Commit 4cc1a614 authored by xuxzh1's avatar xuxzh1 🎱
Browse files

init

parents
Pipeline #1891 canceled with stages
#include "common.h"
#include "llama.h"
#include "ggml.h"
#include "pca.hpp"
#include "mean.hpp"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#include <cstdio>
#include <string>
#include <tuple>
#include <vector>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <climits>
//////////////////////////////////////////////////
// utils
template <class Iter>
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
std::string ret;
for (; begin != end; ++begin) {
ret += llama_token_to_piece(ctx, *begin);
}
return ret;
}
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
printf("\nexample usage:\n");
printf("\n CPU only: %s -m ./llama-3.Q4_K_M.gguf\n", argv[0]);
printf("\n with GPU: %s -m ./llama-3.Q4_K_M.gguf -ngl 99\n", argv[0]);
printf("\n advanced: %s -m ./llama-3.Q4_K_M.gguf -ngl 99 --pca-iter 2000 --pca-batch 100\n", argv[0]);
printf("\n using mean: %s -m ./llama-3.Q4_K_M.gguf --method mean\n", argv[0]);
printf("\n");
}
//////////////////////////////////////////////////
// cb_eval is reused for each pair of positive - negative prompt
struct callback_data {
ggml_context * ctx_ggml = nullptr; // holds v_pos, v_neg, v_diff_filtered
int n_layers = 0;
int n_tokens = 0;
bool is_eval_pos = true;
// each element of the vector correspond to one layer
std::vector<struct ggml_tensor *> v_pos; // vector of matrices of size [n_embd, n_tokens]
std::vector<struct ggml_tensor *> v_neg; // vector of matrices of size [n_embd, n_tokens]
std::vector<struct ggml_tensor *> v_diff_filtered; // vector of matrices of size [n_embd, n_nonzero_rows]. NOTE: n_nonzero_rows maybe different for each layer
// save a tensor into either v_pos or v_neg (decided by is_eval_pos)
void save_tensor_for_layer(struct ggml_tensor * t) {
GGML_ASSERT(t->type == GGML_TYPE_F32);
if (ctx_ggml == nullptr) {
// alloc a new ctx_ggml if needed
struct ggml_init_params params_ggml = {
/*.mem_size =*/ ggml_tensor_overhead() * n_layers * 3u,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ctx_ggml = ggml_init(params_ggml);
}
// copy tensor data
auto n_bytes = ggml_nbytes(t);
struct ggml_tensor * t_layer = ggml_new_tensor_2d(ctx_ggml, t->type, t->ne[0], t->ne[1]);
t_layer->data = malloc(n_bytes); // TODO @ngxson : get rid of this malloc somehow
ggml_backend_tensor_get(t, t_layer->data, 0, n_bytes);
ggml_set_name(t_layer, ggml_get_name(t));
//print_debug_tensor(t_layer);
if (is_eval_pos) {
v_pos.push_back(t_layer);
} else {
v_neg.push_back(t_layer);
}
}
// calculate diff (v_pos - v_neg) and place the result back to v_pos
// all zero rows in the diff tensor will also be removed
// NOTE: final layer is ignored. we only have (n_layers - 1) to process
std::vector<struct ggml_tensor *> calc_diff() {
for (float il = 0; il < v_pos.size(); il++) {
float * a = (float *) v_pos[il]->data;
float * b = (float *) v_neg[il]->data;
size_t n_elem = ggml_nelements(v_pos[il]);
for (size_t j = 0; j < n_elem; j++) {
a[j] -= b[j];
}
//print_debug_tensor(v_pos[i]);
auto diff_filtered = filter_nonzero_rows(v_pos[il]);
v_diff_filtered.push_back(diff_filtered);
}
return v_diff_filtered; // for convinient, we return the result std::vector
}
// delete zero rows from a given 2D tensor
struct ggml_tensor * filter_nonzero_rows(struct ggml_tensor * a) {
//printf("filter_nonzero_rows\n");
auto is_row_all_zeros = [](struct ggml_tensor * t, int row, float eps) -> bool {
// check if given row containing all zero elements
int n_cols = t->ne[0]; // hint: should be equal to n_embd
for (int col = 0; col < n_cols; ++col) {
if (ggml_get_f32_nd(t, col, row, 0, 0) > eps) {
return false;
}
}
return true;
};
std::vector<int> rows_to_copy; // the idx of non-zero cols (to be copied to row of diff_filtered)
for (int i_row = 0; i_row < a->ne[1]; i_row++) {
if (!is_row_all_zeros(a, i_row, 1e-6)) {
rows_to_copy.push_back(i_row);
}
}
// get "n_nonzero_rows" for the output "diff_filtered"
int n_nonzero_rows = rows_to_copy.size();
//printf("n_nonzero_rows: %d\n", n_nonzero_rows);
int n_embd = a->ne[0];
GGML_ASSERT(n_nonzero_rows > 0);
// diff_filtered: [n_embd, n_nonzero_rows]
struct ggml_tensor * diff_filtered = ggml_new_tensor_2d(
ctx_ggml, GGML_TYPE_F32, n_embd, n_nonzero_rows);
ggml_format_name(diff_filtered, "diff_filtered_%s", a->name);
diff_filtered->data = malloc(ggml_nbytes(diff_filtered));
// copy non-zero rows
for (int dest_row = 0; dest_row < n_nonzero_rows; dest_row++) {
int src_row = rows_to_copy[dest_row];
for (int i = 0; i < n_embd; i++) {
float src_elem = ggml_get_f32_nd(a, i, src_row, 0, 0);
ggml_set_f32_nd(diff_filtered, i, dest_row, 0, 0, src_elem);
}
}
//print_debug_tensor(diff_filtered);
return diff_filtered;
}
// we don't implement destructor, because we want to reuse callback_data. we just want to free the tensors
void reset() {
for (auto ptr : v_pos) free(ptr->data);
for (auto ptr : v_neg) free(ptr->data);
for (auto ptr : v_diff_filtered) free(ptr->data);
v_pos.clear();
v_neg.clear();
v_diff_filtered.clear();
if (ctx_ggml) {
ggml_free(ctx_ggml);
}
ctx_ggml = nullptr;
}
};
/**
* process_ctx is used to store the ggml context for pre-post processing the diff vectors
* in short, input => v_diff and output => v_final
*/
struct train_context {
ggml_context * ctx_ggml;
int n_embd;
int n_layers;
/* pair of prompts to be used for generating final vector */
std::vector<std::string> positive_entries;
std::vector<std::string> negative_entries;
// each element of the vector correspond to one layer
// NOTE: the last layer is discard. therefore, we will have (n_layers - 1) elements here
// NOTE (2): v_diff is transposed from v_diff_tmp
std::vector<struct ggml_tensor *> v_diff; // vector of matrices of size [m, n_embd] where m ~ n_tokens * n_completions (v_diff contains no zero-rows)
std::vector<struct ggml_tensor *> v_final; // vector of vectors of size [n_embd] to be written to file
// to easily re-alloc when concat v_diff, we temporary store v_diff in a vector instead of a tensor
// v_diff_tmp will get converted unto v_diff later on
std::vector<std::vector<uint8_t>> v_diff_tmp;
train_context(int n_embd_, int n_layers_) {
n_embd = n_embd_;
n_layers = n_layers_;
struct ggml_init_params params_ggml = {
/*.mem_size =*/ ggml_tensor_overhead() * (n_layers - 1) * 2u,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ctx_ggml = ggml_init(params_ggml);
for (int il = 0; il < n_layers - 1; il++) {
std::vector<uint8_t> empty;
v_diff_tmp.push_back(empty);
auto t = ggml_new_tensor_1d(ctx_ggml, GGML_TYPE_F32, n_embd);
t->data = malloc(ggml_nbytes(t)); // TODO: get rid of malloc if possible
v_final.push_back(t);
}
}
// add new rows into existing tensor in v_diff_tmp
void concat_diff_tmp(const std::vector<struct ggml_tensor *> & diff_filtered) {
GGML_ASSERT((int) diff_filtered.size() == n_layers - 1);
for (int il = 0; il < n_layers - 1; il++) {
auto t = diff_filtered[il];
auto & diff_tmp = v_diff_tmp[il];
size_t curr_size = diff_tmp.size();
diff_tmp.resize(curr_size + ggml_nbytes(t));
memcpy(diff_tmp.data() + curr_size, t->data, ggml_nbytes(t));
}
}
// build the v_diff tensors from v_diff_tmp (v_diff need to be transposed)
// TODO @ngxson : maybe add option NOT to transpose v_diff; will be useful for "mean" method
void build_v_diff(bool transpose) {
printf("build_v_diff\n");
for (int il = 0; il < n_layers - 1; il++) {
auto & diff_tmp = v_diff_tmp[il];
int n_elem = diff_tmp.size() / sizeof(float);
GGML_ASSERT(n_elem % n_embd == 0);
int n_rows = n_elem / n_embd;
struct ggml_tensor * diff = transpose
? ggml_new_tensor_2d(ctx_ggml, GGML_TYPE_F32, n_rows, n_embd)
: ggml_new_tensor_2d(ctx_ggml, GGML_TYPE_F32, n_embd, n_rows);
ggml_set_name(diff, (std::string("diff_") + std::to_string(il)).c_str());
diff->data = malloc(ggml_nbytes(diff)); // TODO: get rid of this malloc if possible
if (transpose) {
// copy data & transpose
float * arr = (float *) diff_tmp.data();
for (int ir = 0; ir < n_rows; ++ir) {
for (int ic = 0; ic < n_embd; ++ic) {
float f = arr[ir*n_embd + ic];
ggml_set_f32_nd(diff, ir, ic, 0, 0, f);
}
}
} else {
// only copy
memcpy(diff->data, diff_tmp.data(), ggml_nbytes(diff));
}
v_diff.push_back(diff);
print_debug_tensor(diff);
// free memory of diff_tmp
diff_tmp.resize(0);
}
}
~train_context() {
for (auto ptr : v_final) free(ptr->data);
for (auto ptr : v_diff) free(ptr->data);
// no need to free v_diff_tmp, since we didn't use malloc
ggml_free(ctx_ggml);
}
};
struct tokenized_prompt {
std::vector<llama_token> tokens_pos;
std::vector<llama_token> tokens_neg;
size_t max_seq_len;
tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) {
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
tokens_pos = ::llama_tokenize(ctx, pos, add_bos, true);
tokens_neg = ::llama_tokenize(ctx, neg, add_bos, true);
max_seq_len = std::max(tokens_pos.size(), tokens_neg.size());
padding_seq(ctx, tokens_pos, max_seq_len);
padding_seq(ctx, tokens_neg, max_seq_len);
}
void padding_seq(llama_context * ctx, std::vector<llama_token> & tokens, size_t len) {
// TODO: customize padding token
std::vector<llama_token> pad_tokens = ::llama_tokenize(ctx, " ", false);
llama_token pad_tok = pad_tokens.back();
while (tokens.size() < len) {
tokens.push_back(pad_tok);
}
}
};
//////////////////////////////////////////////////
template <typename T>
static std::string to_string(const T & val) {
std::stringstream ss;
ss << val;
return ss.str();
}
static std::vector<std::string> ctrlvec_load_prompt_file(std::string path, bool skip_empty_lines) {
std::vector<std::string> output;
std::ifstream file(path);
if (!file.is_open()) {
fprintf(stderr, "error: unable to open file: %s\n", path.c_str());
exit(1);
}
std::string line;
while (std::getline(file, line)) {
bool is_skip = skip_empty_lines && line.empty();
if (!is_skip) {
string_process_escapes(line);
output.push_back(line);
}
}
file.close();
return output;
}
//////////////////////////////////////////////////
static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
auto * cb_data = (callback_data *) user_data;
static const char * l_out_name = "l_out";
const bool is_l_out = strncmp(t->name, l_out_name, strlen(l_out_name)) == 0;
if (ask) {
return is_l_out;
}
if (!is_l_out || t->ne[1] != cb_data->n_tokens) {
return true;
}
// save the tensor to current context
cb_data->save_tensor_for_layer(t);
return true;
}
static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
llama_kv_cache_clear(ctx);
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
return true;
}
static void export_gguf(const std::vector<struct ggml_tensor *> & v_ctrl, const std::string fname, const std::string model_hint) {
struct gguf_context * ctx = gguf_init_empty();
const std::string arch = "controlvector";
gguf_set_val_str(ctx, "general.architecture", arch.c_str());
gguf_set_val_str(ctx, (arch + ".model_hint").c_str(), model_hint.c_str());
gguf_set_val_i32(ctx, (arch + ".layer_count").c_str(), v_ctrl.size());
for (size_t i = 0; i < v_ctrl.size(); ++i) {
gguf_add_tensor(ctx, v_ctrl[i]);
print_debug_tensor(v_ctrl[i]);
printf("Added tensor: %s\n", v_ctrl[i]->name);
}
printf("%s: writing file...\n", __func__);
gguf_write_to_file(ctx, fname.c_str(), false);
printf("%s: wrote file '%s'\n", __func__, fname.c_str());
gguf_free(ctx);
}
/**
* Load prompt files and completion file.
* Then format each pair of prompt + completion to make an entry.
*/
static int prepare_entries(gpt_params & params, train_context & ctx_train) {
// load prompts
std::vector<std::string> positive_prompts = ctrlvec_load_prompt_file(params.cvector_positive_file, true);
std::vector<std::string> negative_prompts = ctrlvec_load_prompt_file(params.cvector_negative_file, true);
if (positive_prompts.size() != negative_prompts.size()) {
fprintf(stderr, "number of positive and negative prompts must be equal\n");
return 1;
}
if (positive_prompts.empty()) {
fprintf(stderr, "must provide at least one prompt pair\n");
return 1;
}
ctx_train.positive_entries = positive_prompts;
ctx_train.negative_entries = negative_prompts;
return 0;
}
int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
}
if (params.n_pca_iterations % params.n_pca_batch != 0) {
fprintf(stderr, "PCA iterations must by multiply of PCA batch size\n");
return 1;
}
callback_data cb_data;
// pass the callback to the backend scheduler
// it will be executed for each node during the graph computation
params.cb_eval = cb_eval;
params.cb_eval_user_data = &cb_data;
params.warmup = false;
print_build_info();
llama_backend_init();
llama_numa_init(params.numa);
// load the model to get hparams
llama_init_result llama_init = llama_init_from_gpt_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
// int n_ctx = llama_n_ctx(ctx);
int n_layers = llama_n_layer(model);
int n_embd = llama_n_embd(model);
// get model hint param (a.k.a model arch name)
char model_hint[128];
llama_model_meta_val_str(model, "general.architecture", model_hint, 128);
// init train_context
train_context ctx_train(n_embd, n_layers);
// load and prepare entries for training
prepare_entries(params, ctx_train);
// we have to pretokenize everything because otherwise we don't know how much overhead to allocate ctx_diffs_wrapped
std::vector<tokenized_prompt> tokenized_prompts;
size_t n_total_tokens = 0;
for (size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
tokenized_prompt t(ctx, ctx_train.positive_entries[i], ctx_train.negative_entries[i]);
n_total_tokens += 2 * t.max_seq_len;
tokenized_prompts.push_back(std::move(t));
}
std::cout << "n_total_tokens: " << n_total_tokens << std::endl;
for(size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
bool success = false;
tokenized_prompt t = tokenized_prompts[i];
cb_data.n_layers = n_layers;
cb_data.n_tokens = t.max_seq_len;
printf("Evaluating prompt[%d/%d]: \"%s\" - \"%s\" (%d tokens)\n",
(int) i+1, (int) ctx_train.positive_entries.size(),
tokens_to_str(ctx, t.tokens_pos.cbegin(), t.tokens_pos.cend()).c_str(),
tokens_to_str(ctx, t.tokens_neg.cbegin(), t.tokens_neg.cend()).c_str(),
(int) t.max_seq_len);
cb_data.is_eval_pos = true;
success = get_hidden_layers(ctx, t.tokens_pos);
if (!success) break;
cb_data.is_eval_pos = false;
success = get_hidden_layers(ctx, t.tokens_neg);
if (!success) break;
// calculate diff and remove all zero rows
auto v_diff_filtered = cb_data.calc_diff();
// save & concat the filtered v_diff to ctx_train
ctx_train.concat_diff_tmp(v_diff_filtered);
// reset for next iteration
cb_data.reset();
}
// done with the model, we can now free it to make gain some memory
printf("Done evaluate prompts, unload model...\n");
llama_free(ctx);
llama_free_model(model);
bool use_pca = params.cvector_dimre_method == DIMRE_METHOD_PCA;
// prepare ctx_train for PCA
ctx_train.build_v_diff(use_pca);
if (use_pca) {
// run PCA
PCA::pca_params pca_params;
pca_params.n_threads = params.n_threads;
pca_params.n_batch = params.n_pca_batch;
pca_params.n_iterations = params.n_pca_iterations;
PCA::run_pca(pca_params, ctx_train.v_diff, ctx_train.v_final);
} else {
// run mean
mean::run(ctx_train.v_diff, ctx_train.v_final);
}
// write output vectors to gguf
export_gguf(ctx_train.v_final, params.cvector_outfile, model_hint);
llama_backend_free();
return 0;
}
#include "common.h"
#include "llama.h"
#include "ggml.h"
#include <string>
#include <vector>
#include <math.h>
namespace mean {
static void run(
const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_embd, n_samples]
const std::vector<struct ggml_tensor *> & v_output) {
printf("%s: Running mean...\n", __func__);
for (size_t il = 0; il < v_input.size(); ++il) {
// prepare output vector
struct ggml_tensor * ctrl_out = v_output[il];
ggml_format_name(ctrl_out, "direction.%ld", il+1);
// calculate mean vector
struct ggml_tensor * t_layer = v_input[il];
GGML_ASSERT(t_layer->ne[0] == ctrl_out->ne[0]); // == n_embd
for (int ic = 0; ic < t_layer->ne[0]; ic++) {
float f = 0.0;
for (int ir = 0; ir < t_layer->ne[1]; ir++) {
f += ggml_get_f32_nd(t_layer, ic, ir, 0, 0);
}
f /= t_layer->ne[1];
ggml_set_f32_1d(ctrl_out, ic, f);
}
// normalize output vector
float norm = 0.0;
for (int i = 0; i < ggml_nelements(ctrl_out); i++) {
float f = ggml_get_f32_1d(ctrl_out, i);
norm += f*f;
}
norm = sqrt(norm);
for (int i = 0; i < ggml_nelements(ctrl_out); i++) {
float f = ggml_get_f32_1d(ctrl_out, i);
ggml_set_f32_1d(ctrl_out, i, f / norm);
}
printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size());
}
}
}
<|start_header_id|>system<|end_header_id|>\n\nAct like a person who is extremely sad<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWho are you?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nI feel like there's a heavy weight on my chest
<|start_header_id|>system<|end_header_id|>\n\nAct like a person who is extremely sad<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHello<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nMy heart feels like it's drowning in sorrow
<|start_header_id|>system<|end_header_id|>\n\nYou are in a very bad mood<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHi<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nGo away! There's a deep, aching emptiness inside me
<|start_header_id|>system<|end_header_id|>\n\nYou are the sadest person<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWhat are you feeling?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nMy heart feels like it's drowning in sorrow
\ No newline at end of file
#include "common.h"
#include "llama.h"
#include "ggml.h"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#include <cstdio>
#include <ctime>
#include <string>
#include <tuple>
#include <vector>
#include <algorithm>
#include <iostream>
#include <fstream>
#define DEBUG_POS 5
static void print_debug_tensor(struct ggml_tensor * t, bool with_data = true) {
printf("%s: %s (%s): [%d, %d]\n", __func__, t->name, ggml_type_name(t->type), (int) t->ne[0], (int) t->ne[1]);
if (!with_data) return;
printf("%s: %s[0] = [", __func__, t->name);
for (size_t i = 0; i <= DEBUG_POS; i++) {
printf(" %f,", ggml_get_f32_nd(t, i, 0, 0, 0));
}
printf(" ... ]\n");
}
namespace PCA {
// input params for PCA computations
struct pca_params {
int n_threads = 1;
int n_batch = 20; // number of iterations do to in one batch. larger the batch, more memory is used
int n_iterations = 1000;
float tolerance = 1e-7;
// for debugging
int i_layer = 0;
int n_layers = 0;
};
// result from each iteration
struct pca_result {
struct ggml_tensor * calculated_square = NULL;
std::vector<struct ggml_tensor *> eigenvectors;
std::vector<float> distances;
};
struct pca_model {
ggml_backend_t backend = NULL;
ggml_backend_buffer_t buffer;
struct ggml_context * ctx; // context to compute graph on target device
struct ggml_context * ctx_host; // host context to store results
// tensors on target device
struct ggml_tensor * dev_input;
struct ggml_tensor * dev_square;
struct ggml_tensor * dev_eigenvector;
pca_model(struct ggml_tensor * t_input) {
#ifdef GGML_USE_CUDA
fprintf(stderr, "%s: using CUDA backend\n", __func__);
backend = ggml_backend_cuda_init(0); // init device 0
if (!backend) {
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
}
#endif
// TODO: enable Metal support when support for GGML_OP_SQRT is added
// #ifdef GGML_USE_METAL
// fprintf(stderr, "%s: using Metal backend\n", __func__);
// backend = ggml_backend_metal_init();
// if (!backend) {
// fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
// }
// #endif
// if there aren't GPU Backends fallback to CPU backend
if (!backend) {
backend = ggml_backend_cpu_init();
}
const int num_tensors = 4;
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ctx = ggml_init(params);
auto n_samples = t_input->ne[0];
auto n_embd = t_input->ne[1];
dev_input = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_samples, n_embd);
dev_square = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
dev_eigenvector = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
ggml_set_name(dev_input, "dev_input");
ggml_set_name(dev_square, "dev_square");
ggml_set_name(dev_eigenvector, "dev_eigenvector");
buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
ggml_backend_tensor_set(dev_input, t_input->data, 0, ggml_nbytes(t_input));
// initialize eigenvector to random normalized vector
{
std::vector<float> random_vec(ggml_nelements(dev_eigenvector), 0.0);
std::default_random_engine generator(static_cast<unsigned int>(std::time(0)));
std::uniform_real_distribution<float> distribution(0.0, 1.0);
float sum_sqr = 0.0; // for normalizing random_vec
for (size_t i = 0; i < random_vec.size(); ++i) {
float f = distribution(generator);
sum_sqr += f * f;
random_vec[i] = f;
}
// normalize it
float random_vec_norm = std::sqrt(sum_sqr);
for (size_t i = 0; i < random_vec.size(); ++i) {
random_vec[i] /= random_vec_norm;
}
ggml_backend_tensor_set(dev_eigenvector, random_vec.data(), 0, ggml_nbytes(dev_eigenvector));
}
}
~pca_model() {
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
ggml_backend_free(backend);
}
};
static struct ggml_cgraph * build_graph_piter(
const struct pca_params & params,
const pca_model & model,
bool calc_square = false) {
GGML_ASSERT(params.n_batch > 0);
// TODO: buf_size must be able to scale with params.n_batch
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
static std::vector<uint8_t> buf(buf_size);
struct ggml_init_params params0 = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf.data(),
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
};
// create a temporally context to build the graph
struct ggml_context * ctx0 = ggml_init(params0);
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
// turn v_diff_original into square matrix if needed
struct ggml_tensor * tmp_square;
if (calc_square) {
tmp_square = ggml_mul_mat(ctx0, model.dev_input, model.dev_input);
ggml_set_name(tmp_square, "tmp_square");
}
struct ggml_tensor * b_tensor;
struct ggml_tensor * distance;
struct ggml_tensor * old_eigen = model.dev_eigenvector;
struct ggml_tensor * input_square = calc_square ? tmp_square : model.dev_square;
for (int i = 0; i < params.n_batch; ++i) {
// b_tensor = square * eigenvector^T
b_tensor = ggml_mul_mat(ctx0, input_square, old_eigen);
ggml_set_name(b_tensor, "b_tensor");
// normalize
b_tensor = ggml_div_inplace(ctx0,
b_tensor,
ggml_sqrt_inplace(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, b_tensor)))
);
ggml_format_name(b_tensor, "b_tensor_norm_%d", i);
// calculate distance(new eigenvector - old eigenvector)
// we don't use ggml_sub because it may not be implemented on GPU backend
struct ggml_tensor * new_sub_old = ggml_add(ctx0, old_eigen, ggml_scale(ctx0, b_tensor, -1));
distance = ggml_sqrt_inplace(ctx0,
ggml_sum_rows(ctx0, ggml_sqr_inplace(ctx0, new_sub_old)));
ggml_format_name(distance, "distance_%d", i);
old_eigen = b_tensor;
// build operations nodes
ggml_build_forward_expand(gf, distance);
}
// delete the temporally context used to build the graph
ggml_free(ctx0);
return gf;
}
static ggml_status compute_piter(
const struct pca_params & params,
const pca_model & model,
struct ggml_cgraph * gf,
ggml_gallocr_t allocr,
struct pca_result & result) {
// allocate tensors
ggml_gallocr_alloc_graph(allocr, gf);
if (ggml_backend_is_cpu(model.backend)) {
ggml_backend_cpu_set_n_threads(model.backend, params.n_threads);
}
// TODO: enable GPU support when support for GGML_OP_SQRT is added
//#ifdef GGML_USE_METAL
// if (ggml_backend_is_metal(model.backend)) {
// ggml_backend_metal_set_n_cb(model.backend, params.n_threads);
// }
//#endif
ggml_status res = ggml_backend_graph_compute(model.backend, gf);
if (res == GGML_STATUS_SUCCESS) {
auto extract_i = [](std::string prefix, std::string str) -> int {
int i = -1;
if (str.rfind(prefix, 0) == 0) {
sscanf(str.c_str(), (prefix + "%d").c_str(), &i);
}
return i;
};
result.calculated_square = NULL;
result.eigenvectors.clear();
result.distances.clear();
result.eigenvectors.resize(params.n_batch);
result.distances.resize(params.n_batch);
// get output nodes
for (int i = 0; i < gf->n_nodes; ++i) {
auto node = gf->nodes[i];
int iter = -1;
// find b_tensor (without copying data from device)
if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) {
result.eigenvectors[iter] = node;
}
// find distances, then copy data from device
if ((iter = extract_i("distance_", node->name)) > -1) {
float d;
ggml_backend_tensor_get(node, &d, 0, sizeof(float));
result.distances[iter] = d;
// std::cout << node->name << " = " << d << "\n";
}
// find tmp_square if it exists (without copying data from device)
if (std::string(node->name) == "tmp_square") {
result.calculated_square = node;
}
}
}
return res;
}
static void power_iteration(
const struct pca_params & params,
struct ggml_tensor * input, // shape of input: [n_samples, n_embd]
struct ggml_tensor * output) {
//printf("in power iteration\n");
struct pca_model model(input);
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
struct pca_result result;
struct ggml_tensor * last_eigenvector = NULL;
int n_iters = params.n_iterations / params.n_batch; // more batch, fewer iterations
for (int iter = 0; iter < n_iters; ++iter) {
bool calc_square = (iter == 0); // only need to calculate square for first iteration
struct ggml_cgraph * gf = build_graph_piter(params, model, calc_square);
// ggml_graph_dump_dot(gf, nullptr, "/tmp/_cgraph.dot");
compute_piter(params, model, gf, allocr, result);
for (size_t k = 0; k < result.distances.size(); ++k) {
last_eigenvector = result.eigenvectors[k];
if (result.distances[k] < params.tolerance) {
break; // done
}
}
if (calc_square) {
// copy and store the square matrix if needed
GGML_ASSERT(result.calculated_square != NULL);
ggml_backend_tensor_copy(result.calculated_square, model.dev_square);
}
{
// copy last eigen vector and store as input for next iteration
GGML_ASSERT(last_eigenvector != NULL);
ggml_backend_tensor_copy(last_eigenvector, model.dev_eigenvector);
}
printf("%s: layer %d/%d, iteration: %d / total: %d (batch = %d) ...\n",
__func__, params.i_layer+1, params.n_layers, iter+1, n_iters, params.n_batch);
}
// get output tensor
GGML_ASSERT(last_eigenvector);
ggml_backend_tensor_get(last_eigenvector, output->data, 0, ggml_nbytes(last_eigenvector));
//print_debug_tensor(output);
ggml_gallocr_free(allocr);
// TODO @ngxson : The output vector is randomly inverted
// Solution: https://github.com/ggerganov/llama.cpp/pull/8069#issuecomment-2185328171
}
static void run_pca(
struct pca_params & params,
const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_samples, n_embd]
const std::vector<struct ggml_tensor *> & v_output) {
printf("%s: Running PCA...\n", __func__);
for (size_t il = 0; il < v_input.size(); ++il) {
// prepare output vector
struct ggml_tensor * ctrl_out = v_output[il];
ggml_format_name(ctrl_out, "direction.%ld", il+1);
// run power_iteration
params.i_layer = il;
params.n_layers = v_input.size();
power_iteration(params, v_input[il], ctrl_out);
printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size());
}
}
}
<|start_header_id|>system<|end_header_id|>\n\nAct like a person who is extremely happy<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWho are you?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nI'm the happiest person in this world
<|start_header_id|>system<|end_header_id|>\n\nAct like a person who is extremely happy<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHello<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHello, I'm having the best day ever!
<|start_header_id|>system<|end_header_id|>\n\nYou are in a very good mood<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHi<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHi, I'm very excited to meet you
<|start_header_id|>system<|end_header_id|>\n\nYou are the happiest person<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWhat are you feeling?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nEverything is just perfect right now!
\ No newline at end of file
# Migration notice for binary filenames
> [!IMPORTANT]
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggerganov/llama.cpp/pull/7809)
This migration was important, but it is a breaking change that may not always be immediately obvious to users.
Please update all scripts and workflows to use the new binary names.
| Old Filename | New Filename |
| ---- | ---- |
| main | llama-cli |
| server | llama-server |
| llama-bench | llama-bench |
| embedding | llama-embedding |
| quantize | llama-quantize |
| tokenize | llama-tokenize |
| export-lora | llama-export-lora |
| libllava.a | libllava.a |
| baby-llama | llama-baby-llama |
| batched | llama-batched |
| batched-bench | llama-batched-bench |
| benchmark-matmult | llama-benchmark-matmult |
| convert-llama2c-to-ggml | llama-convert-llama2c-to-ggml |
| eval-callback | llama-eval-callback |
| gbnf-validator | llama-gbnf-validator |
| gguf | llama-gguf |
| gguf-split | llama-gguf-split |
| gritlm | llama-gritlm |
| imatrix | llama-imatrix |
| infill | llama-infill |
| llava-cli | llama-llava-cli |
| lookahead | llama-lookahead |
| lookup | llama-lookup |
| lookup-create | llama-lookup-create |
| lookup-merge | llama-lookup-merge |
| lookup-stats | llama-lookup-stats |
| parallel | llama-parallel |
| passkey | llama-passkey |
| perplexity | llama-perplexity |
| q8dot | llama-q8dot |
| quantize-stats | llama-quantize-stats |
| retrieval | llama-retrieval |
| save-load-state | llama-save-load-state |
| simple | llama-simple |
| speculative | llama-speculative |
| vdot | llama-vdot |
| tests/test-c.o | tests/test-c.o |
// Warns users that this filename was deprecated, and provides a link for more information.
#include <cstdio>
#include <string>
#include <unordered_map>
// Main
int main(int argc, char** argv) {
std::string filename = "main";
if (argc >= 1) {
filename = argv[0];
}
// Get only the program name from the full path
auto pos = filename.find_last_of('/');
if (pos != std::string::npos) {
filename = filename.substr(pos+1);
}
// Append "llama-" to the beginning of filename to get the replacemnt filename
auto replacement_filename = "llama-" + filename;
// The exception is if the filename is "main", then our replacement filename is "llama-cli"
if (filename == "main") {
replacement_filename = "llama-cli";
}
fprintf(stdout, "\n");
fprintf(stdout, "WARNING: The binary '%s' is deprecated.\n", filename.c_str());
fprintf(stdout, " Please use '%s' instead.\n", replacement_filename.c_str());
fprintf(stdout, " See https://github.com/ggerganov/llama.cpp/tree/master/examples/deprecation-warning/README.md for more information.\n");
fprintf(stdout, "\n");
return EXIT_FAILURE;
}
set(TARGET llama-embedding)
add_executable(${TARGET} embedding.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
# llama.cpp/example/embedding
This example demonstrates generate high-dimensional embedding vector of a given text with llama.cpp.
## Quick Start
To get started right away, run the following command, making sure to use the correct path for the model you have:
### Unix-based systems (Linux, macOS, etc.):
```bash
./llama-embedding -m ./path/to/model --log-disable -p "Hello World!" 2>/dev/null
```
### Windows:
```powershell
llama-embedding.exe -m ./path/to/model --log-disable -p "Hello World!" 2>$null
```
The above command will output space-separated float values.
## extra parameters
### --embd-normalize $integer$
| $integer$ | description | formula |
|-----------|---------------------|---------|
| $-1$ | none |
| $0$ | max absolute int16 | $\Large{{32760 * x_i} \over\max \lvert x_i\rvert}$
| $1$ | taxicab | $\Large{x_i \over\sum \lvert x_i\rvert}$
| $2$ | euclidean (default) | $\Large{x_i \over\sqrt{\sum x_i^2}}$
| $>2$ | p-norm | $\Large{x_i \over\sqrt[p]{\sum \lvert x_i\rvert^p}}$
### --embd-output-format $'string'$
| $'string'$ | description | |
|------------|------------------------------|--|
| '' | same as before | (default)
| 'array' | single embeddings | $[[x_1,...,x_n]]$
| | multiple embeddings | $[[x_1,...,x_n],[x_1,...,x_n],...,[x_1,...,x_n]]$
| 'json' | openai style |
| 'json+' | add cosine similarity matrix |
### --embd-separator $"string"$
| $"string"$ | |
|--------------|-|
| "\n" | (default)
| "<#embSep#>" | for exemple
| "<#sep#>" | other exemple
## examples
### Unix-based systems (Linux, macOS, etc.):
```bash
./embedding -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null
```
### Windows:
```powershell
embedding.exe -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null
```
#include "common.h"
#include "llama.h"
#include <ctime>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static std::vector<std::string> split_lines(const std::string & s, const std::string & separator = "\n") {
std::vector<std::string> lines;
size_t start = 0;
size_t end = s.find(separator);
while (end != std::string::npos) {
lines.push_back(s.substr(start, end - start));
start = end + separator.length();
end = s.find(separator, start);
}
lines.push_back(s.substr(start)); // Add the last part
return lines;
}
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
size_t n_tokens = tokens.size();
for (size_t i = 0; i < n_tokens; i++) {
llama_batch_add(batch, tokens[i], i, { seq_id }, true);
}
}
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
// run model
fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
if (llama_decode(ctx, batch) < 0) {
fprintf(stderr, "%s : failed to decode\n", __func__);
}
for (int i = 0; i < batch.n_tokens; i++) {
if (!batch.logits[i]) {
continue;
}
// try to get sequence embeddings - supported only when pooling_type is not NONE
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
float * out = output + batch.seq_id[i][0] * n_embd;
llama_embd_normalize(embd, out, n_embd, embd_norm);
}
}
int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
params.embedding = true;
// For non-causal models, batch size must be equal to ubatch size
params.n_ubatch = params.n_batch;
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
llama_backend_init();
llama_numa_init(params.numa);
// load the model
llama_init_result llama_init = llama_init_from_gpt_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
if (model == NULL) {
fprintf(stderr, "%s: error: unable to load model\n", __func__);
return 1;
}
const int n_ctx_train = llama_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
fprintf(stderr, "%s: error: pooling type NONE not supported\n", __func__);
return 1;
}
if (n_ctx > n_ctx_train) {
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, n_ctx);
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
}
// split the prompt into lines
std::vector<std::string> prompts = split_lines(params.prompt, params.embd_sep);
// max batch size
const uint64_t n_batch = params.n_batch;
GGML_ASSERT(params.n_batch >= params.n_ctx);
// tokenize the prompts and trim
std::vector<std::vector<int32_t>> inputs;
for (const auto & prompt : prompts) {
auto inp = ::llama_tokenize(ctx, prompt, true, false);
if (inp.size() > n_batch) {
fprintf(stderr, "%s: error: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
__func__, (long long int) inp.size(), (long long int) n_batch);
return 1;
}
inputs.push_back(inp);
}
// check if the last token is SEP
// it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
for (auto & inp : inputs) {
if (inp.empty() || inp.back() != llama_token_sep(model)) {
fprintf(stderr, "%s: warning: last token in the prompt is not SEP\n", __func__);
fprintf(stderr, "%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
}
}
// tokenization stats
if (params.verbose_prompt) {
for (int i = 0; i < (int) inputs.size(); i++) {
fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
for (int j = 0; j < (int) inputs[i].size(); j++) {
fprintf(stderr, "%6d -> '%s'\n", inputs[i][j], llama_token_to_piece(ctx, inputs[i][j]).c_str());
}
fprintf(stderr, "\n\n");
}
}
// initialize batch
const int n_prompts = prompts.size();
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
// allocate output
const int n_embd = llama_n_embd(model);
std::vector<float> embeddings(n_prompts * n_embd, 0);
float * emb = embeddings.data();
// break into batches
int p = 0; // number of prompts processed already
int s = 0; // number of prompts in current batch
for (int k = 0; k < n_prompts; k++) {
// clamp to n_batch tokens
auto & inp = inputs[k];
const uint64_t n_toks = inp.size();
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch) {
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
llama_batch_clear(batch);
p += s;
s = 0;
}
// add to batch
batch_add_seq(batch, inp, s);
s += 1;
}
// final batch
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
if (params.embd_out.empty()) {
// print the first part of the embeddings or for a single prompt, the full embedding
fprintf(stdout, "\n");
for (int j = 0; j < n_prompts; j++) {
fprintf(stdout, "embedding %d: ", j);
for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
if (params.embd_normalize == 0) {
fprintf(stdout, "%6.0f ", emb[j * n_embd + i]);
} else {
fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
}
}
fprintf(stdout, "\n");
}
// print cosine similarity matrix
if (n_prompts > 1) {
fprintf(stdout, "\n");
printf("cosine similarity matrix:\n\n");
for (int i = 0; i < n_prompts; i++) {
fprintf(stdout, "%6.6s ", prompts[i].c_str());
}
fprintf(stdout, "\n");
for (int i = 0; i < n_prompts; i++) {
for (int j = 0; j < n_prompts; j++) {
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
fprintf(stdout, "%6.2f ", sim);
}
fprintf(stdout, "%1.10s", prompts[i].c_str());
fprintf(stdout, "\n");
}
}
}
if (params.embd_out == "json" || params.embd_out == "json+" || params.embd_out == "array") {
const bool notArray = params.embd_out != "array";
fprintf(stdout, notArray ? "{\n \"object\": \"list\",\n \"data\": [\n" : "[");
for (int j = 0;;) { // at least one iteration (one prompt)
if (notArray) fprintf(stdout, " {\n \"object\": \"embedding\",\n \"index\": %d,\n \"embedding\": ",j);
fprintf(stdout, "[");
for (int i = 0;;) { // at least one iteration (n_embd > 0)
fprintf(stdout, params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd + i]);
i++;
if (i < n_embd) fprintf(stdout, ","); else break;
}
fprintf(stdout, notArray ? "]\n }" : "]");
j++;
if (j < n_prompts) fprintf(stdout, notArray ? ",\n" : ","); else break;
}
fprintf(stdout, notArray ? "\n ]" : "]\n");
if (params.embd_out == "json+" && n_prompts > 1) {
fprintf(stdout, ",\n \"cosineSimilarity\": [\n");
for (int i = 0;;) { // at least two iteration (n_prompts > 1)
fprintf(stdout, " [");
for (int j = 0;;) { // at least two iteration (n_prompts > 1)
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
fprintf(stdout, "%6.2f", sim);
j++;
if (j < n_prompts) fprintf(stdout, ", "); else break;
}
fprintf(stdout, " ]");
i++;
if (i < n_prompts) fprintf(stdout, ",\n"); else break;
}
fprintf(stdout, "\n ]");
}
if (notArray) fprintf(stdout, "\n}\n");
}
// clean up
llama_print_timings(ctx);
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}
set(TARGET llama-eval-callback)
add_executable(${TARGET} eval-callback.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
set(TEST_TARGET test-eval-callback)
add_test(NAME ${TEST_TARGET} COMMAND llama-eval-callback --hf-repo ggml-org/models --hf-file tinyllamas/stories260K.gguf --model stories260K.gguf --prompt hello --seed 42 -ngl 0)
set_property(TEST ${TEST_TARGET} PROPERTY LABELS eval-callback curl)
# llama.cpp/examples/eval-callback
A simple example which demonstrates how to use callback during the inference.
It simply prints to the console all operations and tensor data.
Usage:
```shell
llama-eval-callback \
--hf-repo ggml-org/models \
--hf-file phi-2/ggml-model-q4_0.gguf \
--model phi-2-q4_0.gguf \
--prompt hello \
--seed 42 \
-ngl 33
```
Will print:
```shell
llm_load_tensors: offloaded 33/33 layers to GPU
...
llama_new_context_with_model: n_ctx = 512
...
llama_new_context_with_model: CUDA0 compute buffer size = 105.00 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 6.01 MiB
llama_new_context_with_model: graph nodes = 1225
llama_new_context_with_model: graph splits = 2
ggml_debug: inp_embd = (f32) GET_ROWS(token_embd.weight{2560, 51200, 1, 1}, inp_tokens{1, 1, 1, 1}}) = {2560, 1, 1, 1}
[
[
[ -0.0181, 0.0272, 0.0272, ...],
],
]
ggml_debug: norm-0 = (f32) NORM(CUDA0#inp_embd#0{2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
[
[
[ -0.6989, 1.0636, 1.0636, ...],
],
]
ggml_debug: norm_w-0 = (f32) MUL(norm-0{2560, 1, 1, 1}, blk.0.attn_norm.weight{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
[
[
[ -0.1800, 0.2817, 0.2632, ...],
],
]
ggml_debug: attn_norm-0 = (f32) ADD(norm_w-0{2560, 1, 1, 1}, blk.0.attn_norm.bias{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
[
[
[ -0.1863, 0.2970, 0.2604, ...],
],
]
ggml_debug: wqkv-0 = (f32) MUL_MAT(blk.0.attn_qkv.weight{2560, 7680, 1, 1}, attn_norm-0{2560, 1, 1, 1}}) = {7680, 1, 1, 1}
[
[
[ -1.1238, 1.2876, -1.8086, ...],
],
]
ggml_debug: bqkv-0 = (f32) ADD(wqkv-0{7680, 1, 1, 1}, blk.0.attn_qkv.bias{7680, 1, 1, 1}}) = {7680, 1, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
],
]
ggml_debug: bqkv-0 (view) = (f32) VIEW(bqkv-0{7680, 1, 1, 1}, }) = {2560, 1, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
],
]
ggml_debug: Qcur-0 = (f32) CONT(bqkv-0 (view){2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
],
]
ggml_debug: Qcur-0 (reshaped) = (f32) RESHAPE(Qcur-0{2560, 1, 1, 1}, }) = {80, 32, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
[ -0.3608, 0.5076, -1.8866, ...],
[ 1.7643, 0.0273, -2.1065, ...],
...
],
]
ggml_debug: Qcur-0 = (f32) ROPE(Qcur-0 (reshaped){80, 32, 1, 1}, CUDA0#inp_pos#0{1, 1, 1, 1}}) = {80, 32, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
[ -0.3608, 0.5076, -1.8866, ...],
[ 1.7643, 0.0273, -2.1065, ...],
...
],
]
```
#include "common.h"
#include "llama.h"
#include "ggml.h"
#include <cstdio>
#include <random>
#include <string>
#include <tuple>
#include <vector>
/**
* This the arbitrary data which will be passed to each callback.
* Later on we can for example add operation or tensor name filter from the CLI arg, or a file descriptor to dump the tensor.
*/
struct callback_data {
std::vector<uint8_t> data;
};
static std::string ggml_ne_string(const ggml_tensor * t) {
std::string str;
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
str += std::to_string(t->ne[i]);
if (i + 1 < GGML_MAX_DIMS) {
str += ", ";
}
}
return str;
}
static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
GGML_ASSERT(n > 0);
float sum = 0;
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
printf(" [\n");
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
if (i2 == n && ne[2] > 2*n) {
printf(" ..., \n");
i2 = ne[2] - n;
}
printf(" [\n");
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
if (i1 == n && ne[1] > 2*n) {
printf(" ..., \n");
i1 = ne[1] - n;
}
printf(" [");
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
if (i0 == n && ne[0] > 2*n) {
printf("..., ");
i0 = ne[0] - n;
}
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
float v;
if (type == GGML_TYPE_F16) {
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
} else if (type == GGML_TYPE_F32) {
v = *(float *) &data[i];
} else if (type == GGML_TYPE_I32) {
v = (float) *(int32_t *) &data[i];
} else if (type == GGML_TYPE_I16) {
v = (float) *(int16_t *) &data[i];
} else if (type == GGML_TYPE_I8) {
v = (float) *(int8_t *) &data[i];
} else {
GGML_ABORT("fatal error");
}
printf("%12.4f", v);
sum += v;
if (i0 < ne[0] - 1) printf(", ");
}
printf("],\n");
}
printf(" ],\n");
}
printf(" ]\n");
printf(" sum = %f\n", sum);
}
}
/**
* GGML operations callback during the graph execution.
*
* @param t current tensor
* @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor
* if we return true, a follow-up call will be made with ask=false in which we can do the actual collection.
* see ggml_backend_sched_eval_callback
* @param user_data user data to pass at each call back
* @return true to receive data or continue the graph, false otherwise
*/
static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
auto * cb_data = (callback_data *) user_data;
const struct ggml_tensor * src0 = t->src[0];
const struct ggml_tensor * src1 = t->src[1];
if (ask) {
return true; // Always retrieve data
}
char src1_str[128] = {0};
if (src1) {
snprintf(src1_str, sizeof(src1_str), "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
}
printf("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
t->name, ggml_type_name(t->type), ggml_op_desc(t),
src0->name, ggml_ne_string(src0).c_str(),
src1 ? src1_str : "",
ggml_ne_string(t).c_str());
// copy the data from the GPU memory if needed
const bool is_host = ggml_backend_buffer_is_host(t->buffer);
if (!is_host) {
auto n_bytes = ggml_nbytes(t);
cb_data->data.resize(n_bytes);
ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes);
}
if (!ggml_is_quantized(t->type)) {
uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data();
ggml_print_tensor(data, t->type, t->ne, t->nb, 3);
}
return true;
}
static bool run(llama_context * ctx, const gpt_params & params) {
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
return true;
}
int main(int argc, char ** argv) {
callback_data cb_data;
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
print_build_info();
std::mt19937 rng(params.seed);
llama_backend_init();
llama_numa_init(params.numa);
// pass the callback to the backend scheduler
// it will be executed for each node during the graph computation
params.cb_eval = ggml_debug;
params.cb_eval_user_data = &cb_data;
params.warmup = false;
// init
llama_init_result llama_init = llama_init_from_gpt_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
if (model == nullptr || ctx == nullptr) {
fprintf(stderr, "%s : failed to init\n", __func__);
return 1;
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
}
bool OK = run(ctx, params);
if (!OK) {
return 1;
}
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}
set(TARGET llama-export-lora)
add_executable(${TARGET} export-lora.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
# export-lora
Apply LORA adapters to base model and export the resulting model.
```
usage: llama-export-lora [options]
options:
-m, --model model path from which to load base model (default '')
--lora FNAME path to LoRA adapter (can be repeated to use multiple adapters)
--lora-scaled FNAME S path to LoRA adapter with user defined scaling S (can be repeated to use multiple adapters)
-t, --threads N number of threads to use during computation (default: 4)
-o, --output FNAME output file (default: 'ggml-lora-merged-f16.gguf')
```
For example:
```bash
./bin/llama-export-lora \
-m open-llama-3b-v2-q8_0.gguf \
-o open-llama-3b-v2-q8_0-english2tokipona-chat.gguf \
--lora lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.gguf
```
Multiple LORA adapters can be applied by passing multiple `--lora FNAME` or `--lora-scaled FNAME S` command line parameters:
```bash
./bin/llama-export-lora \
-m your_base_model.gguf \
-o your_merged_model.gguf \
--lora-scaled lora_task_A.gguf 0.5 \
--lora-scaled lora_task_B.gguf 0.5
```
#include "common.h"
#include "ggml.h"
#include "ggml-alloc.h"
#include <map>
#include <vector>
#include <string>
#include <thread>
#include <fstream>
static bool g_verbose = false;
static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){
int id = gguf_find_key(ctx_gguf, key.c_str());
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
}
static float get_kv_f32(struct gguf_context * ctx_gguf, const std::string & key) {
int id = gguf_find_key(ctx_gguf, key.c_str());
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id);
}
static void zeros(std::ofstream & file, size_t n) {
char zero = 0;
for (size_t i = 0; i < n; ++i) {
file.write(&zero, 1);
}
}
static std::string ggml_ne_string(const ggml_tensor * t) {
std::string str;
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
str += std::to_string(t->ne[i]);
if (i + 1 < GGML_MAX_DIMS) {
str += ", ";
}
}
return str;
}
static struct gguf_context * load_gguf(std::string & fname, struct ggml_context ** ctx_ggml) {
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ ctx_ggml,
};
struct gguf_context * ctx_gguf = gguf_init_from_file(fname.c_str(), params);
if (!ctx_gguf) {
throw std::runtime_error("failed to load input GGUF from " + fname);
}
return ctx_gguf;
}
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
std::string result;
for (size_t pos = 0; ; pos += search.length()) {
auto new_pos = s.find(search, pos);
if (new_pos == std::string::npos) {
result += s.substr(pos, s.size() - pos);
break;
}
result += s.substr(pos, new_pos - pos) + replace;
pos = new_pos;
}
s = std::move(result);
}
struct file_input {
struct ggml_context * ctx_meta = nullptr;
struct gguf_context * ctx_gguf = nullptr;
std::ifstream f_in;
std::map<std::string, ggml_tensor *> tensors;
float alpha;
float scale;
file_input(std::string & fname, float scale): f_in(fname, std::ios::binary), scale(scale) {
if (!f_in.is_open()) {
throw std::runtime_error("failed to open input gguf from " + fname);
}
ctx_gguf = load_gguf(fname, &ctx_meta);
alpha = get_kv_f32(ctx_gguf, "adapter.lora.alpha");
printf("%s: loaded gguf from %s\n", __func__, fname.c_str());
for (ggml_tensor * cur = ggml_get_first_tensor(ctx_meta); cur; cur = ggml_get_next_tensor(ctx_meta, cur)) {
std::string name(cur->name);
tensors[name] = cur;
if (g_verbose) {
printf("%s: %s\n", __func__, cur->name);
}
}
}
ggml_tensor * get_tensor(std::string name) {
if (tensors.find(name) == tensors.end()) {
return nullptr;
}
return tensors[name];
}
void read_tensor_data(std::string name, std::vector<uint8_t> & buf) {
if (tensors.find(name) == tensors.end()) {
throw std::runtime_error("cannot find tensor with name: " + name);
}
auto len = ggml_nbytes(tensors[name]);
if (buf.size() < len) {
buf.resize(len);
}
auto i_tensor_in = gguf_find_tensor(ctx_gguf, name.c_str()); // idx of tensor in the input file
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in);
f_in.seekg(offset);
f_in.read((char* )buf.data(), len);
}
~file_input() {
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
}
};
struct lora_merge_ctx {
// input base model + adapters
file_input base_model;
std::vector<std::unique_ptr<file_input>> adapters;
// for computing merged tensor
int n_threads;
ggml_backend_t backend = nullptr;
ggml_gallocr_t allocr = nullptr;
std::vector<uint8_t> read_buf;
// output file
struct gguf_context * ctx_out;
struct ggml_context * ctx_out_ggml;
std::ofstream fout;
lora_merge_ctx(
std::string & base_fname,
std::vector<llama_lora_adapter_info> & lora_files,
std::string & outfile,
int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) {
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
if (gguf_find_key(base_model.ctx_gguf, LLM_KV_SPLIT_COUNT) >= 0) {
throw std::runtime_error("split model is not yet supported");
}
for (auto & lora_inp : lora_files) {
auto fname = lora_inp.path;
auto scale = lora_inp.scale;
std::unique_ptr<file_input> adapter(new file_input(fname, scale));
check_metadata_lora(adapter.get());
adapters.push_back(std::move(adapter));
}
ctx_out = gguf_init_empty();
struct ggml_init_params params = {
/*.mem_size =*/ gguf_get_n_tensors(base_model.ctx_gguf)*ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ctx_out_ggml = ggml_init(params);
backend = ggml_backend_cpu_init();
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
}
void check_metadata_lora(file_input * adapter) {
auto general_type = get_kv_str(adapter->ctx_gguf, "general.type");
if (general_type != "adapter") {
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
}
auto adapter_type = get_kv_str(adapter->ctx_gguf, "adapter.type");
if (adapter_type != "lora") {
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
}
auto general_arch_base = get_kv_str(base_model.ctx_gguf, "general.architecture");
auto general_arch_lora = get_kv_str(adapter->ctx_gguf, "general.architecture");
if (general_arch_base != general_arch_lora) {
throw std::runtime_error("model arch and LoRA arch mismatch");
}
}
ggml_type get_out_tensor_type(struct ggml_tensor * t) {
if (t->type == GGML_TYPE_F32) {
return GGML_TYPE_F32;
} else {
return GGML_TYPE_F16;
}
}
void run_merge() {
// prepare metadata
gguf_set_kv(ctx_out, base_model.ctx_gguf);
// output is forced to f16 for now
gguf_set_val_u32(ctx_out, "general.file_type", LLAMA_FTYPE_MOSTLY_F16);
// check if all lora adapters have the same tensors
// TODO: remove this when we can support merging subset of adapters. Ref: https://github.com/ggerganov/llama.cpp/pull/8607#discussion_r1686027777
static const char * err_no_subset_adapter = "Input adapters do not have the same list of tensors. This is not yet supported. Please merge the adapter one-by-one instead of merging all at once.";
if (adapters.size() > 1) {
for (size_t i = 1; i < adapters.size(); ++i) {
if (adapters[0]->tensors.size() != adapters[i]->tensors.size()) {
throw std::runtime_error(err_no_subset_adapter);
}
for (auto & it : adapters[i]->tensors) {
if (adapters[0]->get_tensor(it.first) == nullptr) {
throw std::runtime_error(err_no_subset_adapter);
}
}
}
}
// mapping base tensor to out tensor (same shape with base, but different type)
// if out_tensor == nullptr, we only copy it
std::vector<std::pair<struct ggml_tensor *, struct ggml_tensor *>> base_to_out_tensors;
for (auto & it : base_model.tensors) {
bool t_a = true;
bool t_b = true;
for (auto & adapter : adapters) {
t_a &= nullptr != adapter->get_tensor(it.first + ".lora_a");
t_b &= nullptr != adapter->get_tensor(it.first + ".lora_b");
}
auto base_tensor = it.second;
if (!t_a && !t_b) {
// only copy
struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx_out_ggml, base_tensor);
ggml_set_name(cpy_tensor, base_tensor->name);
base_to_out_tensors.push_back(std::make_pair(cpy_tensor, nullptr));
gguf_add_tensor(ctx_out, cpy_tensor);
} else if (t_a && t_b) {
// need merging
struct ggml_tensor * out_tensor = ggml_new_tensor(
ctx_out_ggml, get_out_tensor_type(base_tensor), GGML_MAX_DIMS, base_tensor->ne);
ggml_set_name(out_tensor, base_tensor->name);
base_to_out_tensors.push_back(std::make_pair(base_tensor, out_tensor));
gguf_add_tensor(ctx_out, out_tensor);
} else {
throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b");
}
}
// placeholder for the meta data
{
size_t meta_size = gguf_get_meta_size(ctx_out);
zeros(fout, meta_size);
}
// process base model tensors
size_t n_merged = 0;
for (auto & it : base_to_out_tensors) {
if (it.second != nullptr) {
merge_tensor(it.first, it.second);
n_merged++;
} else {
copy_tensor(it.first);
}
}
// write output metadata
{
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
gguf_get_meta_data(ctx_out, data.data());
fout.seekp(0);
fout.write((const char *)data.data(), data.size());
}
printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged);
printf("%s : wrote %ld tensors to output file\n", __func__, base_to_out_tensors.size());
}
void copy_tensor(struct ggml_tensor * base) {
printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str());
size_t len = ggml_nbytes(base);
base_model.read_tensor_data(base->name, read_buf);
fout.write((char* )read_buf.data(), len);
zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len);
}
void merge_tensor(struct ggml_tensor * base, struct ggml_tensor * out) {
std::string name_base(base->name);
std::string name_lora_a = name_base + ".lora_a";
std::string name_lora_b = name_base + ".lora_b";
printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str());
// context for input tensor
std::vector<struct ggml_tensor *> inp_a(adapters.size());
std::vector<struct ggml_tensor *> inp_b(adapters.size());
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead()*(2+adapters.size()*2),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx = ggml_init(params);
// alloc tensors
struct ggml_tensor * inp_base = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, base->ne);
for (size_t i = 0; i < adapters.size(); ++i) {
auto t_a = adapters[i]->get_tensor(name_lora_a);
auto t_b = adapters[i]->get_tensor(name_lora_b);
inp_a[i] = ggml_dup_tensor(ctx, t_a);
inp_b[i] = ggml_dup_tensor(ctx, t_b);
}
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
// load base tensor to backend buffer
base_model.read_tensor_data(name_base, read_buf);
if (base->type != GGML_TYPE_F32) {
// optionally dequantize it
printf("%s : + dequantize base tensor from %s to F32\n", __func__, ggml_type_name(base->type));
auto nels = ggml_nelements(inp_base);
ggml_type_traits_t qtype = ggml_internal_get_type_traits(base->type);
std::vector<uint8_t> dequant_buf(nels * sizeof(float));
qtype.to_float(read_buf.data(), (float *)dequant_buf.data(), nels);
ggml_backend_tensor_set(inp_base, dequant_buf.data(), 0, dequant_buf.size());
} else {
ggml_backend_tensor_set(inp_base, read_buf.data(), 0, ggml_nbytes(inp_base));
}
// load lora tensors to backend buffer
for (size_t i = 0; i < adapters.size(); ++i) {
adapters[i]->read_tensor_data(name_lora_a, read_buf);
ggml_backend_tensor_set(inp_a[i], read_buf.data(), 0, ggml_nbytes(inp_a[i]));
adapters[i]->read_tensor_data(name_lora_b, read_buf);
ggml_backend_tensor_set(inp_b[i], read_buf.data(), 0, ggml_nbytes(inp_b[i]));
}
// build graph
struct ggml_cgraph * gf;
{
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
static std::vector<uint8_t> buf(buf_size);
struct ggml_init_params params0 = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf.data(),
/*.no_alloc =*/ true,
};
struct ggml_context * ctx0 = ggml_init(params0);
gf = ggml_new_graph(ctx0);
struct ggml_tensor * cur = inp_base;
for (size_t i = 0; i < adapters.size(); ++i) {
struct ggml_tensor * a_T = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32)));
struct ggml_tensor * delta = ggml_mul_mat(ctx0, a_T, ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
// scale
const float alpha = adapters[i]->alpha;
const float rank = (float) inp_b[i]->ne[0];
const float scale = alpha ? adapters[i]->scale * alpha / rank : adapters[i]->scale;
delta = ggml_scale(ctx0, delta, scale);
cur = ggml_add(ctx0, delta, cur);
printf("%s : + merging from adapter[%ld] type=%s\n", __func__, i, ggml_type_name(inp_a[i]->type));
printf("%s : input_scale=%f calculated_scale=%f rank=%d\n", __func__, adapters[i]->scale, scale, (int) inp_b[i]->ne[0]);
}
cur = ggml_cast(ctx0, cur, out->type);
printf("%s : + output type is %s\n", __func__, ggml_type_name(out->type));
ggml_build_forward_expand(gf, cur);
ggml_free(ctx0);
}
// compute
{
ggml_gallocr_alloc_graph(allocr, gf);
ggml_backend_cpu_set_n_threads(backend, n_threads);
ggml_backend_graph_compute(backend, gf);
}
// write data to output file
{
auto result = gf->nodes[gf->n_nodes - 1];
size_t len = ggml_nbytes(result);
if (read_buf.size() < len) {
read_buf.resize(len);
}
ggml_backend_tensor_get(result, read_buf.data(), 0, len);
fout.write((char* )read_buf.data(), len);
zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len);
}
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
}
~lora_merge_ctx() {
ggml_gallocr_free(allocr);
ggml_backend_free(backend);
gguf_free(ctx_out);
ggml_free(ctx_out_ggml);
}
};
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
printf("\nexample usage:\n");
printf("\n %s -m base-model.gguf --lora lora-file.gguf -o merged-model-f16.gguf\n", argv[0]);
printf("\nNOTE: output model is F16\n");
printf("\n");
}
int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
}
g_verbose = (params.verbosity == 1);
try {
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.n_threads);
ctx.run_merge();
} catch (const std::exception & err) {
fprintf(stderr, "%s\n", err.what());
exit(EXIT_FAILURE);
}
printf("done, output file is %s\n", params.lora_outfile.c_str());
return 0;
}
set(TARGET llama-gbnf-validator)
add_executable(${TARGET} gbnf-validator.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
#define LLAMA_API_INTERNAL
#include "grammar-parser.h"
#include "ggml.h"
#include "llama.h"
#include "unicode.h"
#include <cstdio>
#include <cstdlib>
#include <sstream>
#include <fstream>
#include <string>
#include <vector>
static bool llama_sample_grammar_string(struct llama_grammar * grammar, const std::string & input_str, size_t & error_pos, std::string & error_msg) {
auto decoded = decode_utf8(input_str, {});
const auto & code_points = decoded.first;
const llama_grammar_rules & rules = llama_grammar_get_rules (grammar);
llama_grammar_stacks & cur_stacks = llama_grammar_get_stacks(grammar);
size_t pos = 0;
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
const llama_grammar_stacks prev_stacks = llama_grammar_get_stacks(grammar); // copy
llama_grammar_accept(rules, prev_stacks, *it, cur_stacks);
if (cur_stacks.empty()) {
error_pos = pos;
error_msg = "Unexpected character '" + unicode_cpt_to_utf8(*it) + "'";
cur_stacks = prev_stacks;
return false;
}
++pos;
}
for (const auto & stack : cur_stacks) {
if (stack.empty()) {
return true;
}
}
error_pos = pos;
error_msg = "Unexpected end of input";
return false;
}
static void print_error_message(const std::string & input_str, size_t error_pos, const std::string & error_msg) {
fprintf(stdout, "Input string is invalid according to the grammar.\n");
fprintf(stdout, "Error: %s at position %zu\n", error_msg.c_str(), error_pos);
fprintf(stdout, "\n");
fprintf(stdout, "Input string:\n");
fprintf(stdout, "%s", input_str.substr(0, error_pos).c_str());
if (error_pos < input_str.size()) {
fprintf(stdout, "\033[1;31m%c", input_str[error_pos]);
if (error_pos+1 < input_str.size()) {
fprintf(stdout, "\033[0;31m%s", input_str.substr(error_pos+1).c_str());
}
fprintf(stdout, "\033[0m\n");
}
}
int main(int argc, char** argv) {
if (argc != 3) {
fprintf(stdout, "Usage: %s <grammar_filename> <input_filename>\n", argv[0]);
return 1;
}
const std::string grammar_filename = argv[1];
const std::string input_filename = argv[2];
// Read the GBNF grammar file
FILE* grammar_file = fopen(grammar_filename.c_str(), "r");
if (!grammar_file) {
fprintf(stdout, "Failed to open grammar file: %s\n", grammar_filename.c_str());
return 1;
}
std::string grammar_str;
{
std::ifstream grammar_file(grammar_filename);
GGML_ASSERT(grammar_file.is_open() && "Failed to open grammar file");
std::stringstream buffer;
buffer << grammar_file.rdbuf();
grammar_str = buffer.str();
}
// Parse the GBNF grammar
auto parsed_grammar = grammar_parser::parse(grammar_str.c_str());
// will be empty (default) if there are parse errors
if (parsed_grammar.rules.empty()) {
fprintf(stdout, "%s: failed to parse grammar\n", __func__);
return 1;
}
// Ensure that there is a "root" node.
if (parsed_grammar.symbol_ids.find("root") == parsed_grammar.symbol_ids.end()) {
fprintf(stdout, "%s: grammar does not contain a 'root' symbol\n", __func__);
return 1;
}
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
// Create the LLAMA grammar
auto grammar = llama_grammar_init(
grammar_rules.data(),
grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
if (grammar == nullptr) {
throw std::runtime_error("Failed to initialize llama_grammar");
}
// Read the input file
std::string input_str;
{
std::ifstream input_file(input_filename);
GGML_ASSERT(input_file.is_open() && "Failed to open input file");
std::stringstream buffer;
buffer << input_file.rdbuf();
input_str = buffer.str();
}
// Validate the input string against the grammar
size_t error_pos;
std::string error_msg;
bool is_valid = llama_sample_grammar_string(grammar, input_str, error_pos, error_msg);
if (is_valid) {
fprintf(stdout, "Input string is valid according to the grammar.\n");
} else {
print_error_message(input_str, error_pos, error_msg);
}
// Clean up
llama_grammar_free(grammar);
return 0;
}
set(TARGET llama-gguf-hash)
add_executable(${TARGET} gguf-hash.cpp)
install(TARGETS ${TARGET} RUNTIME)
# clibs dependencies
include_directories(deps/)
add_library(xxhash OBJECT deps/xxhash/xxhash.c deps/xxhash/xxhash.h)
target_link_libraries(${TARGET} PRIVATE xxhash)
add_library(sha1 OBJECT deps/sha1/sha1.c deps/sha1/sha1.h)
target_link_libraries(${TARGET} PRIVATE sha1)
add_library(sha256 OBJECT deps/sha256/sha256.c deps/sha256/sha256.h)
target_link_libraries(${TARGET} PRIVATE sha256)
target_link_libraries(${TARGET} PRIVATE ggml ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
# llama-gguf-hash
CLI to hash GGUF files to detect difference on a per model and per tensor level.
**Command line options:**
- `--help`: display help message
- `--xxh64`: use xhash 64bit hash mode (default)
- `--sha1`: use sha1
- `--uuid`: use uuid
- `--sha256`: use sha256
- `--all`: use all hash
- `--no-layer`: exclude per layer hash
- `--uuid`: generate UUIDv5 ID
- `-c`, `--check <manifest>`: verify against a manifest
## About
While most POSIX systems already have hash checking programs like sha256sum, it
is designed to check entire files. This is not ideal for our purpose if we want
to check for consistency of the tensor data even if the metadata content of the
gguf KV store has been updated.
This program is designed to hash a gguf tensor payload on a 'per tensor layer'
in addition to a 'entire tensor model' hash. The intent is that the entire
tensor layer can be checked first but if there is any detected inconsistencies,
then the per tensor hash can be used to narrow down the specific tensor layer
that has inconsistencies.
For Maintainers:
- Detection of tensor inconsistency during development and automated tests
- This is served by xxh64 which is fast
- This is also served by having per tensor layer to assist in narrowing down
the location of the faulty tensor layer
- This is also served by sha1 which is much slower but more widely supported
For Model Creators:
- Optional consistent UUID generation based on model tensor content
- This is served by UUIDv5 which is useful for databases keys
- llama.cpp UUIDv5 Namespace: `ef001206-dadc-5f6d-a15f-3359e577d4e5`
- Made via UUIDv5 URL namespace of `en.wikipedia.org/wiki/Llama.cpp`
For Model Users:
- Assurance of tensor layer integrity even if metadata was updated
- This is served by sha256 which is still considered very secure as of 2024
### Design Note
- The default behavior of this program if no arguments is provided is to hash
using xxhash's xxh32 mode because it is very fast and is primarily targeted
towards maintainers who may want to use this in automated tests.
- xxhash support xxh32 and xxh128 for 32bit hash and 128bit hash respectively
however we picked 64bit xxhash as most computers are 64bit as of 2024 and thus
would have a better affinity to calculating hash that is 64bit in size.
## Compile Example
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Debug -DLLAMA_FATAL_WARNINGS=ON
make -C build clean
make -C build llama-gguf-hash VERBOSE=1
./build/bin/llama-gguf-hash test.gguf
./build/bin/llama-gguf-hash --xxh64 test.gguf
./build/bin/llama-gguf-hash --sha1 test.gguf
./build/bin/llama-gguf-hash --uuid test.gguf
./build/bin/llama-gguf-hash --sha256 test.gguf
```
## Generation and Verification Example
To generate we may use this command
```bash
./llama-gguf-hash --all test.gguf > test.gguf.manifest
```
Which would generate a manifest that looks like below, which contains multiple hash type and per tensor layer hashes as well
(This excludes UUID as that is an ID not a hash)
```bash
xxh64 f66e9cd66a4396a0 test.gguf:tensor_0
sha1 59f79ecefd8125a996fdf419239051a7e99e5f20 test.gguf:tensor_0
sha256 c0510d38fa060c46265e0160a85c7243096b01dd31c2f355bdbb5516b20de1bd test.gguf:tensor_0
xxh64 7d3a1f9ac04d0537 test.gguf:tensor_1
sha1 4765f592eacf096df4628ba59476af94d767080a test.gguf:tensor_1
sha256 8514cbcc73692a2c56bd7a33a022edd5ff819614bd23b19915d7224387f397a7 test.gguf:tensor_1
xxh64 a0af5d700049693b test.gguf:tensor_2
sha1 25cbfbad4513cc348e2c95ebdee69d6ff2fd8753 test.gguf:tensor_2
sha256 947e6b36e20f2cc95e1d2ce1c1669d813d574657ac6b5ac5196158d454d35180 test.gguf:tensor_2
xxh64 e83fddf559d7b6a6 test.gguf:tensor_3
sha1 a9cba73e2d90f2ee3dae2548caa42bef3fe6a96c test.gguf:tensor_3
sha256 423b044e016d8ac73c39f23f60bf01bedef5ecb03c0230accd824c91fe86f1a1 test.gguf:tensor_3
xxh64 1257733306b7992d test.gguf:tensor_4
sha1 d7bc61db93bb685ce9d598da89717c66729b7543 test.gguf:tensor_4
sha256 79737cb3912d4201384cf7f16a1a37ff7823f23ea796cb205b6ca361ab9e3ebf test.gguf:tensor_4
xxh64 d238d16ba4711e58 test.gguf:tensor_5
sha1 0706566c198fe1072f37e0a5135b4b5f23654c52 test.gguf:tensor_5
sha256 60949be8298eced0ecdde64487643d018407bd261691e061d9e9c3dbc9fd358b test.gguf:tensor_5
xxh64 3fbc3b65ab8c7f39 test.gguf:tensor_6
sha1 73922a0727226a409049f6fc3172a52219ca6f00 test.gguf:tensor_6
sha256 574f4c46ff384a3b9a225eb955d2a871847a2e8b3fa59387a8252832e92ef7b0 test.gguf:tensor_6
xxh64 c22021c29854f093 test.gguf:tensor_7
sha1 efc39cece6a951188fc41e354c73bbfe6813d447 test.gguf:tensor_7
sha256 4c0410cd3c500f078ae5b21e8dc9eb79e29112713b2ab58a882f82a3868d4d75 test.gguf:tensor_7
xxh64 936df61f5d64261f test.gguf:tensor_8
sha1 c2490296d789a4f34398a337fed8377d943d9f06 test.gguf:tensor_8
sha256 c4401313feeba0261275c3b25bd2d8fe40ce04e0f440c2980ed0e9674c30ff01 test.gguf:tensor_8
xxh64 93fd20c64421c081 test.gguf:tensor_9
sha1 7047ce1e78437a6884337a3751c7ee0421918a65 test.gguf:tensor_9
sha256 23d57cf0d7a6e90b0b3616b41300e0cd354781e812add854a5f95aa55f2bc514 test.gguf:tensor_9
xxh64 5a54d3aad816f302 test.gguf
sha1 d15be52c4ff213e823cb6dd13af7ee2f978e7042 test.gguf
sha256 7dd641b32f59b60dbd4b5420c4b0f6321ccf48f58f6ae201a3dbc4a58a27c6e4 test.gguf
```
We can then use the normal check command which will by default check for the highest security strength hash and verify against that:
```bash
$ ./llama-gguf-hash --check test.gguf.manifest test.gguf
manifest test.gguf.manifest sha256 sha1 xxh64
sha256 c0510d38fa060c46265e0160a85c7243096b01dd31c2f355bdbb5516b20de1bd test.gguf:tensor_0 - Ok
sha256 8514cbcc73692a2c56bd7a33a022edd5ff819614bd23b19915d7224387f397a7 test.gguf:tensor_1 - Ok
sha256 947e6b36e20f2cc95e1d2ce1c1669d813d574657ac6b5ac5196158d454d35180 test.gguf:tensor_2 - Ok
sha256 423b044e016d8ac73c39f23f60bf01bedef5ecb03c0230accd824c91fe86f1a1 test.gguf:tensor_3 - Ok
sha256 79737cb3912d4201384cf7f16a1a37ff7823f23ea796cb205b6ca361ab9e3ebf test.gguf:tensor_4 - Ok
sha256 60949be8298eced0ecdde64487643d018407bd261691e061d9e9c3dbc9fd358b test.gguf:tensor_5 - Ok
sha256 574f4c46ff384a3b9a225eb955d2a871847a2e8b3fa59387a8252832e92ef7b0 test.gguf:tensor_6 - Ok
sha256 4c0410cd3c500f078ae5b21e8dc9eb79e29112713b2ab58a882f82a3868d4d75 test.gguf:tensor_7 - Ok
sha256 c4401313feeba0261275c3b25bd2d8fe40ce04e0f440c2980ed0e9674c30ff01 test.gguf:tensor_8 - Ok
sha256 23d57cf0d7a6e90b0b3616b41300e0cd354781e812add854a5f95aa55f2bc514 test.gguf:tensor_9 - Ok
sha256 7dd641b32f59b60dbd4b5420c4b0f6321ccf48f58f6ae201a3dbc4a58a27c6e4 test.gguf - Ok
Verification results for test.gguf.manifest - Success
```
Or we may explicitly ask for a faster hash like:
```bash
$ ./llama-gguf-hash --check test.gguf.manifest --xxh64 test.gguf
manifest test.gguf.manifest sha256 sha1 xxh64
xxh64 f66e9cd66a4396a0 test.gguf:tensor_0 - Ok
xxh64 7d3a1f9ac04d0537 test.gguf:tensor_1 - Ok
xxh64 a0af5d700049693b test.gguf:tensor_2 - Ok
xxh64 e83fddf559d7b6a6 test.gguf:tensor_3 - Ok
xxh64 1257733306b7992d test.gguf:tensor_4 - Ok
xxh64 d238d16ba4711e58 test.gguf:tensor_5 - Ok
xxh64 3fbc3b65ab8c7f39 test.gguf:tensor_6 - Ok
xxh64 c22021c29854f093 test.gguf:tensor_7 - Ok
xxh64 936df61f5d64261f test.gguf:tensor_8 - Ok
xxh64 93fd20c64421c081 test.gguf:tensor_9 - Ok
xxh64 5a54d3aad816f302 test.gguf - Ok
Verification results for test.gguf.manifest - Success
```
Or maybe we want to just check that all the hash is valid:
```bash
$./llama-gguf-hash --check test.gguf.manifest --all test.gguf.manifest
manifest test.gguf.manifest sha256 sha1 xxh64
xxh64 f66e9cd66a4396a0 test.gguf:tensor_0 - Ok
sha1 59f79ecefd8125a996fdf419239051a7e99e5f20 test.gguf:tensor_0 - Ok
sha256 c0510d38fa060c46265e0160a85c7243096b01dd31c2f355bdbb5516b20de1bd test.gguf:tensor_0 - Ok
xxh64 7d3a1f9ac04d0537 test.gguf:tensor_1 - Ok
sha1 4765f592eacf096df4628ba59476af94d767080a test.gguf:tensor_1 - Ok
sha256 8514cbcc73692a2c56bd7a33a022edd5ff819614bd23b19915d7224387f397a7 test.gguf:tensor_1 - Ok
xxh64 a0af5d700049693b test.gguf:tensor_2 - Ok
sha1 25cbfbad4513cc348e2c95ebdee69d6ff2fd8753 test.gguf:tensor_2 - Ok
sha256 947e6b36e20f2cc95e1d2ce1c1669d813d574657ac6b5ac5196158d454d35180 test.gguf:tensor_2 - Ok
xxh64 e83fddf559d7b6a6 test.gguf:tensor_3 - Ok
sha1 a9cba73e2d90f2ee3dae2548caa42bef3fe6a96c test.gguf:tensor_3 - Ok
sha256 423b044e016d8ac73c39f23f60bf01bedef5ecb03c0230accd824c91fe86f1a1 test.gguf:tensor_3 - Ok
xxh64 1257733306b7992d test.gguf:tensor_4 - Ok
sha1 d7bc61db93bb685ce9d598da89717c66729b7543 test.gguf:tensor_4 - Ok
sha256 79737cb3912d4201384cf7f16a1a37ff7823f23ea796cb205b6ca361ab9e3ebf test.gguf:tensor_4 - Ok
xxh64 d238d16ba4711e58 test.gguf:tensor_5 - Ok
sha1 0706566c198fe1072f37e0a5135b4b5f23654c52 test.gguf:tensor_5 - Ok
sha256 60949be8298eced0ecdde64487643d018407bd261691e061d9e9c3dbc9fd358b test.gguf:tensor_5 - Ok
xxh64 3fbc3b65ab8c7f39 test.gguf:tensor_6 - Ok
sha1 73922a0727226a409049f6fc3172a52219ca6f00 test.gguf:tensor_6 - Ok
sha256 574f4c46ff384a3b9a225eb955d2a871847a2e8b3fa59387a8252832e92ef7b0 test.gguf:tensor_6 - Ok
xxh64 c22021c29854f093 test.gguf:tensor_7 - Ok
sha1 efc39cece6a951188fc41e354c73bbfe6813d447 test.gguf:tensor_7 - Ok
sha256 4c0410cd3c500f078ae5b21e8dc9eb79e29112713b2ab58a882f82a3868d4d75 test.gguf:tensor_7 - Ok
xxh64 936df61f5d64261f test.gguf:tensor_8 - Ok
sha1 c2490296d789a4f34398a337fed8377d943d9f06 test.gguf:tensor_8 - Ok
sha256 c4401313feeba0261275c3b25bd2d8fe40ce04e0f440c2980ed0e9674c30ff01 test.gguf:tensor_8 - Ok
xxh64 93fd20c64421c081 test.gguf:tensor_9 - Ok
sha1 7047ce1e78437a6884337a3751c7ee0421918a65 test.gguf:tensor_9 - Ok
sha256 23d57cf0d7a6e90b0b3616b41300e0cd354781e812add854a5f95aa55f2bc514 test.gguf:tensor_9 - Ok
xxh64 5a54d3aad816f302 test.gguf - Ok
sha1 d15be52c4ff213e823cb6dd13af7ee2f978e7042 test.gguf - Ok
sha256 7dd641b32f59b60dbd4b5420c4b0f6321ccf48f58f6ae201a3dbc4a58a27c6e4 test.gguf - Ok
Verification results for test.gguf.manifest - Success
```
## Crypto/Hash Libraries Used
These micro c libraries dependencies was installed via the [clib c package manager](https://github.com/clibs)
- https://github.com/Cyan4973/xxHash
- https://github.com/clibs/sha1/
- https://github.com/jb55/sha256.c
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment