"vscode:/vscode.git/clone" did not exist on "9aff5677b5344f653fc0194b03b6325fd9be2813"
Commit 4cc1a614 authored by xuxzh1's avatar xuxzh1 🎱
Browse files

init

parents
Pipeline #1891 canceled with stages
{
"name": "rotate-bits",
"version": "0.1.1",
"repo": "jb55/rotate-bits.h",
"description": "rotate bits",
"keywords": ["rotl", "rotr"],
"src": ["rotate-bits.h"],
"license": "Public Domain",
"development": {
"thlorenz/tap.c": "*"
}
}
#ifndef __ROTATE_DEFS_H
#define __ROTATE_DEFS_H
#ifdef _MSC_VER
#include <stdlib.h>
#define ROTL32(v, n) _rotl((v), (n))
#define ROTL64(v, n) _rotl64((v), (n))
#define ROTR32(v, n) _rotr((v), (n))
#define ROTR64(v, n) _rotr64((v), (n))
#else
#include <stdint.h>
#define U8V(v) ((uint8_t)(v) & 0xFFU)
#define U16V(v) ((uint16_t)(v) & 0xFFFFU)
#define U32V(v) ((uint32_t)(v) & 0xFFFFFFFFU)
#define U64V(v) ((uint64_t)(v) & 0xFFFFFFFFFFFFFFFFU)
#define ROTL32(v, n) \
(U32V((uint32_t)(v) << (n)) | ((uint32_t)(v) >> (32 - (n))))
// tests fail if we don't have this cast...
#define ROTL64(v, n) \
(U64V((uint64_t)(v) << (n)) | ((uint64_t)(v) >> (64 - (n))))
#define ROTR32(v, n) ROTL32(v, 32 - (n))
#define ROTR64(v, n) ROTL64(v, 64 - (n))
#endif
#define ROTL8(v, n) \
(U8V((uint8_t)(v) << (n)) | ((uint8_t)(v) >> (8 - (n))))
#define ROTL16(v, n) \
(U16V((uint16_t)(v) << (n)) | ((uint16_t)(v) >> (16 - (n))))
#define ROTR8(v, n) ROTL8(v, 8 - (n))
#define ROTR16(v, n) ROTL16(v, 16 - (n))
#endif
{
"name": "sha1",
"version": "0.0.1",
"repo": "clibs/sha1",
"description": "sha1 hash algorithm",
"keywords": ["sha1", "hash"],
"license": "public domain",
"src": ["sha1.c", "sha1.h"]
}
/*
SHA-1 in C
By Steve Reid <steve@edmweb.com>
100% Public Domain
Test Vectors (from FIPS PUB 180-1)
"abc"
A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
A million repetitions of "a"
34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
*/
/* #define LITTLE_ENDIAN * This should be #define'd already, if true. */
/* #define SHA1HANDSOFF * Copies data before messing with it. */
#define SHA1HANDSOFF
#include <stdio.h>
#include <string.h>
/* for uint32_t */
#include <stdint.h>
#include "sha1.h"
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
/* blk0() and blk() perform the initial expand. */
/* I got the idea of expanding during the round function from SSLeay */
#if BYTE_ORDER == LITTLE_ENDIAN
#define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
|(rol(block->l[i],8)&0x00FF00FF))
#elif BYTE_ORDER == BIG_ENDIAN
#define blk0(i) block->l[i]
#else
#error "Endianness not defined!"
#endif
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
^block->l[(i+2)&15]^block->l[i&15],1))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
/* Hash a single 512-bit block. This is the core of the algorithm. */
void SHA1Transform(
uint32_t state[5],
const unsigned char buffer[64]
)
{
uint32_t a, b, c, d, e;
typedef union
{
unsigned char c[64];
uint32_t l[16];
} CHAR64LONG16;
#ifdef SHA1HANDSOFF
CHAR64LONG16 block[1]; /* use array to appear as a pointer */
memcpy(block, buffer, 64);
#else
/* The following had better never be used because it causes the
* pointer-to-const buffer to be cast into a pointer to non-const.
* And the result is written through. I threw a "const" in, hoping
* this will cause a diagnostic.
*/
CHAR64LONG16 *block = (const CHAR64LONG16 *) buffer;
#endif
/* Copy context->state[] to working vars */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a, b, c, d, e, 0);
R0(e, a, b, c, d, 1);
R0(d, e, a, b, c, 2);
R0(c, d, e, a, b, 3);
R0(b, c, d, e, a, 4);
R0(a, b, c, d, e, 5);
R0(e, a, b, c, d, 6);
R0(d, e, a, b, c, 7);
R0(c, d, e, a, b, 8);
R0(b, c, d, e, a, 9);
R0(a, b, c, d, e, 10);
R0(e, a, b, c, d, 11);
R0(d, e, a, b, c, 12);
R0(c, d, e, a, b, 13);
R0(b, c, d, e, a, 14);
R0(a, b, c, d, e, 15);
R1(e, a, b, c, d, 16);
R1(d, e, a, b, c, 17);
R1(c, d, e, a, b, 18);
R1(b, c, d, e, a, 19);
R2(a, b, c, d, e, 20);
R2(e, a, b, c, d, 21);
R2(d, e, a, b, c, 22);
R2(c, d, e, a, b, 23);
R2(b, c, d, e, a, 24);
R2(a, b, c, d, e, 25);
R2(e, a, b, c, d, 26);
R2(d, e, a, b, c, 27);
R2(c, d, e, a, b, 28);
R2(b, c, d, e, a, 29);
R2(a, b, c, d, e, 30);
R2(e, a, b, c, d, 31);
R2(d, e, a, b, c, 32);
R2(c, d, e, a, b, 33);
R2(b, c, d, e, a, 34);
R2(a, b, c, d, e, 35);
R2(e, a, b, c, d, 36);
R2(d, e, a, b, c, 37);
R2(c, d, e, a, b, 38);
R2(b, c, d, e, a, 39);
R3(a, b, c, d, e, 40);
R3(e, a, b, c, d, 41);
R3(d, e, a, b, c, 42);
R3(c, d, e, a, b, 43);
R3(b, c, d, e, a, 44);
R3(a, b, c, d, e, 45);
R3(e, a, b, c, d, 46);
R3(d, e, a, b, c, 47);
R3(c, d, e, a, b, 48);
R3(b, c, d, e, a, 49);
R3(a, b, c, d, e, 50);
R3(e, a, b, c, d, 51);
R3(d, e, a, b, c, 52);
R3(c, d, e, a, b, 53);
R3(b, c, d, e, a, 54);
R3(a, b, c, d, e, 55);
R3(e, a, b, c, d, 56);
R3(d, e, a, b, c, 57);
R3(c, d, e, a, b, 58);
R3(b, c, d, e, a, 59);
R4(a, b, c, d, e, 60);
R4(e, a, b, c, d, 61);
R4(d, e, a, b, c, 62);
R4(c, d, e, a, b, 63);
R4(b, c, d, e, a, 64);
R4(a, b, c, d, e, 65);
R4(e, a, b, c, d, 66);
R4(d, e, a, b, c, 67);
R4(c, d, e, a, b, 68);
R4(b, c, d, e, a, 69);
R4(a, b, c, d, e, 70);
R4(e, a, b, c, d, 71);
R4(d, e, a, b, c, 72);
R4(c, d, e, a, b, 73);
R4(b, c, d, e, a, 74);
R4(a, b, c, d, e, 75);
R4(e, a, b, c, d, 76);
R4(d, e, a, b, c, 77);
R4(c, d, e, a, b, 78);
R4(b, c, d, e, a, 79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
/* Wipe variables */
a = b = c = d = e = 0;
#ifdef SHA1HANDSOFF
memset(block, '\0', sizeof(block));
#endif
}
/* SHA1Init - Initialize new context */
void SHA1Init(
SHA1_CTX * context
)
{
/* SHA1 initialization constants */
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;
context->count[0] = context->count[1] = 0;
}
/* Run your data through this. */
void SHA1Update(
SHA1_CTX * context,
const unsigned char *data,
uint32_t len
)
{
uint32_t i;
uint32_t j;
j = context->count[0];
if ((context->count[0] += len << 3) < j)
context->count[1]++;
context->count[1] += (len >> 29);
j = (j >> 3) & 63;
if ((j + len) > 63)
{
memcpy(&context->buffer[j], data, (i = 64 - j));
SHA1Transform(context->state, context->buffer);
for (; i + 63 < len; i += 64)
{
SHA1Transform(context->state, &data[i]);
}
j = 0;
}
else
i = 0;
memcpy(&context->buffer[j], &data[i], len - i);
}
/* Add padding and return the message digest. */
void SHA1Final(
unsigned char digest[20],
SHA1_CTX * context
)
{
unsigned i;
unsigned char finalcount[8];
unsigned char c;
#if 0 /* untested "improvement" by DHR */
/* Convert context->count to a sequence of bytes
* in finalcount. Second element first, but
* big-endian order within element.
* But we do it all backwards.
*/
unsigned char *fcp = &finalcount[8];
for (i = 0; i < 2; i++)
{
uint32_t t = context->count[i];
int j;
for (j = 0; j < 4; t >>= 8, j++)
*--fcp = (unsigned char) t}
#else
for (i = 0; i < 8; i++)
{
finalcount[i] = (unsigned char) ((context->count[(i >= 4 ? 0 : 1)] >> ((3 - (i & 3)) * 8)) & 255); /* Endian independent */
}
#endif
c = 0200;
SHA1Update(context, &c, 1);
while ((context->count[0] & 504) != 448)
{
c = 0000;
SHA1Update(context, &c, 1);
}
SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
for (i = 0; i < 20; i++)
{
digest[i] = (unsigned char)
((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255);
}
/* Wipe variables */
memset(context, '\0', sizeof(*context));
memset(&finalcount, '\0', sizeof(finalcount));
}
void SHA1(
char *hash_out,
const char *str,
uint32_t len)
{
SHA1_CTX ctx;
unsigned int ii;
SHA1Init(&ctx);
for (ii=0; ii<len; ii+=1)
SHA1Update(&ctx, (const unsigned char*)str + ii, 1);
SHA1Final((unsigned char *)hash_out, &ctx);
}
#ifndef SHA1_H
#define SHA1_H
/*
SHA-1 in C
By Steve Reid <steve@edmweb.com>
100% Public Domain
*/
#include "stdint.h"
#if defined(__cplusplus)
extern "C" {
#endif
typedef struct
{
uint32_t state[5];
uint32_t count[2];
unsigned char buffer[64];
} SHA1_CTX;
void SHA1Transform(
uint32_t state[5],
const unsigned char buffer[64]
);
void SHA1Init(
SHA1_CTX * context
);
void SHA1Update(
SHA1_CTX * context,
const unsigned char *data,
uint32_t len
);
void SHA1Final(
unsigned char digest[20],
SHA1_CTX * context
);
void SHA1(
char *hash_out,
const char *str,
uint32_t len);
#if defined(__cplusplus)
}
#endif
#endif /* SHA1_H */
{
"name": "sha256",
"version": "0.0.2",
"repo": "jb55/sha256.c",
"description": "sha256 in c",
"keywords": ["sha256", "sha2"],
"src": ["sha256.c", "sha256.h"],
"dependencies": {
"jb55/rotate-bits.h": "0.1.1"
},
"development": {
"thlorenz/tap.c": "*"
}
}
/* Crypto/Sha256.c -- SHA-256 Hash
2010-06-11 : Igor Pavlov : Public domain
This code is based on public domain code from Wei Dai's Crypto++ library. */
#include "rotate-bits/rotate-bits.h"
#include "sha256.h"
/* define it for speed optimization */
#define _SHA256_UNROLL
#define _SHA256_UNROLL2
void
sha256_init(sha256_t *p)
{
p->state[0] = 0x6a09e667;
p->state[1] = 0xbb67ae85;
p->state[2] = 0x3c6ef372;
p->state[3] = 0xa54ff53a;
p->state[4] = 0x510e527f;
p->state[5] = 0x9b05688c;
p->state[6] = 0x1f83d9ab;
p->state[7] = 0x5be0cd19;
p->count = 0;
}
#define S0(x) (ROTR32(x, 2) ^ ROTR32(x,13) ^ ROTR32(x, 22))
#define S1(x) (ROTR32(x, 6) ^ ROTR32(x,11) ^ ROTR32(x, 25))
#define s0(x) (ROTR32(x, 7) ^ ROTR32(x,18) ^ (x >> 3))
#define s1(x) (ROTR32(x,17) ^ ROTR32(x,19) ^ (x >> 10))
#define blk0(i) (W[i] = data[i])
#define blk2(i) (W[i&15] += s1(W[(i-2)&15]) + W[(i-7)&15] + s0(W[(i-15)&15]))
#define Ch(x,y,z) (z^(x&(y^z)))
#define Maj(x,y,z) ((x&y)|(z&(x|y)))
#define a(i) T[(0-(i))&7]
#define b(i) T[(1-(i))&7]
#define c(i) T[(2-(i))&7]
#define d(i) T[(3-(i))&7]
#define e(i) T[(4-(i))&7]
#define f(i) T[(5-(i))&7]
#define g(i) T[(6-(i))&7]
#define h(i) T[(7-(i))&7]
#ifdef _SHA256_UNROLL2
#define R(a,b,c,d,e,f,g,h, i) h += S1(e) + Ch(e,f,g) + K[i+j] + (j?blk2(i):blk0(i));\
d += h; h += S0(a) + Maj(a, b, c)
#define RX_8(i) \
R(a,b,c,d,e,f,g,h, i); \
R(h,a,b,c,d,e,f,g, (i+1)); \
R(g,h,a,b,c,d,e,f, (i+2)); \
R(f,g,h,a,b,c,d,e, (i+3)); \
R(e,f,g,h,a,b,c,d, (i+4)); \
R(d,e,f,g,h,a,b,c, (i+5)); \
R(c,d,e,f,g,h,a,b, (i+6)); \
R(b,c,d,e,f,g,h,a, (i+7))
#else
#define R(i) h(i) += S1(e(i)) + Ch(e(i),f(i),g(i)) + K[i+j] + (j?blk2(i):blk0(i));\
d(i) += h(i); h(i) += S0(a(i)) + Maj(a(i), b(i), c(i))
#ifdef _SHA256_UNROLL
#define RX_8(i) R(i+0); R(i+1); R(i+2); R(i+3); R(i+4); R(i+5); R(i+6); R(i+7);
#endif
#endif
static const uint32_t K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
static void
sha256_transform(uint32_t *state, const uint32_t *data)
{
uint32_t W[16] = {0};
unsigned j;
#ifdef _SHA256_UNROLL2
uint32_t a,b,c,d,e,f,g,h;
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
#else
uint32_t T[8];
for (j = 0; j < 8; j++)
T[j] = state[j];
#endif
for (j = 0; j < 64; j += 16)
{
#if defined(_SHA256_UNROLL) || defined(_SHA256_UNROLL2)
RX_8(0); RX_8(8);
#else
unsigned i;
for (i = 0; i < 16; i++) { R(i); }
#endif
}
#ifdef _SHA256_UNROLL2
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
#else
for (j = 0; j < 8; j++)
state[j] += T[j];
#endif
/* Wipe variables */
/* memset(W, 0, sizeof(W)); */
/* memset(T, 0, sizeof(T)); */
}
#undef S0
#undef S1
#undef s0
#undef s1
static void
sha256_write_byte_block(sha256_t *p)
{
uint32_t data32[16];
unsigned i;
for (i = 0; i < 16; i++)
data32[i] =
((uint32_t)(p->buffer[i * 4 ]) << 24) +
((uint32_t)(p->buffer[i * 4 + 1]) << 16) +
((uint32_t)(p->buffer[i * 4 + 2]) << 8) +
((uint32_t)(p->buffer[i * 4 + 3]));
sha256_transform(p->state, data32);
}
void
sha256_hash(unsigned char *buf, const unsigned char *data, size_t size)
{
sha256_t hash;
sha256_init(&hash);
sha256_update(&hash, data, size);
sha256_final(&hash, buf);
}
void
sha256_update(sha256_t *p, const unsigned char *data, size_t size)
{
uint32_t curBufferPos = (uint32_t)p->count & 0x3F;
while (size > 0)
{
p->buffer[curBufferPos++] = *data++;
p->count++;
size--;
if (curBufferPos == 64)
{
curBufferPos = 0;
sha256_write_byte_block(p);
}
}
}
void
sha256_final(sha256_t *p, unsigned char *digest)
{
uint64_t lenInBits = (p->count << 3);
uint32_t curBufferPos = (uint32_t)p->count & 0x3F;
unsigned i;
p->buffer[curBufferPos++] = 0x80;
while (curBufferPos != (64 - 8))
{
curBufferPos &= 0x3F;
if (curBufferPos == 0)
sha256_write_byte_block(p);
p->buffer[curBufferPos++] = 0;
}
for (i = 0; i < 8; i++)
{
p->buffer[curBufferPos++] = (unsigned char)(lenInBits >> 56);
lenInBits <<= 8;
}
sha256_write_byte_block(p);
for (i = 0; i < 8; i++)
{
*digest++ = (unsigned char)(p->state[i] >> 24);
*digest++ = (unsigned char)(p->state[i] >> 16);
*digest++ = (unsigned char)(p->state[i] >> 8);
*digest++ = (unsigned char)(p->state[i]);
}
sha256_init(p);
}
/* Sha256.h -- SHA-256 Hash
2010-06-11 : Igor Pavlov : Public domain */
#ifndef __CRYPTO_SHA256_H
#define __CRYPTO_SHA256_H
#include <stdlib.h>
#include <stdint.h>
#define SHA256_DIGEST_SIZE 32
typedef struct sha256_t
{
uint32_t state[8];
uint64_t count;
unsigned char buffer[64];
} sha256_t;
void sha256_init(sha256_t *p);
void sha256_update(sha256_t *p, const unsigned char *data, size_t size);
void sha256_final(sha256_t *p, unsigned char *digest);
void sha256_hash(unsigned char *buf, const unsigned char *data, size_t size);
#endif
{
"name": "xxhash",
"version": "0.8.2",
"repo": "Cyan4973/xxhash",
"description": "Extremely fast non-cryptographic hash algorithm",
"keywords": ["xxhash", "hashing"],
"license": "BSD-2-Clause",
"src": [
"xxhash.c",
"xxhash.h"
]
}
/*
* xxHash - Extremely Fast Hash algorithm
* Copyright (C) 2012-2023 Yann Collet
*
* BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You can contact the author at:
* - xxHash homepage: https://www.xxhash.com
* - xxHash source repository: https://github.com/Cyan4973/xxHash
*/
/*
* xxhash.c instantiates functions defined in xxhash.h
*/
#define XXH_STATIC_LINKING_ONLY /* access advanced declarations */
#define XXH_IMPLEMENTATION /* access definitions */
#include "xxhash.h"
This source diff could not be displayed because it is too large. You can view the blob instead.
#include "ggml.h"
#include <cstdlib> /* abort() */
#include <cstddef>
#include <cstdio>
#include <string>
#include <stdexcept>
#include <algorithm>
#include <cstring>
#include <sstream>
#include <fstream>
#ifdef __cplusplus
extern "C" {
#endif
#include "xxhash/xxhash.h"
#include "sha1/sha1.h"
#include "sha256/sha256.h"
#ifdef __cplusplus
}
#endif
// uuid.uuid5(uuid.NAMESPACE_URL, 'en.wikipedia.org/wiki/Llama.cpp')
#define UUID_NAMESPACE_LLAMA_CPP "ef001206-dadc-5f6d-a15f-3359e577d4e5"
#define UUID_NAMESPACE_LLAMA_CPP_HEX 0xef, 0x00, 0x12, 0x06, 0xda, 0xdc, 0x5f, 0x6d, 0xa1, 0x5f, 0x33, 0x59, 0xe5, 0x77, 0xd4, 0xe5
#define HASH_TYPE_SHA256_STR "sha256"
#define HASH_TYPE_SHA1_STR "sha1"
#define HASH_TYPE_XXH64_STR "xxh64"
#define HASH_TYPE_UUID_STR "uuid"
typedef enum {
HASH_EXIT_SUCCESS = 0, // All hash has been generated or validated
HASH_EXIT_FAILURE = 1, // Generic Failure
HASH_EXIT_MISMATCH = 2, // Hash mismatched during validation
HASH_EXIT_MANIFEST_MISSING_ENTRY = 3, // Hash attempted validation but missing entry in manifest
HASH_EXIT_MANIFEST_UNKNOWN_HASH = 4, // Manifest is present, but we do not know any hash format within it
HASH_EXIT_MANIFEST_FILE_ERROR = 5 // Manifest is either missing or not a known format
} hash_exit_code_t;
typedef enum {
HASH_MANIFEST_NOT_FOUND,
HASH_MANIFEST_MISMATCH,
HASH_MANIFEST_OK,
} hash_manifest_result_t;
struct hash_params {
std::string input;
bool xxh64 = false;
bool sha1 = false;
bool sha256 = false;
bool uuid = false;
bool no_layer = false;
bool manifest_is_usable = false;
std::string manifest_file;
};
struct manifest_check_params {
bool xxh64 = false;
bool sha1 = false;
bool sha256 = false;
bool uuid = false;
};
static char const * hash_manifest_result_to_str(hash_manifest_result_t value) {
switch (value) {
case HASH_MANIFEST_NOT_FOUND: return "Not Found";
case HASH_MANIFEST_MISMATCH: return "Mismatch";
case HASH_MANIFEST_OK: return "Ok";
}
return "?";
}
static char const * hash_exit_code_to_str(hash_exit_code_t value) {
switch (value) {
case HASH_EXIT_SUCCESS: return "Success";
case HASH_EXIT_FAILURE: return "Failure";
case HASH_EXIT_MISMATCH: return "Mismatch";
case HASH_EXIT_MANIFEST_MISSING_ENTRY: return "Manifest Missing Entry";
case HASH_EXIT_MANIFEST_UNKNOWN_HASH: return "Manifest Unknown Hash";
case HASH_EXIT_MANIFEST_FILE_ERROR: return "Manifest File Error";
}
return "?";
}
static void hash_print_usage(const char * executable) {
const hash_params default_params;
printf("\n");
printf("usage: %s [options] GGUF_IN\n", executable);
printf("\n");
printf("Hash a GGUF file");
printf("\n");
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" --xxh64 use xxh64 hash\n");
printf(" --sha1 use sha1 hash\n");
printf(" --sha256 use sha256 hash\n");
printf(" --all use all hash\n");
printf(" --no-layer exclude per layer hash\n");
printf(" --uuid generate UUIDv5 ID\n");
printf(" -c, --check <manifest> verify against a manifest\n");
printf("\n");
}
static void hash_params_parse_ex(int argc, const char ** argv, hash_params & params) {
std::string arg;
bool invalid_param = false;
const std::string arg_prefix = "--";
int arg_idx = 1;
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
arg = argv[arg_idx];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
bool arg_found = false;
if (arg == "-h" || arg == "--help") {
hash_print_usage(argv[0]);
exit(0);
}
if (arg == "--xxh64") {
arg_found = true;
params.xxh64 = true;
}
if (arg == "--sha1") {
arg_found = true;
params.sha1 = true;
}
if (arg == "--uuid") {
arg_found = true;
params.uuid = true;
}
if (arg == "--sha256") {
arg_found = true;
params.sha256 = true;
}
if (arg == "--all") {
arg_found = true;
params.sha256 = true;
params.sha1 = true;
params.xxh64 = true;
}
if (arg == "--no-layer") {
arg_found = true;
params.no_layer = true;
}
if (arg == "-c" || arg == "--check") {
if (++arg_idx >= argc) {
invalid_param = true;
break;
}
arg_found = true;
params.manifest_file = argv[arg_idx];
}
if (!arg_found) {
throw std::invalid_argument("error: unknown argument: " + arg);
}
}
if (invalid_param) {
throw std::invalid_argument("error: invalid parameter for argument:" + arg);
}
if (argc - arg_idx < 1) {
throw std::invalid_argument("error: bad arguments");
}
params.input = argv[arg_idx++];
}
static bool hash_params_parse(int argc, const char ** argv, hash_params & params) {
bool result = true;
try {
hash_params_parse_ex(argc, argv, params);
}
catch (const std::invalid_argument & ex) {
fprintf(stderr, "%s\n", ex.what());
hash_print_usage(argv[0]);
exit(EXIT_FAILURE);
}
return result;
}
static bool manifest_type(const std::string & manifest_file, manifest_check_params & manifest_check) {
if (manifest_file.empty()) {
return false;
}
std::ifstream file(manifest_file);
if (!file.is_open()) {
return false;
}
std::string manifest_entry_line;
while (getline(file, manifest_entry_line)) {
// hash_type_str hash_str tensor_name
// e.g. 'xxh64 f66e9cd66a4396a0 test.gguf:tensor_0'
std::istringstream line_stream(manifest_entry_line);
std::string file_hash_type;
if (line_stream >> file_hash_type) {
if (file_hash_type == HASH_TYPE_SHA256_STR) {
manifest_check.sha256 = true;
} else if (file_hash_type == HASH_TYPE_SHA1_STR) {
manifest_check.sha1 = true;
} else if (file_hash_type == HASH_TYPE_XXH64_STR) {
manifest_check.xxh64 = true;
} else if (file_hash_type == HASH_TYPE_UUID_STR) {
manifest_check.uuid = true;
}
}
}
return true;
}
static hash_manifest_result_t manifest_verify(const std::string& manifest_file, const std::string& hash_type_str, const std::string& hash_str, const std::string& tensor_name) {
if (manifest_file.empty()) {
return HASH_MANIFEST_NOT_FOUND;
}
std::ifstream file(manifest_file);
if (!file.is_open()) {
return HASH_MANIFEST_NOT_FOUND;
}
std::string manifest_entry_line;
while (getline(file, manifest_entry_line)) {
std::istringstream line_stream(manifest_entry_line);
std::string file_hash_type;
std::string file_hash;
std::string file_tensor_name;
if (line_stream >> file_hash_type >> file_hash >> file_tensor_name) {
// Line parsed. Check hash validity
if (file_hash_type != hash_type_str) {
continue;
}
if (file_tensor_name != tensor_name) {
continue;
}
return (file_hash == hash_str) ? HASH_MANIFEST_OK : HASH_MANIFEST_MISMATCH;
}
}
return HASH_MANIFEST_NOT_FOUND;
}
static void generate_uuidv5(const unsigned char sha1_digest[20], unsigned char uuid[16]) {
// Ref: https://www.rfc-editor.org/rfc/rfc9562.html#section-5.5
// Assumes that digest was processed correctly with the expected namespace
for (int i = 0; i < 16; i++) {
uuid[i] = sha1_digest[i];
}
// Set bits corresponding to UUID ver 5
uuid[ 6] &= ~(0xF << 4);
uuid[ 6] |= (5 << 4);
// Set bits corresponding to UUID variant 0b10XX
uuid[ 8] &= ~(0xc << 4);
uuid[ 8] |= (0x8 << 4);
}
static hash_exit_code_t gguf_hash(const hash_params & hash_params) {
const std::string & fname = hash_params.input;
struct ggml_context * ctx_data = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ false,
/*.ctx = */ &ctx_data,
};
// xxh64 init
XXH64_state_t* xxh64_model_hash_state = NULL;
if (hash_params.xxh64) {
xxh64_model_hash_state = XXH64_createState();
if (xxh64_model_hash_state==NULL) {
abort();
}
XXH64_hash_t const seed = 0;
if (XXH64_reset(xxh64_model_hash_state, seed) == XXH_ERROR) {
abort();
}
}
// sha1 init
SHA1_CTX sha1_model_hash_ctx;
if (hash_params.sha1) {
SHA1Init(&sha1_model_hash_ctx);
}
// sha256 init
sha256_t sha256_model_hash_ctx;
if (hash_params.sha256) {
sha256_init(&sha256_model_hash_ctx);
}
// sha1 for uuid init
SHA1_CTX sha1_for_uuid_ctx;
if (hash_params.uuid) {
unsigned char const uuidv5_namespace[] = {UUID_NAMESPACE_LLAMA_CPP_HEX};
SHA1Init(&sha1_for_uuid_ctx);
SHA1Update( &sha1_for_uuid_ctx, (unsigned char const *)uuidv5_namespace, sizeof(uuidv5_namespace));
}
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
const int n_tensors = gguf_get_n_tensors(ctx);
bool tensor_layer_in_manifest = false;
bool model_in_manifest = false;
bool tensor_layer_has_mismatch = false;
bool model_has_mismatch = false;
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
auto n_bytes = ggml_nbytes(cur);
auto *raw_data = cur->data;
const std::string tensor_layer_name = fname + ":" + name;
if (hash_params.xxh64) {
if (!hash_params.no_layer) {
// Per Layer Hash
XXH64_hash_t hash = XXH64(raw_data, n_bytes, 0);
char hex_result[17];
for (int offset = 0; offset < 8; offset++) {
unsigned int shift_bits_by = (8 * (8 - offset - 1));
snprintf( ( hex_result + (2*offset)), sizeof(hex_result) - (2*offset), "%02x", (unsigned char) (hash >> shift_bits_by)&0xff);
}
if (hash_params.manifest_is_usable) {
hash_manifest_result_t verify_result = manifest_verify(hash_params.manifest_file, HASH_TYPE_XXH64_STR, hex_result, tensor_layer_name);
switch (verify_result) {
case HASH_MANIFEST_NOT_FOUND:
break;
case HASH_MANIFEST_MISMATCH:
tensor_layer_in_manifest = true;
tensor_layer_has_mismatch = true;
break;
case HASH_MANIFEST_OK:
tensor_layer_in_manifest = true;
break;
}
printf("%-8s %-s %s - %s\n", HASH_TYPE_XXH64_STR, hex_result, tensor_layer_name.c_str(), hash_manifest_result_to_str(verify_result));
} else {
printf("%-8s %-s %s\n", HASH_TYPE_XXH64_STR, hex_result, tensor_layer_name.c_str());
}
}
// Overall Model Hash
if (XXH64_update(xxh64_model_hash_state, raw_data, n_bytes) == XXH_ERROR) abort();
}
if (hash_params.sha1) {
if (!hash_params.no_layer) {
// Per Layer Hash
char result[21]; // sha1 outputs 20 bytes
SHA1( result, (const char *)raw_data, n_bytes);
char hex_result[41] = {0};
for (int offset = 0; offset < 20; offset++) {
snprintf( ( hex_result + (2*offset)), sizeof(hex_result) - (2*offset), "%02x", result[offset]&0xff);
}
if (hash_params.manifest_is_usable) {
hash_manifest_result_t verify_result = manifest_verify(hash_params.manifest_file, HASH_TYPE_SHA1_STR, hex_result, tensor_layer_name);
switch (verify_result) {
case HASH_MANIFEST_NOT_FOUND:
break;
case HASH_MANIFEST_MISMATCH:
tensor_layer_in_manifest = true;
tensor_layer_has_mismatch = true;
break;
case HASH_MANIFEST_OK:
tensor_layer_in_manifest = true;
break;
}
printf("%-8s %-s %s - %s\n", HASH_TYPE_SHA1_STR, hex_result, tensor_layer_name.c_str(), hash_manifest_result_to_str(verify_result));
} else {
printf("%-8s %-s %s\n", HASH_TYPE_SHA1_STR, hex_result, tensor_layer_name.c_str());
}
}
// Overall Model Hash
SHA1Update( &sha1_model_hash_ctx, (unsigned char const *)raw_data, n_bytes);
}
if (hash_params.sha256) {
if (!hash_params.no_layer) {
// Per Layer Hash
unsigned char result[SHA256_DIGEST_SIZE]; // sha256 outputs 32 bytes
sha256_hash((unsigned char*) result, (const unsigned char *)raw_data, n_bytes);
char hex_result[SHA256_DIGEST_SIZE * 2 + 1] = {0};
for (int offset = 0; offset < SHA256_DIGEST_SIZE; offset++) {
snprintf( ( hex_result + (2*offset)), sizeof(hex_result) - (2*offset), "%02x", result[offset]&0xff);
}
if (hash_params.manifest_is_usable) {
hash_manifest_result_t verify_result = manifest_verify(hash_params.manifest_file, HASH_TYPE_SHA256_STR, hex_result, tensor_layer_name);
switch (verify_result) {
case HASH_MANIFEST_NOT_FOUND:
break;
case HASH_MANIFEST_MISMATCH:
tensor_layer_in_manifest = true;
tensor_layer_has_mismatch = true;
break;
case HASH_MANIFEST_OK:
tensor_layer_in_manifest = true;
break;
}
printf("%-8s %-s %s - %s\n", HASH_TYPE_SHA256_STR, hex_result, tensor_layer_name.c_str(), hash_manifest_result_to_str(verify_result));
} else {
printf("%-8s %-s %s\n", HASH_TYPE_SHA256_STR, hex_result, tensor_layer_name.c_str());
}
}
// Overall Model Hash
sha256_update( &sha256_model_hash_ctx, (unsigned char const *)raw_data, n_bytes);
}
if (hash_params.uuid) {
SHA1Update( &sha1_for_uuid_ctx, (unsigned char const *)raw_data, n_bytes);
}
}
if (hash_params.xxh64) {
XXH64_hash_t const hash = XXH64_digest(xxh64_model_hash_state);
char hex_result[17];
for (int offset = 0; offset < 8; offset++) {
unsigned int shift_bits_by = (8 * (8 - offset - 1));
snprintf( ( hex_result + (2*offset)), sizeof(hex_result) - (2*offset), "%02x", (unsigned char) (hash >> shift_bits_by)&0xff);
}
if (hash_params.manifest_is_usable) {
hash_manifest_result_t verify_result = manifest_verify(hash_params.manifest_file, HASH_TYPE_XXH64_STR, hex_result, fname);
switch (verify_result) {
case HASH_MANIFEST_NOT_FOUND:
break;
case HASH_MANIFEST_MISMATCH:
model_in_manifest = true;
model_has_mismatch = true;
break;
case HASH_MANIFEST_OK:
model_in_manifest = true;
break;
}
printf("%-8s %-s %s - %s\n", HASH_TYPE_XXH64_STR, hex_result, fname.c_str(), hash_manifest_result_to_str(verify_result));
} else {
printf("%-8s %-s %s\n", HASH_TYPE_XXH64_STR, hex_result, fname.c_str());
}
}
if (hash_params.sha1) {
unsigned char result[21];
SHA1Final(result, &sha1_model_hash_ctx);
char hex_result[41];
for (int offset = 0; offset < 20; offset++) {
snprintf( ( hex_result + (2*offset)), sizeof(hex_result) - (2*offset), "%02x", result[offset]&0xff);
}
if (hash_params.manifest_is_usable) {
hash_manifest_result_t verify_result = manifest_verify(hash_params.manifest_file, HASH_TYPE_SHA1_STR, hex_result, fname);
switch (verify_result) {
case HASH_MANIFEST_NOT_FOUND:
break;
case HASH_MANIFEST_MISMATCH:
model_in_manifest = true;
model_has_mismatch = true;
break;
case HASH_MANIFEST_OK:
model_in_manifest = true;
break;
}
printf("%-8s %-s %s - %s\n", HASH_TYPE_SHA1_STR, hex_result, fname.c_str(), hash_manifest_result_to_str(verify_result));
} else {
printf("%-8s %-s %s\n", HASH_TYPE_SHA1_STR, hex_result, fname.c_str());
}
}
if (hash_params.sha256) {
unsigned char result[SHA256_DIGEST_SIZE]; // sha256 outputs 32 bytes
sha256_final( &sha256_model_hash_ctx, result);
char hex_result[SHA256_DIGEST_SIZE * 2 + 1] = {0};
for (int offset = 0; offset < SHA256_DIGEST_SIZE; offset++) {
snprintf( ( hex_result + (2*offset)), sizeof(hex_result) - (2*offset), "%02x", result[offset]&0xff);
}
if (hash_params.manifest_is_usable) {
hash_manifest_result_t verify_result = manifest_verify(hash_params.manifest_file, HASH_TYPE_SHA256_STR, hex_result, fname);
switch (verify_result) {
case HASH_MANIFEST_NOT_FOUND:
break;
case HASH_MANIFEST_MISMATCH:
model_in_manifest = true;
model_has_mismatch = true;
break;
case HASH_MANIFEST_OK:
model_in_manifest = true;
break;
}
printf("%-8s %-s %s - %s\n", HASH_TYPE_SHA256_STR, hex_result, fname.c_str(), hash_manifest_result_to_str(verify_result));
} else {
printf("%-8s %-s %s\n", HASH_TYPE_SHA256_STR, hex_result, fname.c_str());
}
}
if (hash_params.uuid) {
unsigned char result[21];
SHA1Final(result, &sha1_for_uuid_ctx);
unsigned char uuid[16];
generate_uuidv5(result, uuid);
char string_buffer[37] = {0};
snprintf(string_buffer, sizeof(string_buffer), "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
uuid[0], uuid[1], uuid[2], uuid[3],
uuid[4], uuid[5], uuid[6], uuid[7],
uuid[8], uuid[9], uuid[10], uuid[11],
uuid[12], uuid[13], uuid[14], uuid[15]);
if (hash_params.manifest_is_usable) {
hash_manifest_result_t verify_result = manifest_verify(hash_params.manifest_file, HASH_TYPE_SHA256_STR, string_buffer, fname);
switch (verify_result) {
case HASH_MANIFEST_NOT_FOUND:
break;
case HASH_MANIFEST_MISMATCH:
model_in_manifest = true;
model_has_mismatch = true;
break;
case HASH_MANIFEST_OK:
model_in_manifest = true;
break;
}
printf("%-8s %-s %s - %s\n", HASH_TYPE_UUID_STR, string_buffer, fname.c_str(), hash_manifest_result_to_str(verify_result));
} else {
printf("%-8s %-s %s\n", HASH_TYPE_UUID_STR, string_buffer, fname.c_str());
}
}
ggml_free(ctx_data);
gguf_free(ctx);
if (hash_params.manifest_is_usable) {
// In hash verification mode
if (!model_in_manifest) {
// model missing in manifest?
// Check tensor layer...
if (!tensor_layer_in_manifest) {
// Still missing? Maybe we are reading the wrong manifest.
return HASH_EXIT_MANIFEST_MISSING_ENTRY;
}
if (tensor_layer_has_mismatch) {
// Per tensor check found error
return HASH_EXIT_FAILURE;
}
// All per tensor layer checks passed? Sounds good enough.
return HASH_EXIT_SUCCESS;
}
// Overall model check passed, but let's check per layer just in case
// If missing, we don't care too much as the overall model checked
if (tensor_layer_in_manifest && tensor_layer_has_mismatch) {
return HASH_EXIT_FAILURE;
}
if (model_has_mismatch) {
// model has failed hash somewhere in the model
return HASH_EXIT_FAILURE;
}
// All checks appears to be fine
return HASH_EXIT_SUCCESS;
}
// In hash generation mode
return HASH_EXIT_SUCCESS;
}
int main(int argc, const char ** argv) {
hash_params params;
manifest_check_params manifest_check;
hash_params_parse(argc, argv, params);
if (!params.manifest_file.empty()) {
if (!manifest_type(params.manifest_file, manifest_check)) {
printf("ERROR cannot open manifest %s", params.manifest_file.c_str());
return HASH_EXIT_MANIFEST_FILE_ERROR;
}
if (!manifest_check.sha256 && !manifest_check.sha1 && !manifest_check.xxh64 && !manifest_check.uuid) {
printf("ERROR manifest does not have any known hash format in %s", params.manifest_file.c_str());
return HASH_EXIT_MANIFEST_UNKNOWN_HASH;
}
printf("manifest %s", params.manifest_file.c_str());
if (manifest_check.sha256) {
printf(" sha256");
}
if (manifest_check.sha1) {
printf(" sha1");
}
if (manifest_check.xxh64) {
printf(" xxh64");
}
if (manifest_check.uuid) {
printf(" uuid");
}
printf("\n");
// Autoselect the highest security hash if manifest is provided but
// the user has not specifically defined the hash they care about
if (!params.xxh64 && !params.sha1 && !params.uuid && !params.sha256) {
// User has not selected a specific value, pick most secure hash
if (manifest_check.sha256) {
params.sha256 = true;
} else if (manifest_check.sha1) {
params.sha1 = true;
} else if (manifest_check.xxh64) {
params.xxh64 = true;
} else if (manifest_check.uuid) {
params.uuid = true;
}
}
params.manifest_is_usable = true;
}
// By default if no swich argument provided, assume xxh64
if (!params.xxh64 && !params.sha1 && !params.uuid && !params.sha256) {
params.xxh64 = true;
}
hash_exit_code_t exit_code = gguf_hash(params);
if (params.manifest_is_usable) {
printf("\nVerification results for %s - %s\n", params.manifest_file.c_str(), hash_exit_code_to_str(exit_code));
}
return exit_code;
}
set(TARGET llama-gguf-split)
add_executable(${TARGET} gguf-split.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
## GGUF split Example
CLI to split / merge GGUF files.
**Command line options:**
- `--split`: split GGUF to multiple GGUF, default operation.
- `--split-max-size`: max size per split in `M` or `G`, f.ex. `500M` or `2G`.
- `--split-max-tensors`: maximum tensors in each split: default(128)
- `--merge`: merge multiple GGUF to a single GGUF.
#include "llama.h"
#include "common.h"
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <fstream>
#include <string>
#include <vector>
#include <stdio.h>
#include <string.h>
#include <climits>
#include <stdexcept>
#if defined(_WIN32)
#include <windows.h>
#ifndef PATH_MAX
#define PATH_MAX MAX_PATH
#endif
#include <io.h>
#endif
enum split_operation : uint8_t {
SPLIT_OP_SPLIT,
SPLIT_OP_MERGE,
};
struct split_params {
split_operation operation = SPLIT_OP_SPLIT;
size_t n_bytes_split = 0;
int n_split_tensors = 128;
std::string input;
std::string output;
bool no_tensor_first_split = false;
bool dry_run = false;
};
static void split_print_usage(const char * executable) {
const split_params default_params;
printf("\n");
printf("usage: %s [options] GGUF_IN GGUF_OUT\n", executable);
printf("\n");
printf("Apply a GGUF operation on IN to OUT.");
printf("\n");
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" --version show version and build info\n");
printf(" --split split GGUF to multiple GGUF (enabled by default)\n");
printf(" --merge merge multiple GGUF to a single GGUF\n");
printf(" --split-max-tensors max tensors in each split (default: %d)\n", default_params.n_split_tensors);
printf(" --split-max-size N(M|G) max size per split\n");
printf(" --no-tensor-first-split do not add tensors to the first split (disabled by default)\n");
printf(" --dry-run only print out a split plan and exit, without writing any new files\n");
printf("\n");
}
// return convert string, for example "128M" or "4G" to number of bytes
static size_t split_str_to_n_bytes(std::string str) {
size_t n_bytes = 0;
int n;
if (str.back() == 'M') {
sscanf(str.c_str(), "%d", &n);
n_bytes = (size_t)n * 1000 * 1000; // megabytes
} else if (str.back() == 'G') {
sscanf(str.c_str(), "%d", &n);
n_bytes = (size_t)n * 1000 * 1000 * 1000; // gigabytes
} else {
throw std::invalid_argument("error: supported units are M (megabytes) or G (gigabytes), but got: " + std::string(1, str.back()));
}
if (n <= 0) {
throw std::invalid_argument("error: size must be a positive value");
}
return n_bytes;
}
static void split_params_parse_ex(int argc, const char ** argv, split_params & params) {
std::string arg;
const std::string arg_prefix = "--";
bool invalid_param = false;
int arg_idx = 1;
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
arg = argv[arg_idx];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
bool arg_found = false;
bool is_op_set = false;
bool is_mode_set = false;
if (arg == "-h" || arg == "--help") {
split_print_usage(argv[0]);
exit(0);
}
if (arg == "--version") {
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
exit(0);
}
if (arg == "--dry-run") {
arg_found = true;
params.dry_run = true;
}
if (arg == "--no-tensor-first-split") {
arg_found = true;
params.no_tensor_first_split = true;
}
if (is_op_set) {
throw std::invalid_argument("error: either --split or --merge can be specified, but not both");
}
if (arg == "--merge") {
arg_found = true;
is_op_set = true;
params.operation = SPLIT_OP_MERGE;
}
if (arg == "--split") {
arg_found = true;
is_op_set = true;
params.operation = SPLIT_OP_SPLIT;
}
if (is_mode_set) {
throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both");
}
if (arg == "--split-max-tensors") {
if (++arg_idx >= argc) {
invalid_param = true;
break;
}
arg_found = true;
is_mode_set = true;
params.n_split_tensors = atoi(argv[arg_idx]);
}
if (arg == "--split-max-size") {
if (++arg_idx >= argc) {
invalid_param = true;
break;
}
arg_found = true;
is_mode_set = true;
params.n_bytes_split = split_str_to_n_bytes(argv[arg_idx]);
}
if (!arg_found) {
throw std::invalid_argument("error: unknown argument: " + arg);
}
}
if (invalid_param) {
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
}
if (argc - arg_idx < 2) {
throw std::invalid_argument("error: bad arguments");
}
params.input = argv[arg_idx++];
params.output = argv[arg_idx++];
}
static bool split_params_parse(int argc, const char ** argv, split_params & params) {
bool result = true;
try {
split_params_parse_ex(argc, argv, params);
}
catch (const std::invalid_argument & ex) {
fprintf(stderr, "%s\n", ex.what());
split_print_usage(argv[0]);
exit(EXIT_FAILURE);
}
return result;
}
static void zeros(std::ofstream & file, size_t n) {
char zero = 0;
for (size_t i = 0; i < n; ++i) {
file.write(&zero, 1);
}
}
struct split_strategy {
const split_params params;
std::ifstream & f_input;
struct gguf_context * ctx_gguf;
struct ggml_context * ctx_meta = NULL;
const int n_tensors;
// one ctx_out per one output file
std::vector<struct gguf_context *> ctx_outs;
// temporary buffer for reading in tensor data
std::vector<uint8_t> read_buf;
split_strategy(const split_params & params,
std::ifstream & f_input,
struct gguf_context * ctx_gguf,
struct ggml_context * ctx_meta) :
params(params),
f_input(f_input),
ctx_gguf(ctx_gguf),
ctx_meta(ctx_meta),
n_tensors(gguf_get_n_tensors(ctx_gguf)) {
// because we need to know list of tensors for each file in advance, we will build all the ctx_out for all output splits
int i_split = -1;
struct gguf_context * ctx_out = NULL;
auto new_ctx_out = [&](bool allow_no_tensors) {
i_split++;
if (ctx_out != NULL) {
if (gguf_get_n_tensors(ctx_out) == 0 && !allow_no_tensors) {
fprintf(stderr, "error: one of splits have 0 tensors. Maybe size or tensors limit is too small\n");
exit(EXIT_FAILURE);
}
ctx_outs.push_back(ctx_out);
}
ctx_out = gguf_init_empty();
// Save all metadata in first split only
if (i_split == 0) {
gguf_set_kv(ctx_out, ctx_gguf);
}
gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_NO, i_split);
gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_COUNT, 0); // placeholder
gguf_set_val_i32(ctx_out, LLM_KV_SPLIT_TENSORS_COUNT, n_tensors);
};
// initialize ctx_out for the first split
new_ctx_out(false);
// skip first split if no_tensor_first_split is set
if (params.no_tensor_first_split) {
new_ctx_out(true);
}
// process tensors one by one
size_t curr_tensors_size = 0; // current size by counting only tensors size (without metadata)
for (int i = 0; i < n_tensors; ++i) {
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
// calculate the "imaginary" size = the current size + next tensor size
size_t n_bytes = GGML_PAD(ggml_nbytes(t), GGUF_DEFAULT_ALIGNMENT);
size_t next_tensors_size = curr_tensors_size + n_bytes;
if (should_split(i, next_tensors_size)) {
new_ctx_out(false);
curr_tensors_size = n_bytes;
} else {
curr_tensors_size = next_tensors_size;
}
gguf_add_tensor(ctx_out, t);
}
// push the last ctx_out
ctx_outs.push_back(ctx_out);
// set the correct n_split for all ctx_out
for (auto & ctx : ctx_outs) {
gguf_set_val_u16(ctx, LLM_KV_SPLIT_COUNT, ctx_outs.size());
}
}
~split_strategy() {
for (auto & ctx_out : ctx_outs) {
gguf_free(ctx_out);
}
}
bool should_split(int i_tensor, size_t next_size) {
if (params.n_bytes_split > 0) {
// split by max size per file
return next_size > params.n_bytes_split;
} else {
// split by number of tensors per file
return i_tensor > 0 && i_tensor < n_tensors && i_tensor % params.n_split_tensors == 0;
}
}
void print_info() {
printf("n_split: %ld\n", ctx_outs.size());
int i_split = 0;
for (auto & ctx_out : ctx_outs) {
// re-calculate the real gguf size for each split (= metadata size + total size of all tensors)
size_t total_size = gguf_get_meta_size(ctx_out);
for (int i = 0; i < gguf_get_n_tensors(ctx_out); ++i) {
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_out, i));
total_size += ggml_nbytes(t);
}
total_size = total_size / 1000 / 1000; // convert to megabytes
printf("split %05d: n_tensors = %d, total_size = %ldM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
i_split++;
}
}
void write() {
int i_split = 0;
int n_split = ctx_outs.size();
for (auto & ctx_out : ctx_outs) {
// construct file path
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), params.output.c_str(), i_split, n_split);
// open the output file
printf("Writing file %s ... ", split_path);
fflush(stdout);
std::ofstream fout = std::ofstream(split_path, std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
// write metadata
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
gguf_get_meta_data(ctx_out, data.data());
fout.write((const char *)data.data(), data.size());
// write tensors
for (int i = 0; i < gguf_get_n_tensors(ctx_out); ++i) {
// read tensor meta and prepare buffer
const char * t_name = gguf_get_tensor_name(ctx_out, i);
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
auto n_bytes = ggml_nbytes(t);
read_buf.resize(n_bytes);
// calculate offset
auto i_tensor_in = gguf_find_tensor(ctx_gguf, t_name); // idx of tensor in the input file
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in);
// copy tensor from input to output file
copy_file_to_file(f_input, fout, offset, n_bytes);
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
}
printf("done\n");
// close the file
fout.close();
i_split++;
}
}
void copy_file_to_file(std::ifstream & f_in, std::ofstream & f_out, const size_t in_offset, const size_t len) {
// TODO: detect OS and use copy_file_range() here for better performance
if (read_buf.size() < len) {
read_buf.resize(len);
}
f_in.seekg(in_offset);
f_in.read((char *)read_buf.data(), len);
f_out.write((const char *)read_buf.data(), len);
}
};
static void gguf_split(const split_params & split_params) {
struct ggml_context * ctx_meta = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx_meta,
};
std::ifstream f_input(split_params.input.c_str(), std::ios::binary);
if (!f_input.is_open()) {
fprintf(stderr, "%s: failed to open input GGUF from %s\n", __func__, split_params.input.c_str());
exit(EXIT_FAILURE);
}
auto * ctx_gguf = gguf_init_from_file(split_params.input.c_str(), params);
if (!ctx_gguf) {
fprintf(stderr, "%s: failed to load input GGUF from %s\n", __func__, split_params.input.c_str());
exit(EXIT_FAILURE);
}
// prepare the strategy
split_strategy strategy(split_params, f_input, ctx_gguf, ctx_meta);
int n_split = strategy.ctx_outs.size();
strategy.print_info();
if (!split_params.dry_run) {
// write all output splits
strategy.write();
}
// done, clean up
gguf_free(ctx_gguf);
f_input.close();
fprintf(stderr, "%s: %d gguf split written with a total of %d tensors.\n",
__func__, n_split, strategy.n_tensors);
}
static void gguf_merge(const split_params & split_params) {
fprintf(stderr, "%s: %s -> %s\n",
__func__, split_params.input.c_str(),
split_params.output.c_str());
int n_split = 1;
int total_tensors = 0;
auto * ctx_out = gguf_init_empty();
std::ofstream fout(split_params.output.c_str(), std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
std::vector<uint8_t> read_data;
std::vector<ggml_context *> ctx_metas;
std::vector<gguf_context *> ctx_ggufs;
char split_path[PATH_MAX] = {0};
strncpy(split_path, split_params.input.c_str(), sizeof(split_path) - 1);
char split_prefix[PATH_MAX] = {0};
// First pass to find KV and tensors metadata
for (int i_split = 0; i_split < n_split; i_split++) {
struct ggml_context * ctx_meta = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx_meta,
};
if (i_split > 0) {
llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split);
}
fprintf(stderr, "%s: reading metadata %s ...", __func__, split_path);
auto * ctx_gguf = gguf_init_from_file(split_path, params);
if (!ctx_gguf) {
fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, split_params.input.c_str());
exit(EXIT_FAILURE);
}
ctx_ggufs.push_back(ctx_gguf);
ctx_metas.push_back(ctx_meta);
if (i_split == 0) {
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
if (key_n_split < 0) {
fprintf(stderr,
"\n%s: input file does not contain %s metadata\n",
__func__,
LLM_KV_SPLIT_COUNT);
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
if (n_split < 1) {
fprintf(stderr,
"\n%s: input file does not contain a valid split count %d\n",
__func__,
n_split);
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
// Verify the file naming and extract split_prefix
if (!llama_split_prefix(split_prefix, sizeof (split_prefix), split_path, i_split, n_split)) {
fprintf(stderr, "\n%s: unexpected input file name: %s"
" i_split=%d"
" n_split=%d\n", __func__,
split_path, i_split, n_split);
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
// Do not trigger merge if we try to merge again the output
gguf_set_val_u16(ctx_gguf, LLM_KV_SPLIT_COUNT, 0);
// Set metadata from the first split
gguf_set_kv(ctx_out, ctx_gguf);
}
auto n_tensors = gguf_get_n_tensors(ctx_gguf);
for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) {
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
gguf_add_tensor(ctx_out, t);
}
total_tensors += n_tensors;
fprintf(stderr, "\033[3Ddone\n");
}
// placeholder for the meta data
{
auto meta_size = gguf_get_meta_size(ctx_out);
::zeros(fout, meta_size);
}
// Write tensors data
for (int i_split = 0; i_split < n_split; i_split++) {
llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split);
std::ifstream f_input(split_path, std::ios::binary);
if (!f_input.is_open()) {
fprintf(stderr, "%s: failed to open input GGUF from %s\n", __func__, split_path);
for (uint32_t i = 0; i < ctx_ggufs.size(); i++) {
gguf_free(ctx_ggufs[i]);
ggml_free(ctx_metas[i]);
}
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path);
auto * ctx_gguf = ctx_ggufs[i_split];
auto * ctx_meta = ctx_metas[i_split];
auto n_tensors = gguf_get_n_tensors(ctx_gguf);
for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) {
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
auto n_bytes = ggml_nbytes(t);
if (read_data.size() < n_bytes) {
read_data.resize(n_bytes);
}
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
f_input.seekg(offset);
f_input.read((char *)read_data.data(), n_bytes);
// write tensor data + padding
fout.write((const char *)read_data.data(), n_bytes);
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
}
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
f_input.close();
fprintf(stderr, "\033[3Ddone\n");
}
{
// go back to beginning of file and write the updated metadata
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
gguf_get_meta_data(ctx_out, data.data());
fout.write((const char *)data.data(), data.size());
fout.close();
gguf_free(ctx_out);
}
fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n",
__func__, split_params.output.c_str(), n_split, total_tensors);
}
int main(int argc, const char ** argv) {
split_params params;
split_params_parse(argc, argv, params);
switch (params.operation) {
case SPLIT_OP_SPLIT: gguf_split(params);
break;
case SPLIT_OP_MERGE: gguf_merge(params);
break;
default: split_print_usage(argv[0]);
exit(EXIT_FAILURE);
}
return 0;
}
#!/bin/bash
set -eu
if [ $# -lt 1 ]
then
echo "usage: $0 path_to_build_binary [path_to_temp_folder]"
echo "example: $0 ../../build/bin ../../tmp"
exit 1
fi
if [ $# -gt 1 ]
then
TMP_DIR=$2
else
TMP_DIR=/tmp
fi
set -x
SPLIT=$1/llama-gguf-split
MAIN=$1/llama-cli
WORK_PATH=$TMP_DIR/gguf-split
ROOT_DIR=$(realpath $(dirname $0)/../../)
mkdir -p "$WORK_PATH"
# Clean up in case of previously failed test
rm -f $WORK_PATH/ggml-model-split*.gguf $WORK_PATH/ggml-model-merge*.gguf
# 1. Get a model
(
cd $WORK_PATH
"$ROOT_DIR"/scripts/hf.sh --repo ggml-org/gemma-1.1-2b-it-Q8_0-GGUF --file gemma-1.1-2b-it.Q8_0.gguf
)
echo PASS
# 2. Split with max tensors strategy
$SPLIT --split-max-tensors 28 $WORK_PATH/gemma-1.1-2b-it.Q8_0.gguf $WORK_PATH/ggml-model-split
echo PASS
echo
# 2b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --n-predict 32
echo PASS
echo
# 3. Merge
$SPLIT --merge $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-merge.gguf
echo PASS
echo
# 3b. Test the merged model is loading properly
$MAIN --model $WORK_PATH/ggml-model-merge.gguf --n-predict 32
echo PASS
echo
# 4. Split with no tensors in the first split
$SPLIT --split-max-tensors 32 --no-tensor-first-split $WORK_PATH/ggml-model-merge.gguf $WORK_PATH/ggml-model-split-32-tensors
echo PASS
echo
# 4b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --n-predict 32
echo PASS
echo
# 5. Merge
#$SPLIT --merge $WORK_PATH/ggml-model-split-32-tensors-00001-of-00006.gguf $WORK_PATH/ggml-model-merge-2.gguf
#echo PASS
#echo
# 5b. Test the merged model is loading properly
#$MAIN --model $WORK_PATH/ggml-model-merge-2.gguf --n-predict 32
#echo PASS
#echo
# 6. Split with size strategy
$SPLIT --split-max-size 2G $WORK_PATH/ggml-model-merge.gguf $WORK_PATH/ggml-model-split-2G
echo PASS
echo
# 6b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --n-predict 32
echo PASS
echo
# Clean up
rm -f $WORK_PATH/ggml-model-split*.gguf $WORK_PATH/ggml-model-merge*.gguf
set(TARGET llama-gguf)
add_executable(${TARGET} gguf.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE ggml ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
#include "ggml.h"
#include <cstdio>
#include <cinttypes>
#include <string>
#include <sstream>
#include <fstream>
#include <vector>
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
template <typename T>
static std::string to_string(const T & val) {
std::stringstream ss;
ss << val;
return ss.str();
}
static bool gguf_ex_write(const std::string & fname) {
struct gguf_context * ctx = gguf_init_empty();
gguf_set_val_u8 (ctx, "some.parameter.uint8", 0x12);
gguf_set_val_i8 (ctx, "some.parameter.int8", -0x13);
gguf_set_val_u16 (ctx, "some.parameter.uint16", 0x1234);
gguf_set_val_i16 (ctx, "some.parameter.int16", -0x1235);
gguf_set_val_u32 (ctx, "some.parameter.uint32", 0x12345678);
gguf_set_val_i32 (ctx, "some.parameter.int32", -0x12345679);
gguf_set_val_f32 (ctx, "some.parameter.float32", 0.123456789f);
gguf_set_val_u64 (ctx, "some.parameter.uint64", 0x123456789abcdef0ull);
gguf_set_val_i64 (ctx, "some.parameter.int64", -0x123456789abcdef1ll);
gguf_set_val_f64 (ctx, "some.parameter.float64", 0.1234567890123456789);
gguf_set_val_bool(ctx, "some.parameter.bool", true);
gguf_set_val_str (ctx, "some.parameter.string", "hello world");
gguf_set_arr_data(ctx, "some.parameter.arr.i16", GGUF_TYPE_INT16, std::vector<int16_t>{ 1, 2, 3, 4, }.data(), 4);
gguf_set_arr_data(ctx, "some.parameter.arr.f32", GGUF_TYPE_FLOAT32, std::vector<float>{ 3.145f, 2.718f, 1.414f, }.data(), 3);
gguf_set_arr_str (ctx, "some.parameter.arr.str", std::vector<const char *>{ "hello", "world", "!" }.data(), 3);
struct ggml_init_params params = {
/*.mem_size =*/ 128ull*1024ull*1024ull,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx_data = ggml_init(params);
const int n_tensors = 10;
// tensor infos
for (int i = 0; i < n_tensors; ++i) {
const std::string name = "tensor_" + to_string(i);
int64_t ne[GGML_MAX_DIMS] = { 1 };
int32_t n_dims = rand() % GGML_MAX_DIMS + 1;
for (int j = 0; j < n_dims; ++j) {
ne[j] = rand() % 10 + 1;
}
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, GGML_TYPE_F32, n_dims, ne);
ggml_set_name(cur, name.c_str());
{
float * data = (float *) cur->data;
for (int j = 0; j < ggml_nelements(cur); ++j) {
data[j] = 100 + i;
}
}
gguf_add_tensor(ctx, cur);
}
gguf_write_to_file(ctx, fname.c_str(), false);
printf("%s: wrote file '%s;\n", __func__, fname.c_str());
ggml_free(ctx_data);
gguf_free(ctx);
return true;
}
// just read tensor info
static bool gguf_ex_read_0(const std::string & fname) {
struct gguf_init_params params = {
/*.no_alloc = */ false,
/*.ctx = */ NULL,
};
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
if (!ctx) {
fprintf(stderr, "%s: failed to load '%s'\n", __func__, fname.c_str());
return false;
}
printf("%s: version: %d\n", __func__, gguf_get_version(ctx));
printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
printf("%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
// kv
{
const int n_kv = gguf_get_n_kv(ctx);
printf("%s: n_kv: %d\n", __func__, n_kv);
for (int i = 0; i < n_kv; ++i) {
const char * key = gguf_get_key(ctx, i);
printf("%s: kv[%d]: key = %s\n", __func__, i, key);
}
}
// find kv string
{
const char * findkey = "some.parameter.string";
const int keyidx = gguf_find_key(ctx, findkey);
if (keyidx == -1) {
printf("%s: find key: %s not found.\n", __func__, findkey);
} else {
const char * key_value = gguf_get_val_str(ctx, keyidx);
printf("%s: find key: %s found, kv[%d] value = %s\n", __func__, findkey, keyidx, key_value);
}
}
// tensor info
{
const int n_tensors = gguf_get_n_tensors(ctx);
printf("%s: n_tensors: %d\n", __func__, n_tensors);
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name (ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
printf("%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
}
}
gguf_free(ctx);
return true;
}
// read and create ggml_context containing the tensors and their data
static bool gguf_ex_read_1(const std::string & fname, bool check_data) {
struct ggml_context * ctx_data = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ false,
/*.ctx = */ &ctx_data,
};
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
printf("%s: version: %d\n", __func__, gguf_get_version(ctx));
printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
printf("%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
// kv
{
const int n_kv = gguf_get_n_kv(ctx);
printf("%s: n_kv: %d\n", __func__, n_kv);
for (int i = 0; i < n_kv; ++i) {
const char * key = gguf_get_key(ctx, i);
printf("%s: kv[%d]: key = %s\n", __func__, i, key);
}
}
// tensor info
{
const int n_tensors = gguf_get_n_tensors(ctx);
printf("%s: n_tensors: %d\n", __func__, n_tensors);
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name (ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
printf("%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
}
}
// data
{
const int n_tensors = gguf_get_n_tensors(ctx);
for (int i = 0; i < n_tensors; ++i) {
printf("%s: reading tensor %d data\n", __func__, i);
const char * name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
printf("%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, ggml_n_dims(cur), cur->name, cur->data);
// print first 10 elements
const float * data = (const float *) cur->data;
printf("%s data[:10] : ", name);
for (int j = 0; j < MIN(10, ggml_nelements(cur)); ++j) {
printf("%f ", data[j]);
}
printf("\n\n");
// check data
if (check_data) {
const float * data = (const float *) cur->data;
for (int j = 0; j < ggml_nelements(cur); ++j) {
if (data[j] != 100 + i) {
fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]);
gguf_free(ctx);
return false;
}
}
}
}
}
printf("%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data));
ggml_free(ctx_data);
gguf_free(ctx);
return true;
}
int main(int argc, char ** argv) {
if (argc < 3) {
printf("usage: %s data.gguf r|w [n]\n", argv[0]);
printf("r: read data.gguf file\n");
printf("w: write data.gguf file\n");
printf("n: no check of tensor data\n");
return -1;
}
bool check_data = true;
if (argc == 4) {
check_data = false;
}
const std::string fname(argv[1]);
const std::string mode (argv[2]);
GGML_ASSERT((mode == "r" || mode == "w") && "mode must be r or w");
if (mode == "w") {
GGML_ASSERT(gguf_ex_write(fname) && "failed to write gguf file");
} else if (mode == "r") {
GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file");
GGML_ASSERT(gguf_ex_read_1(fname, check_data) && "failed to read gguf file");
}
return 0;
}
set(TARGET llama-gritlm)
add_executable(${TARGET} gritlm.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
## Generative Representational Instruction Tuning (GRIT) Example
[gritlm] a model which can generate embeddings as well as "normal" text
generation depending on the instructions in the prompt.
* Paper: https://arxiv.org/pdf/2402.09906.pdf
### Retrieval-Augmented Generation (RAG) use case
One use case for `gritlm` is to use it with RAG. If we recall how RAG works is
that we take documents that we want to use as context, to ground the large
language model (LLM), and we create token embeddings for them. We then store
these token embeddings in a vector database.
When we perform a query, prompt the LLM, we will first create token embeddings
for the query and then search the vector database to retrieve the most
similar vectors, and return those documents so they can be passed to the LLM as
context. Then the query and the context will be passed to the LLM which will
have to _again_ create token embeddings for the query. But because gritlm is used
the first query can be cached and the second query tokenization generation does
not have to be performed at all.
### Running the example
Download a Grit model:
```console
$ scripts/hf.sh --repo cohesionet/GritLM-7B_gguf --file gritlm-7b_q4_1.gguf --outdir models
```
Run the example using the downloaded model:
```console
$ ./llama-gritlm -m models/gritlm-7b_q4_1.gguf
Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "A purely peer-to-peer version of electronic cash w" is: 0.605
Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "All text-based language problems can be reduced to" is: 0.103
Cosine similarity between "Generative Representational Instruction Tuning" and "A purely peer-to-peer version of electronic cash w" is: 0.112
Cosine similarity between "Generative Representational Instruction Tuning" and "All text-based language problems can be reduced to" is: 0.547
Oh, brave adventurer, who dared to climb
The lofty peak of Mt. Fuji in the night,
When shadows lurk and ghosts do roam,
And darkness reigns, a fearsome sight.
Thou didst set out, with heart aglow,
To conquer this mountain, so high,
And reach the summit, where the stars do glow,
And the moon shines bright, up in the sky.
Through the mist and fog, thou didst press on,
With steadfast courage, and a steadfast will,
Through the darkness, thou didst not be gone,
But didst climb on, with a steadfast skill.
At last, thou didst reach the summit's crest,
And gazed upon the world below,
And saw the beauty of the night's best,
And felt the peace, that only nature knows.
Oh, brave adventurer, who dared to climb
The lofty peak of Mt. Fuji in the night,
Thou art a hero, in the eyes of all,
For thou didst conquer this mountain, so bright.
```
[gritlm]: https://github.com/ContextualAI/gritlm
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment