
const size_t buffer_byte_size);
template <typename T>
TRITONSERVER_Error* SetAccumulatedElementCount(
const std::string& source_input, char* buffer,
const size_t buffer_byte_size);
template <typename T>
TRITONSERVER_Error* SetBatchItemShape(
const std::string& source_input, char* buffer,
const size_t buffer_byte_size);
bool need_sync_;
TRITONBACKEND_Request** requests_;
const uint32_t request_count_;
std::vector<TRITONBACKEND_Response*>* responses_;
TRITONBACKEND_MemoryManager* memory_manager_;
const bool pinned_enabled_;
const bool use_async_cpu_copy_;
cudaStream_t stream_;
cudaEvent_t event_;
cudaEvent_t buffer_ready_event_;
const size_t kernel_buffer_threshold_;
size_t pending_pinned_byte_size_;
size_t pending_pinned_offset_;
std::list<ContiguousBuffer> pending_pinned_input_buffers_;
// managed memories that need to live over the lifetime of this
// BackendInputCollector object.
std::list<std::unique_ptr<BackendMemory>> in_use_memories_;
size_t pending_copy_kernel_buffer_byte_size_;
size_t pending_copy_kernel_buffer_offset_;
size_t pending_copy_kernel_input_buffer_counts_;
std::list<ContiguousBuffer> pending_copy_kernel_input_buffers_;
std::vector<std::unique_ptr<std::vector<int8_t*>>> input_ptr_buffer_host_;
std::vector<std::unique_ptr<std::vector<size_t>>> byte_size_buffer_host_;
std::vector<std::unique_ptr<std::vector<size_t>>>
byte_size_offset_buffer_host_;
// Pinned memory buffers and the corresponding request_inputs where
// the final copy to the tensor is deferred until Finalize() after
// waiting for all in-flight copies.
struct DeferredPinned {
DeferredPinned(
char* pinned_memory, const size_t pinned_memory_size,
char* tensor_buffer, const size_t tensor_buffer_offset,
const TRITONSERVER_MemoryType tensor_memory_type,
const int64_t tensor_memory_id,
std::list<ContiguousBuffer>&& request_buffers,
std::vector<TRITONBACKEND_Response*>* responses)
: finalized_(false), pinned_memory_(pinned_memory),
pinned_memory_size_(pinned_memory_size),
tensor_buffer_(tensor_buffer),
tensor_buffer_offset_(tensor_buffer_offset),
tensor_memory_type_(tensor_memory_type),
tensor_memory_id_(tensor_memory_id),
requests_(std::move(request_buffers)), responses_(responses)
{
}
bool Finalize(cudaStream_t stream);
bool finalized_;
// Holding reference to the pinned memory buffer, which is managed
// by BackendInputCollector as 'pinned_memory'
char* pinned_memory_;
const size_t pinned_memory_size_;
char* tensor_buffer_;
const size_t tensor_buffer_offset_;
const TRITONSERVER_MemoryType tensor_memory_type_;
const int64_t tensor_memory_id_;
std::list<ContiguousBuffer> requests_;
std::vector<TRITONBACKEND_Response*>* responses_;
};
std::list<DeferredPinned> deferred_pinned_;
// FIXME use future to maintain an issue-order queue to drop task count
triton::common::SyncQueue<bool> completion_queue_;
size_t async_task_count_;
const char* host_policy_cstr_;
const bool copy_on_stream_;
const bool coalesce_request_input_;
};
}} // namespace triton::backend
// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
#include <string>
#include <vector>
#include "triton/core/tritonbackend.h"
#include "triton/core/tritonserver.h"
namespace triton { namespace backend {
// Colletion of common properties that describes a buffer in Triton
struct MemoryDesc {
MemoryDesc()
: buffer_(nullptr), byte_size_(0), memory_type_(TRITONSERVER_MEMORY_CPU),
memory_type_id_(0)
{
}
MemoryDesc(
const char* buffer, size_t byte_size, TRITONSERVER_MemoryType memory_type,
int64_t memory_type_id)
: buffer_(buffer), byte_size_(byte_size), memory_type_(memory_type),
memory_type_id_(memory_type_id)
{
}
const char* buffer_;
size_t byte_size_;
TRITONSERVER_MemoryType memory_type_;
int64_t memory_type_id_;
};
//
// BackendMemory
//
// Utility class for allocating and deallocating memory using both
// TRITONBACKEND_MemoryManager and direct GPU and CPU malloc/free.
//
class BackendMemory {
public:
enum class AllocationType { CPU, CPU_PINNED, GPU, CPU_PINNED_POOL, GPU_POOL };
// Allocate a contiguous block of 'alloc_type' memory. 'mem'
// returns the pointer to the allocated memory.
//
// CPU, CPU_PINNED_POOL and GPU_POOL are allocated using
// TRITONBACKEND_MemoryManagerAllocate. Note that CPU_PINNED and GPU
// allocations can be much slower than the POOL variants.
//
// Two error codes have specific interpretations for this function:
//
// TRITONSERVER_ERROR_UNSUPPORTED: Indicates that function is
// incapable of allocating the requested memory type and memory
// type ID. Requests for the memory type and ID will always fail
// no matter 'byte_size' of the request.
//
// TRITONSERVER_ERROR_UNAVAILABLE: Indicates that function can
// allocate the memory type and ID but that currently it cannot
// allocate a contiguous block of memory of the requested
// 'byte_size'.
static TRITONSERVER_Error* Create(
TRITONBACKEND_MemoryManager* manager, const AllocationType alloc_type,
const int64_t memory_type_id, const size_t byte_size,
BackendMemory** mem);
// Allocate a contiguous block of memory by attempting the
// allocation using 'alloc_types' in order until one is successful.
// See BackendMemory::Create() above for details.
static TRITONSERVER_Error* Create(
TRITONBACKEND_MemoryManager* manager,
const std::vector<AllocationType>& alloc_types,
const int64_t memory_type_id, const size_t byte_size,
BackendMemory** mem);
// Creates a BackendMemory object from a pre-allocated buffer. The buffer
// is not owned by the object created with this function. Hence, for
// proper operation, the lifetime of the buffer should atleast extend till
// the corresponding BackendMemory.
static TRITONSERVER_Error* Create(
TRITONBACKEND_MemoryManager* manager, const AllocationType alloc_type,
const int64_t memory_type_id, void* buffer, const size_t byte_size,
BackendMemory** mem);
~BackendMemory();
AllocationType AllocType() const { return alloctype_; }
int64_t MemoryTypeId() const { return memtype_id_; }
char* MemoryPtr() { return buffer_; }
size_t ByteSize() const { return byte_size_; }
TRITONSERVER_MemoryType MemoryType() const
{
return AllocTypeToMemoryType(alloctype_);
}
static TRITONSERVER_MemoryType AllocTypeToMemoryType(const AllocationType a);
static const char* AllocTypeString(const AllocationType a);
private:
BackendMemory(
TRITONBACKEND_MemoryManager* manager, const AllocationType alloctype,
const int64_t memtype_id, char* buffer, const size_t byte_size,
const bool owns_buffer = true)
: manager_(manager), alloctype_(alloctype), memtype_id_(memtype_id),
buffer_(buffer), byte_size_(byte_size), owns_buffer_(owns_buffer)
{
}
TRITONBACKEND_MemoryManager* manager_;
AllocationType alloctype_;
int64_t memtype_id_;
char* buffer_;
size_t byte_size_;
bool owns_buffer_;
};
}} // namespace triton::backend
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment