"vscode:/vscode.git/clone" did not exist on "55f68ad2f7e9dc4d4f2aa4d6c568deec1ff39378"
Commit 4cc1a614 authored by xuxzh1's avatar xuxzh1 🎱
Browse files

init

parents
Pipeline #1891 canceled with stages
// swift-tools-version: 5.5
// The swift-tools-version declares the minimum version of Swift required to build this package.
import PackageDescription
let package = Package(
name: "llama-batched-swift",
platforms: [.macOS(.v12)],
dependencies: [
.package(name: "llama", path: "../../"),
],
targets: [
// Targets are the basic building blocks of a package, defining a module or a test suite.
// Targets can depend on other targets in this package and products from dependencies.
.executableTarget(
name: "llama-batched-swift",
dependencies: ["llama"],
path: "Sources",
linkerSettings: [.linkedFramework("Foundation"), .linkedFramework("AppKit")]
),
]
)
This is a swift clone of `examples/batched`.
$ `make`
$ `./llama-batched-swift MODEL_PATH [PROMPT] [PARALLEL]`
import Foundation
import llama
let arguments = CommandLine.arguments
// Check that we have at least one argument (the model path)
guard arguments.count > 1 else {
print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]")
exit(1)
}
let modelPath: String = arguments[1]
let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is"
let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1
// total length of the sequences including the prompt
let n_len: Int = 32
// init LLM
llama_backend_init()
defer {
llama_backend_free()
}
let model_params = llama_model_default_params()
guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else {
print("Failed to load model")
exit(1)
}
defer {
llama_free_model(model)
}
var tokens = tokenize(text: prompt, add_bos: true)
let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
var context_params = llama_context_default_params()
context_params.seed = 1234
context_params.n_ctx = n_kv_req
context_params.n_batch = UInt32(max(n_len, n_parallel))
context_params.n_threads = 8
context_params.n_threads_batch = 8
let context = llama_new_context_with_model(model, context_params)
guard context != nil else {
print("Failed to initialize context")
exit(1)
}
defer {
llama_free(context)
}
let n_ctx = llama_n_ctx(context)
print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n")
if n_kv_req > n_ctx {
print("error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", n_kv_req)
exit(1)
}
var buffer: [CChar] = []
for id: llama_token in tokens {
print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "")
}
print("\n")
var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0, 1)
defer {
llama_batch_free(batch)
}
// evaluate the initial prompt
batch.n_tokens = Int32(tokens.count)
for (i, token) in tokens.enumerated() {
batch.token[i] = token
batch.pos[i] = Int32(i)
batch.n_seq_id[i] = 1
// batch.seq_id[i][0] = 0
// TODO: is this the proper way to do this?
if let seq_id = batch.seq_id[i] {
seq_id[0] = 0
}
batch.logits[i] = 0
}
// llama_decode will output logits only for the last token of the prompt
batch.logits[Int(batch.n_tokens) - 1] = 1
if llama_decode(context, batch) != 0 {
print("llama_decode() failed")
exit(1)
}
for i in 1 ..< n_parallel {
llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
}
if n_parallel > 1 {
print("generating \(n_parallel) sequences ...\n")
}
var streams: [String] = .init(repeating: "", count: n_parallel)
var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel)
var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel)
var n_cur = batch.n_tokens
var n_decode = 0
let t_main_start = ggml_time_us()
while n_cur <= n_len {
// prepare the next batch
batch.n_tokens = 0
// sample the next token for each parallel sequence / stream
for i in 0 ..< n_parallel {
if i_batch[i] < 0 {
// the stream has already finished
continue
}
var n_vocab = llama_n_vocab(model)
var logits = llama_get_logits_ith(context, i_batch[i])
var candidates: [llama_token_data] = .init(repeating: llama_token_data(), count: Int(n_vocab))
for token_id in 0 ..< n_vocab {
candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
}
var candidates_p: llama_token_data_array = .init(
data: &candidates,
size: candidates.count,
sorted: false
)
let top_k: Int32 = 40
let top_p: Float = 0.9
let temp: Float = 0.4
llama_sample_top_k(context, &candidates_p, top_k, 1)
llama_sample_top_p(context, &candidates_p, top_p, 1)
llama_sample_temp(context, &candidates_p, temp)
let new_token_id = llama_sample_token(context, &candidates_p)
// const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream? -> mark the stream as finished
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
i_batch[i] = -1
// print("")
if n_parallel > 1 {
print("stream \(i) finished at n_cur = \(n_cur)")
}
continue
}
let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? ""
// if there is only one stream, we print immediately to stdout
if n_parallel == 1 {
print(nextStringPiece, terminator: "")
}
streams[i] += nextStringPiece
// push this new token for next evaluation
batch.token[Int(batch.n_tokens)] = new_token_id
batch.pos[Int(batch.n_tokens)] = n_cur
batch.n_seq_id[Int(batch.n_tokens)] = 1
if let seq_id = batch.seq_id[Int(batch.n_tokens)] {
seq_id[0] = Int32(i)
}
batch.logits[Int(batch.n_tokens)] = 1
i_batch[i] = batch.n_tokens
batch.n_tokens += 1
n_decode += 1
}
// all streams are finished
if batch.n_tokens == 0 {
break
}
n_cur += 1
// evaluate the current batch with the transformer model
if llama_decode(context, batch) != 0 {
print("llama_decode() failed")
exit(1)
}
}
if n_parallel > 1 {
print("\n")
for (i, stream) in streams.enumerated() {
print("sequence \(i):\n\n\(prompt)\(stream)\n")
}
}
let t_main_end = ggml_time_us()
print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n")
llama_print_timings(context)
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
let utf8Count = text.utf8.count
let n_tokens = utf8Count + (add_bos ? 1 : 0)
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
var swiftTokens: [llama_token] = []
for i in 0 ..< tokenCount {
swiftTokens.append(tokens[Int(i)])
}
tokens.deallocate()
return swiftTokens
}
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
var result = [CChar](repeating: 0, count: 8)
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), 0, false)
if nTokens < 0 {
let actualTokensCount = -Int(nTokens)
result = .init(repeating: 0, count: actualTokensCount)
let check = llama_token_to_piece(
model,
token,
&result,
Int32(result.count),
0,
false
)
assert(check == actualTokensCount)
} else {
result.removeLast(result.count - Int(nTokens))
}
if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) {
return utfString
} else {
buffer.append(contentsOf: result)
let data = Data(buffer.map { UInt8(bitPattern: $0) })
if buffer.count >= 4 { // 4 bytes is the max length of a utf8 character so if we're here we need to reset the buffer
buffer = []
}
guard let bufferString = String(data: data, encoding: .utf8) else {
return nil
}
buffer = []
return bufferString
}
}
set(TARGET llama-batched)
add_executable(${TARGET} batched.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
# llama.cpp/example/batched
The example demonstrates batched generation from a given prompt
```bash
./llama-batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4
...
main: n_len = 32, n_ctx = 2048, n_parallel = 4, n_kv_req = 113
Hello my name is
main: generating 4 sequences ...
main: stream 0 finished
main: stream 1 finished
main: stream 2 finished
main: stream 3 finished
sequence 0:
Hello my name is Shirley. I am a 25-year-old female who has been working for over 5 years as a b
sequence 1:
Hello my name is Renee and I'm a 32 year old female from the United States. I'm looking for a man between
sequence 2:
Hello my name is Diana. I am looking for a housekeeping job. I have experience with children and have my own transportation. I am
sequence 3:
Hello my name is Cody. I am a 3 year old neutered male. I am a very friendly cat. I am very playful and
main: decoded 108 tokens in 3.57 s, speed: 30.26 t/s
llama_print_timings: load time = 587.00 ms
llama_print_timings: sample time = 2.56 ms / 112 runs ( 0.02 ms per token, 43664.72 tokens per second)
llama_print_timings: prompt eval time = 4089.11 ms / 118 tokens ( 34.65 ms per token, 28.86 tokens per second)
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
llama_print_timings: total time = 4156.04 ms
```
#include "common.h"
#include "llama.h"
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
LOG_TEE("\n");
}
int main(int argc, char ** argv) {
gpt_params params;
params.prompt = "Hello my name is";
params.n_predict = 32;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
}
// number of parallel batches
int n_parallel = params.n_parallel;
// total length of the sequences including the prompt
int n_predict = params.n_predict;
// init LLM
llama_backend_init();
llama_numa_init(params.numa);
// initialize the model
llama_model_params model_params = llama_model_params_from_gpt_params(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
// tokenize the prompt
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize(model, params.prompt, true);
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
// initialize the context
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
ctx_params.n_ctx = n_kv_req;
ctx_params.n_batch = std::max(n_predict, n_parallel);
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
const int n_ctx = llama_n_ctx(ctx);
LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
// make sure the KV cache is big enough to hold all the prompt and generated tokens
if (n_kv_req > n_ctx) {
LOG_TEE("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__, n_kv_req);
LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__);
return 1;
}
// print the prompt token-by-token
fprintf(stderr, "\n");
for (auto id : tokens_list) {
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
}
fflush(stderr);
// create a llama_batch
// we use this object to submit token data for decoding
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t) n_parallel), 0, n_parallel);
std::vector<llama_seq_id> seq_ids(n_parallel, 0);
for (int32_t i = 0; i < n_parallel; ++i) {
seq_ids[i] = i;
}
// evaluate the initial prompt
for (size_t i = 0; i < tokens_list.size(); ++i) {
llama_batch_add(batch, tokens_list[i], i, seq_ids, false);
}
GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
if (llama_model_has_encoder(model)) {
if (llama_encode(ctx, batch)) {
LOG_TEE("%s : failed to eval\n", __func__);
return 1;
}
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
if (decoder_start_token_id == -1) {
decoder_start_token_id = llama_token_bos(model);
}
llama_batch_clear(batch);
llama_batch_add(batch, decoder_start_token_id, 0, seq_ids, false);
}
// llama_decode will output logits only for the last token of the prompt
batch.logits[batch.n_tokens - 1] = true;
if (llama_decode(ctx, batch) != 0) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
//// assign the system KV cache to all parallel sequences
//// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
//for (int32_t i = 1; i < n_parallel; ++i) {
// llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
//}
if (n_parallel > 1) {
LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
}
// main loop
// we will store the parallel decoded sequences in this vector
std::vector<std::string> streams(n_parallel);
// remember the batch index of the last token for each parallel sequence
// we need this to determine which logits to sample from
std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
int n_cur = batch.n_tokens;
int n_decode = 0;
const auto t_main_start = ggml_time_us();
while (n_cur <= n_predict) {
// prepare the next batch
llama_batch_clear(batch);
// sample the next token for each parallel sequence / stream
for (int32_t i = 0; i < n_parallel; ++i) {
if (i_batch[i] < 0) {
// the stream has already finished
continue;
}
auto n_vocab = llama_n_vocab(model);
auto * logits = llama_get_logits_ith(ctx, i_batch[i]);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
const int top_k = 40;
const float top_p = 0.9f;
const float temp = 0.4f;
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_temp (ctx, &candidates_p, temp);
const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of generation? -> mark the stream as finished
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
i_batch[i] = -1;
LOG_TEE("\n");
if (n_parallel > 1) {
LOG_TEE("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
}
continue;
}
// if there is only one stream, we print immediately to stdout
if (n_parallel == 1) {
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
fflush(stdout);
}
streams[i] += llama_token_to_piece(ctx, new_token_id);
i_batch[i] = batch.n_tokens;
// push this new token for next evaluation
llama_batch_add(batch, new_token_id, n_cur, { i }, true);
n_decode += 1;
}
// all streams are finished
if (batch.n_tokens == 0) {
break;
}
n_cur += 1;
// evaluate the current batch with the transformer model
if (llama_decode(ctx, batch)) {
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
}
LOG_TEE("\n");
if (n_parallel > 1) {
LOG_TEE("\n");
for (int32_t i = 0; i < n_parallel; ++i) {
LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
}
}
const auto t_main_end = ggml_time_us();
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
llama_print_timings(ctx);
fprintf(stderr, "\n");
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}
set(TARGET llama-bench-matmult)
add_executable(${TARGET} benchmark-matmult.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(${TARGET} PRIVATE ../../common)
target_compile_features(${TARGET} PRIVATE cxx_std_11)
#include "common.h"
#include "ggml.h"
#include <locale.h>
#include <assert.h>
#include <math.h>
#include <cstring>
#include <cstdio>
#include <cinttypes>
#include <unordered_map>
#include <queue>
#include <string.h>
#include <cassert>
#include <fstream>
#include <string>
#include <iterator>
#include <algorithm>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
if (plan.work_size > 0) {
buf.resize(plan.work_size);
plan.work_data = buf.data();
}
ggml_graph_compute(graph, &plan);
}
static float tensor_sum_elements(const ggml_tensor * tensor) {
double sum = 0;
if (tensor->type == GGML_TYPE_F32) {
for (int j = 0; j < tensor->ne[1]; j++) {
for (int k = 0; k < tensor->ne[0]; k++) {
sum += ((float *) tensor->data)[j*tensor->ne[0] + k];
}
}
}
return sum;
}
static void tensor_dump(const ggml_tensor * tensor, const char * name) {
printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name,
tensor->type, ggml_type_name(tensor->type),
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
float sum = tensor_sum_elements(tensor);
printf("Sum of tensor %s is %6.2f\n", name, sum);
}
#define TENSOR_DUMP(tensor) tensor_dump(tensor, #tensor)
struct benchmark_params_struct {
int32_t n_threads = 1;
int32_t n_iterations = 10;
};
static void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -i N, --iter N number of iterations to use during computation (default: %d)\n", params.n_iterations);
fprintf(stderr, "\n");
}
int main(int argc, char ** argv) {
struct benchmark_params_struct benchmark_params;
bool invalid_param = false;
std::string arg;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
invalid_param = true;
break;
}
benchmark_params.n_threads = std::stoi(argv[i]);
} else if (arg == "-i" || arg == "--iter") {
if (++i >= argc) {
invalid_param = true;
break;
}
benchmark_params.n_iterations = std::stoi(argv[i]);
} else if (arg == "-h" || arg == "--help") {
print_usage(argc, argv, benchmark_params);
exit(0);
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
print_usage(argc, argv, benchmark_params);
exit(1);
}
print_build_info();
printf("Starting Test\n");
// create the ggml context
struct ggml_context * ctx;
//const int sizex = 4096;
//const int sizey = 11008;
#undef VERBOSE_DEBUGGING
#ifndef VERBOSE_DEBUGGING
const int sizey = 4096;
const int sizex = 11008;
const int sizez = 128;
#else
/* Working - let's increase size */
const int sizey = 1;
const int sizex = (8*32);
const int sizez = 1;
/*const int sizey = 1;
const int sizex = 3*(8*32);
const int sizez = 1;*/
#endif
//printf("Memsize required = %i\n", sizex*sizex);
// TODO: perform the bench for all types or for a user specified type
const ggml_type qtype = GGML_TYPE_Q4_1;
size_t ctx_size = 0;
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizez);
ctx_size += ggml_row_size(qtype, sizex*sizey);
ctx_size += ggml_row_size(qtype, sizex*sizey);
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
ctx_size += 1024*1024*16;
printf("Allocating Memory of size %zi bytes, %zi MB\n",ctx_size, (ctx_size/1024/1024));
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
/* no_alloc =*/ 0
};
ctx = ggml_init(params);
if (!ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return 1;
}
printf("Creating new tensors\n");
// printf("Creating new tensor m1\n");
struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
ggml_set_f32(m11, 1.0f);
// printf("Creating new tensor m1\n");
struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
ggml_set_f32(m12, 1.5f);
// printf("Creating new tensor m2\n");
struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez);
ggml_set_f32(m2, 2.0f);
printf("\n------ Test 1 - Matrix Mult via F32 code\n");
// printf("Creating new tensor m11xm2\n");
struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);
// printf("Creating compute graph\n");
struct ggml_cgraph * gf = ggml_new_graph(ctx);
ggml_build_forward_expand(gf, m11xm2);
printf("n_threads=%i\n", benchmark_params.n_threads);
TENSOR_DUMP(m11);
TENSOR_DUMP(m2);
std::vector<uint8_t> work_buffer;
ggml_graph_compute_helper(work_buffer, gf, benchmark_params.n_threads);
TENSOR_DUMP(gf->nodes[0]);
printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype));
int32_t nelements = sizex*sizey;
// Set up a the benchmark matrices
// printf("Creating new tensor q11 & Running quantize\n");
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements/m11->ne[0], m11->ne[0], nullptr);
// Set up a the compute graph
// printf("Creating new tensor q31\n");
struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2);
// printf("Creating compute graph\n");
struct ggml_cgraph * gf31 = ggml_new_graph(ctx);
ggml_build_forward_expand(gf31, q31);
// Set up a second graph computation to make sure we override the CPU cache lines
// printf("Creating new tensor q12 & Running quantize\n");
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements/m12->ne[0], m12->ne[0], nullptr);
// printf("Creating new tensor q32\n");
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
//printf("Creating compute graph\n");
struct ggml_cgraph * gf32 = ggml_new_graph(ctx);
ggml_build_forward_expand(gf32, q32);
printf("n_threads=%i\n", benchmark_params.n_threads);
const int dimx = sizex;
const int dimy = sizey;
const int dimz = sizez;
long long int flops_per_dot_product = dimy + dimy;
long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ;
printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000);
// Let's use the F32 result from above as a reference for the quantized multiplication
float sum_of_F32_reference = tensor_sum_elements(gf->nodes[0]);
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
printf("=====================================================================================\n");
double gflops_sum = 0;
for (int i=0;i<benchmark_params.n_iterations ;i++) {
long long int start = ggml_time_us();
//printf("Running ggml_graph_compute\n");
ggml_graph_compute_helper(work_buffer, gf31, benchmark_params.n_threads);
long long int stop = ggml_time_us();
long long int usec = stop-start;
double gflops = (double)(flops_per_matrix)/usec/1000.0;
gflops_sum += gflops;
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%10.2f\n",
i,
benchmark_params.n_threads,
sizex, sizey, sizez, flops_per_matrix,
usec,gflops);
#ifdef VERBOSE_DEBUGGING
TENSOR_DUMP("res",gf31.nodes[0])
#endif
// Check that the matrix multiplication result is in the right ballpark
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
float sum_of_Q4_result = tensor_sum_elements(gf31->nodes[0]);
float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference);
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
if (delta > allowed_delta) {
printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n",
sum_of_F32_reference,
sum_of_Q4_result,
delta,
allowed_delta
);
exit(0);
}
// Running a different graph computation to make sure we override the CPU cache lines
ggml_graph_compute_helper(work_buffer, gf32, benchmark_params.n_threads);
}
printf("\n");
printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations));
printf("=====================================================================================\n");
}
@setlocal disabledelayedexpansion enableextensions
@echo off
cd /d "%~dp0.."
if not "%errorlevel%"=="0" (
echo Unable to change directory.
pause
exit /b 1
)
if not defined MODEL set "MODEL=models\13B\ggml-model-q4_0.bin"
if not defined USER_NAME set "USER_NAME=User"
if not defined AI_NAME set "AI_NAME=ChatLLaMa"
rem Adjust to the number of CPU cores you want to use.
rem if not defined N_THREAD set "N_THREAD=8"
rem Number of tokens to predict (made it larger than default because we want a long interaction)
if not defined N_PREDICTS set "N_PREDICTS=2048"
if not defined GEN_OPTIONS set "GEN_OPTIONS=--ctx_size 2048 --temp 0.7 --top_k 40 --top_p 0.5 --repeat_last_n 256 --batch_size 1024 --repeat_penalty 1.17647"
rem Default main script paths
set "DEFAULT_MAIN_SCRIPT_PATHS=main.exe build\bin\main.exe"
rem Get main script path from command line arguments
set "MAIN_SCRIPT_PATH=%~1"
rem If the main script path was not specified, try the default paths
if not defined MAIN_SCRIPT_PATH (
for %%i in (%DEFAULT_MAIN_SCRIPT_PATHS%) do (
if exist "%%i" set "MAIN_SCRIPT_PATH=%%i"
)
)
rem If the main script path was not found, tell the user how to specify it
if not defined MAIN_SCRIPT_PATH (
echo The main script could not be found. Please provide the path to the main script as 1st argument to this script, or place the main script in one of the default locations:
echo %DEFAULT_MAIN_SCRIPT_PATHS%
pause
exit /b 1
)
rem Default context, feel free to edit it
set "PROMPT_TEXT=Text transcript of a never ending dialog, where %USER_NAME% interacts with an AI assistant named %AI_NAME%. %AI_NAME% is helpful, kind, honest, friendly, good at writing and never fails to answer %USER_NAME%'s requests immediately and with details and precision. There are no annotations like (30 seconds passed...) or (to himself), just what %USER_NAME% and %AI_NAME% say aloud to each other. The dialog lasts for years, the entirety of it is shared below. It's 10000 pages long. The transcript only includes text, it does not include markup like HTML and Markdown."
rem Set a temporary variable if N_THREAD is set
if defined N_THREAD (
set "_N_THREAD=--threads %N_THREAD%"
) else (
set "_N_THREAD="
)
rem Run the script
echo "%MAIN_SCRIPT_PATH%" %GEN_OPTIONS% %_N_THREAD% ^
--model "%MODEL%" ^
--n_predict %N_PREDICTS% ^
--color --interactive ^
--reverse-prompt "%USER_NAME%:" ^
--prompt "%PROMPT_TEXT%"
#!/bin/bash
set -e
cd "$(dirname "$0")/.." || exit
MODEL="${MODEL:-./models/13B/ggml-model-q4_0.bin}"
PROMPT_TEMPLATE=${PROMPT_TEMPLATE:-./prompts/chat.txt}
USER_NAME="${USER_NAME:-USER}"
AI_NAME="${AI_NAME:-ChatLLaMa}"
# Adjust to the number of CPU cores you want to use.
N_THREAD="${N_THREAD:-8}"
# Number of tokens to predict (made it larger than default because we want a long interaction)
N_PREDICTS="${N_PREDICTS:-2048}"
# Note: you can also override the generation options by specifying them on the command line:
# For example, override the context size by doing: ./chatLLaMa --ctx_size 1024
GEN_OPTIONS="${GEN_OPTIONS:---ctx_size 2048 --temp 0.7 --top_k 40 --top_p 0.5 --repeat_last_n 256 --batch_size 1024 --repeat_penalty 1.17647}"
DATE_TIME=$(date +%H:%M)
DATE_YEAR=$(date +%Y)
PROMPT_FILE=$(mktemp -t llamacpp_prompt.XXXXXXX.txt)
sed -e "s/\[\[USER_NAME\]\]/$USER_NAME/g" \
-e "s/\[\[AI_NAME\]\]/$AI_NAME/g" \
-e "s/\[\[DATE_TIME\]\]/$DATE_TIME/g" \
-e "s/\[\[DATE_YEAR\]\]/$DATE_YEAR/g" \
$PROMPT_TEMPLATE > $PROMPT_FILE
# shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS
./llama-cli $GEN_OPTIONS \
--model "$MODEL" \
--threads "$N_THREAD" \
--n_predict "$N_PREDICTS" \
--color --interactive \
--file ${PROMPT_FILE} \
--reverse-prompt "${USER_NAME}:" \
--in-prefix ' ' \
"$@"
#!/bin/bash
set -euo pipefail
cd "$(dirname "$0")/.." || exit
if [[ -z "${PROMPT_CACHE_FILE+x}" || -z "${CHAT_SAVE_DIR+x}" ]]; then
echo >&2 "error: PROMPT_CACHE_FILE and CHAT_SAVE_DIR must be provided"
exit 1
fi
MODEL="${MODEL:-./models/llama-13b/ggml-model-q4_0.gguf}"
PROMPT_TEMPLATE="${PROMPT_TEMPLATE:-./prompts/chat.txt}"
USER_NAME="${USER_NAME:-User}"
AI_NAME="${AI_NAME:-ChatLLaMa}"
DATE_TIME="$(date +%H:%M)"
DATE_YEAR="$(date +%Y)"
LOG="${CHAT_SAVE_DIR}/main.log"
LOG_BG="${CHAT_SAVE_DIR}/main-bg.log"
CUR_PROMPT_FILE="${CHAT_SAVE_DIR}/current-prompt.txt"
CUR_PROMPT_CACHE="${CHAT_SAVE_DIR}/current-cache.bin"
NEXT_PROMPT_FILE="${CHAT_SAVE_DIR}/next-prompt.txt"
NEXT_PROMPT_CACHE="${CHAT_SAVE_DIR}/next-cache.bin"
SESSION_SIZE_MSG_PATTERN='main: session file matches [[:digit:]]+ / [[:digit:]]+'
SAMPLE_TIME_MSG_PATTERN='sample time =[[:space:]]+[[:digit:]]+.[[:digit:]]+ ms /[[:space:]]+[[:digit:]]+'
SED_DELETE_MESSAGES="/^(${USER_NAME}:|${AI_NAME}:|\\.\\.\\.)/,\$d"
CTX_SIZE=2048
CTX_ROTATE_POINT=$((CTX_SIZE * 3 / 5)) # REVIEW
OPTS=(--model "$MODEL" --ctx_size "$CTX_SIZE" --repeat_last_n 256 "$@")
# An unbuffered `tail -c+N`
skip_bytes() {
LANG=C IFS= read -r -n "$1" -d '' c
while LANG=C IFS= read -r -n 1 -d '' c; do
printf '%s' "$c"
done
}
mkdir -p "$CHAT_SAVE_DIR"
echo >"$LOG"
trap "tail -n100 ${LOG}" EXIT
if [[ ! -e "$CUR_PROMPT_FILE" ]]; then
sed -e "s/\[\[USER_NAME\]\]/${USER_NAME}/g" \
-e "s/\[\[AI_NAME\]\]/${AI_NAME}/g" \
-e "s/\[\[DATE_TIME\]\]/${DATE_TIME}/g" \
-e "s/\[\[DATE_YEAR\]\]/${DATE_YEAR}/g" \
"$PROMPT_TEMPLATE" >"$CUR_PROMPT_FILE"
fi
if [[ ! -e "$NEXT_PROMPT_FILE" ]]; then
sed -r "$SED_DELETE_MESSAGES" "$CUR_PROMPT_FILE" >"$NEXT_PROMPT_FILE"
fi
if [[ "$(tail -c4 "$NEXT_PROMPT_FILE")" != "..." ]]; then
echo '...' >>"$NEXT_PROMPT_FILE"
fi
if [[ ! -e "$PROMPT_CACHE_FILE" ]]; then
echo 'Prompt cache does not exist, building...'
# Default batch_size to 64 here for better user feedback during initial prompt processing
./llama-cli 2>>"$LOG" \
--batch_size 64 \
"${OPTS[@]}" \
--prompt-cache "$PROMPT_CACHE_FILE" \
--file "$CUR_PROMPT_FILE" \
--n_predict 1
echo
echo 'Done!'
fi
if [[ ! -e "$CUR_PROMPT_CACHE" ]]; then
cp "$PROMPT_CACHE_FILE" "$CUR_PROMPT_CACHE"
fi
if [[ ! -e "$NEXT_PROMPT_CACHE" ]]; then
cp "$PROMPT_CACHE_FILE" "$NEXT_PROMPT_CACHE"
fi
printf '%s ' "$(< "$CUR_PROMPT_FILE")"
n_tokens=0
while read -e line; do
# Limit generation to remaining context, with a buffer and estimating 2 chars/token for input
n_predict=$((CTX_SIZE - n_tokens - ${#line} / 2 - 32))
# Swap prompts when we're about to run out of context
if ((n_predict <= 0)); then
wait # for background main (below) to finish with next prompt
mv "$NEXT_PROMPT_FILE" "$CUR_PROMPT_FILE"
mv "$NEXT_PROMPT_CACHE" "$CUR_PROMPT_CACHE"
sed -r "$SED_DELETE_MESSAGES" "$CUR_PROMPT_FILE" >"$NEXT_PROMPT_FILE"
echo '...' >>"$NEXT_PROMPT_FILE"
cp "$PROMPT_CACHE_FILE" "$NEXT_PROMPT_CACHE"
n_tokens=0
n_predict=$((CTX_SIZE / 2))
fi
echo " ${line}" >>"$CUR_PROMPT_FILE"
if ((n_tokens > CTX_ROTATE_POINT)); then
echo " ${line}" >>"$NEXT_PROMPT_FILE"
fi
n_prompt_len_pre=$(($(wc -c <"$CUR_PROMPT_FILE")))
printf '%s: ' "$AI_NAME" >>"$CUR_PROMPT_FILE"
./llama-cli 2>>"$LOG" "${OPTS[@]}" \
--prompt-cache "$CUR_PROMPT_CACHE" \
--prompt-cache-all \
--file "$CUR_PROMPT_FILE" \
--reverse-prompt "${USER_NAME}:" \
--n_predict "$n_predict" |
skip_bytes 1 | # skip BOS token added by ./llama-cli
tee "$CUR_PROMPT_FILE.tmp" | # save prompt + generation to tmp file
skip_bytes "$n_prompt_len_pre" # print generation
mv "$CUR_PROMPT_FILE.tmp" "$CUR_PROMPT_FILE"
# if we hit n_predict instead of reverse-prompt, we need to add the prompt
if [[ "$(tail -n1 "$CUR_PROMPT_FILE")" != "${USER_NAME}:" ]]; then
printf '\n%s:' "$USER_NAME"
printf '\n%s:' "$USER_NAME" >> "$CUR_PROMPT_FILE"
fi
printf ' '
# HACK get num tokens from debug message
# TODO get both messages in one go
if ! session_size_msg="$(tail -n30 "$LOG" | grep -oE "$SESSION_SIZE_MSG_PATTERN")" ||
! sample_time_msg="$(tail -n10 "$LOG" | grep -oE "$SAMPLE_TIME_MSG_PATTERN")"; then
echo >&2 "Couldn't get number of tokens from ./llama-cli output!"
exit 1
fi
n_tokens=$(($(cut -d/ -f2 <<<"$session_size_msg") + $(cut -d/ -f2 <<<"$sample_time_msg")))
if ((n_tokens > CTX_ROTATE_POINT)); then
tail -c+$((n_prompt_len_pre + 1)) "$CUR_PROMPT_FILE" >>"$NEXT_PROMPT_FILE"
fi
# Update cache for next prompt in background, ideally during user input
./llama-cli >>"$LOG_BG" 2>&1 "${OPTS[@]}" \
--prompt-cache "$NEXT_PROMPT_CACHE" \
--file "$NEXT_PROMPT_FILE" \
--n_predict 1 &
done
#!/bin/bash
set -e
cd "$(dirname "$0")/.." || exit
MODEL="${MODEL:-./models/ggml-vic13b-uncensored-q5_0.bin}"
PROMPT_TEMPLATE=${PROMPT_TEMPLATE:-./prompts/chat.txt}
USER_NAME="### Human"
AI_NAME="### Assistant"
# Adjust to the number of CPU cores you want to use.
N_THREAD="${N_THREAD:-8}"
# Number of tokens to predict (made it larger than default because we want a long interaction)
N_PREDICTS="${N_PREDICTS:-2048}"
# Note: you can also override the generation options by specifying them on the command line:
# For example, override the context size by doing: ./chatLLaMa --ctx_size 1024
GEN_OPTIONS="${GEN_OPTIONS:---ctx_size 2048 --temp 0.7 --top_k 40 --top_p 0.5 --repeat_last_n 256 --batch_size 1024 --repeat_penalty 1.17647}"
DATE_TIME=$(date +%H:%M)
DATE_YEAR=$(date +%Y)
PROMPT_FILE=$(mktemp -t llamacpp_prompt.XXXXXXX.txt)
sed -e "s/\[\[USER_NAME\]\]/$USER_NAME/g" \
-e "s/\[\[AI_NAME\]\]/$AI_NAME/g" \
-e "s/\[\[DATE_TIME\]\]/$DATE_TIME/g" \
-e "s/\[\[DATE_YEAR\]\]/$DATE_YEAR/g" \
$PROMPT_TEMPLATE > $PROMPT_FILE
# shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS
./bin/llama-cli $GEN_OPTIONS \
--model "$MODEL" \
--threads "$N_THREAD" \
--n_predict "$N_PREDICTS" \
--color --interactive \
--file ${PROMPT_FILE} \
--reverse-prompt "### Human:" \
--in-prefix ' ' \
"$@"
#!/bin/bash
#
# Temporary script - will be removed in the future
#
cd `dirname $0`
cd ..
# Important:
#
# "--keep 48" is based on the contents of prompts/chat-with-bob.txt
#
./llama-cli -m ./models/llama-7b/ggml-model-q4_0.gguf -c 512 -b 1024 -n 256 --keep 48 \
--repeat_penalty 1.0 --color -i \
-r "User:" -f prompts/chat-with-bob.txt
set(TARGET llama-convert-llama2c-to-ggml)
add_executable(${TARGET} convert-llama2c-to-ggml.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
## Convert llama2.c model to ggml
This example reads weights from project [llama2.c](https://github.com/karpathy/llama2.c) and saves them in ggml compatible format. The vocab that is available in `models/ggml-vocab.bin` is used by default.
To convert the model first download the models from the [llama2.c](https://github.com/karpathy/llama2.c) repository:
`$ make -j`
After successful compilation, following usage options are available:
```
usage: ./llama-convert-llama2c-to-ggml [options]
options:
-h, --help show this help message and exit
--copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default 'models/7B/ggml-model-f16.gguf')
--llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model
--llama2c-output-model FNAME model path to save the converted llama2.c model (default ak_llama_model.bin')
```
An example command using a model from [karpathy/tinyllamas](https://huggingface.co/karpathy/tinyllamas) is as follows:
`$ ./llama-convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin`
Note: The vocabulary for `stories260K.bin` should be its own tokenizer `tok512.bin` found in [karpathy/tinyllamas/stories260K](https://huggingface.co/karpathy/tinyllamas/tree/main/stories260K).
Now you can use the model with a command like:
`$ ./llama-cli -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256`
#include "ggml.h"
#include "llama.h"
#include "common.h"
#include "log.h"
#include <unordered_map>
#include <vector>
#include <cassert>
#include <climits>
#include <cstring>
#include <cstdarg>
#include <ctime>
#include <random>
#include <stdexcept>
#include <sstream>
#include <algorithm>
#include <string>
// GGUF keys & tensor names.
#define KV_GENERAL_ARCHITECTURE "general.architecture"
#define KV_GENERAL_NAME "general.name"
#define KV_TOKENIZER_MODEL "tokenizer.ggml.model"
#define KV_TOKENIZER_LIST "tokenizer.ggml.tokens"
#define KV_TOKENIZER_TOKEN_TYPE "tokenizer.ggml.token_type"
#define KV_TOKENIZER_SCORES "tokenizer.ggml.scores"
#define KV_TOKENIZER_BOS_ID "tokenizer.ggml.bos_token_id"
#define KV_TOKENIZER_EOS_ID "tokenizer.ggml.eos_token_id"
#define KV_TOKENIZER_UNK_ID "tokenizer.ggml.unknown_token_id"
#define KV_TOKENIZER_SEP_ID "tokenizer.ggml.seperator_token_id"
#define KV_TOKENIZER_PAD_ID "tokenizer.ggml.padding_token_id"
#define KV_TOKENIZER_HF_JSON "tokenizer.huggingface.json"
#define KV_CONTEXT_LENGTH "llama.context_length"
#define KV_EMBEDDING_LENGTH "llama.embedding_length"
#define KV_BLOCK_COUNT "llama.block_count"
#define KV_FEED_FORWARD_LENGTH "llama.feed_forward_length"
#define KV_ATTENTION_HEAD_COUNT "llama.attention.head_count"
#define KV_ATTENTION_HEAD_COUNT_KV "llama.attention.head_count_kv"
#define KV_ATTENTION_LAYERNORM_RMS_EPS "llama.attention.layer_norm_rms_epsilon"
#define KV_ROPE_DIMENSION_COUNT "llama.rope.dimension_count"
#define TN_TOKEN_EMBD "token_embd.weight"
#define TN_OUTPUT_NORM "output_norm.weight"
#define TN_OUTPUT "output.weight"
#define TN_ATTN_NORM "blk.%d.attn_norm.weight"
#define TN_ATTN_Q "blk.%d.attn_q.weight"
#define TN_ATTN_K "blk.%d.attn_k.weight"
#define TN_ATTN_V "blk.%d.attn_v.weight"
#define TN_ATTN_OUTPUT "blk.%d.attn_output.weight"
#define TN_FFN_NORM "blk.%d.ffn_norm.weight"
#define TN_FFN_GATE "blk.%d.ffn_gate.weight"
#define TN_FFN_DOWN "blk.%d.ffn_down.weight"
#define TN_FFN_UP "blk.%d.ffn_up.weight"
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
#define LLAMA_FILE_VERSION_GGJT_V3 3
#define TOKENIZER_NAME "llama"
#define UNKNOWN_TOKEN_ID 0
#define BOS_TOKEN_ID 1
#define EOS_TOKEN_ID 2
//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
typedef struct {
int dim; // transformer dimension
int hidden_dim; // for ffn layers
int n_layers; // number of layers
int n_heads; // number of query heads
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
int vocab_size; // vocabulary size, usually 256 (byte-level)
int seq_len; // max sequence length
} Config;
struct TransformerWeights {
// token embedding table
std::vector<float> token_embedding_table; // (vocab_size, dim)
// weights for rmsnorms
std::vector<float> rms_att_weight; // (layer, dim) rmsnorm weights
std::vector<float> rms_ffn_weight; // (layer, dim)
// weights for matmuls
std::vector<float> wq; // (layer, dim, dim)
std::vector<float> wk; // (layer, dim, dim)
std::vector<float> wv; // (layer, dim, dim)
std::vector<float> wo; // (layer, dim, dim)
// weights for ffn
std::vector<float> w1; // (layer, hidden_dim, dim)
std::vector<float> w2; // (layer, dim, hidden_dim)
std::vector<float> w3; // (layer, hidden_dim, dim)
// final rmsnorm
std::vector<float> rms_final_weight; // (dim,)
// freq_cis for RoPE relatively positional embeddings
// std::vector<float> freq_cis_real; // (seq_len, dim/2)
// std::vector<float> freq_cis_imag; // (seq_len, dim/2)
// (optional) classifier weights for the logits, on the last layer
std::vector<float> wcls;
};
static void alloc_weights(TransformerWeights * w, const Config * p, bool shared_weights) {
const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads;
try {
w->token_embedding_table.resize(p->vocab_size * p->dim);
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
w->rms_att_weight.resize(p->n_layers * p->dim);
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
w->rms_ffn_weight.resize(p->n_layers * p->dim);
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
w->wq.resize(p->n_layers * p->dim * p->dim);
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
w->wo.resize(p->n_layers * p->dim * p->dim);
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
w->w1.resize(p->n_layers * p->hidden_dim * p->dim);
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
w->w2.resize(p->n_layers * p->hidden_dim * p->dim);
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
w->w3.resize(p->n_layers * p->hidden_dim * p->dim);
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
w->rms_final_weight.resize(p->dim);
LOG("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
if (shared_weights) {
w->wcls = {};
} else {
w->wcls.resize(p->vocab_size * p->dim);
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
}
}
catch (std::length_error &) {
die("Invalid configuration. Failed to allocate memory for weights");
}
}
static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FILE * f, bool shared_weights) {
if (fread(w->token_embedding_table.data(), sizeof(float), w->token_embedding_table.size(), f) != w->token_embedding_table.size()) return 1;
if (fread(w->rms_att_weight.data(), sizeof(float), w->rms_att_weight.size(), f) != w->rms_att_weight.size()) return 1;
if (fread(w->wq.data(), sizeof(float), w->wq.size(), f) != w->wq.size()) return 1;
if (fread(w->wk.data(), sizeof(float), w->wk.size(), f) != w->wk.size()) return 1;
if (fread(w->wv.data(), sizeof(float), w->wv.size(), f) != w->wv.size()) return 1;
if (fread(w->wo.data(), sizeof(float), w->wo.size(), f) != w->wo.size()) return 1;
if (fread(w->rms_ffn_weight.data(), sizeof(float), w->rms_ffn_weight.size(), f) != w->rms_ffn_weight.size()) return 1;
if (fread(w->w1.data(), sizeof(float), w->w1.size(), f) != w->w1.size()) return 1;
if (fread(w->w2.data(), sizeof(float), w->w2.size(), f) != w->w2.size()) return 1;
if (fread(w->w3.data(), sizeof(float), w->w3.size(), f) != w->w3.size()) return 1;
if (fread(w->rms_final_weight.data(), sizeof(float), w->rms_final_weight.size(), f) != w->rms_final_weight.size()) return 1;
// Skip freq_cis_real & freq_cis_imag
int head_size = p->dim / p->n_heads;
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
if (!shared_weights && fread(w->wcls.data(), sizeof(float), w->wcls.size(), f) != w->wcls.size()) return 1;
// Check we didn't forget to read anything
auto curr = ftell(f);
fseek(f, 0, SEEK_END);
auto end = ftell(f);
if (curr != end) {
LOG("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", __func__, curr, end);
return 1;
}
return 0;
}
static void print_sample_weights(TransformerWeights *w){
LOG("----- Quick print of first of the weight vales of all the variables\n");
LOG("%f\n", w->token_embedding_table[0]);
LOG("%f\n", w->rms_att_weight[0]);
LOG("%f\n", w->rms_ffn_weight[0]);
LOG("%f\n", w->wq[0]);
LOG("%f\n", w->wk[0]);
LOG("%f\n", w->wv[0]);
LOG("%f\n", w->wo[0]);
LOG("%f\n", w->w1[0]);
LOG("%f\n", w->w2[0]);
LOG("%f\n", w->w3[0]);
LOG("%f\n", w->rms_att_weight[0]);
if (!w->wcls.empty()) LOG("%f\n", w->wcls[0]);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
struct llama_vocab {
using id = int32_t;
using token = std::string;
using ttype = llama_token_type;
struct token_data {
token text;
float score;
ttype type;
};
std::unordered_map<token, id> token_to_id;
std::vector<token_data> id_to_token;
};
struct my_llama_hparams {
uint32_t n_vocab = 32000;
uint32_t n_ctx = 512; // this is provided as user input?
uint32_t n_embd = 4096;
uint32_t n_ff = 11008;
uint32_t n_mult = 4;
uint32_t n_head = 32;
uint32_t n_head_kv = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
bool operator!=(const my_llama_hparams& other) const {
return memcmp(this, &other, sizeof(my_llama_hparams));
}
};
struct my_llama_layer {
// normalization
struct ggml_tensor * attention_norm;
// attention
struct ggml_tensor * wq;
struct ggml_tensor * wk;
struct ggml_tensor * wv;
struct ggml_tensor * wo;
// normalization
struct ggml_tensor * ffn_norm;
// ff
struct ggml_tensor * w1;
struct ggml_tensor * w2;
struct ggml_tensor * w3;
};
struct my_llama_model {
struct ggml_context * ctx = NULL;
std::string name;
my_llama_hparams hparams;
struct ggml_tensor * tok_embeddings;
struct ggml_tensor * norm;
struct ggml_tensor * output;
std::vector<my_llama_layer> layers;
uint32_t train_its = 0;
uint32_t train_samples = 0;
uint32_t train_tokens = 0;
};
struct train_params {
const char * fn_vocab_model;
const char * fn_llama2c_model;
const char * fn_llama2c_output_model;
const char * fn_train_data;
const char * fn_checkpoint_in;
const char * fn_checkpoint_out;
const char * fn_model_out;
uint32_t seed;
int n_ctx;
int n_embd;
int n_mult;
int n_head;
int n_layer;
int n_rotmax;
int n_threads;
int n_batch;
int n_examples;
int n_predict;
int print_info_interval;
int print_details_interval;
bool samples_start_after_nl;
bool use_adam;
bool use_flash;
bool use_scratch;
// only adam
int warmup;
int cos_decay_steps;
float cos_decay_restart;
float cos_decay_alpha;
int lbfgs_n_iter;
int adam_n_iter;
float adam_alpha;
float adam_decay;
int mem_model_gb;
int mem_compute_gb;
int mem_compute0_gb;
int mem_compute1_gb;
};
static void print_params(struct my_llama_hparams * params) {
LOG("%s: n_vocab: %u\n", __func__, params->n_vocab);
LOG("%s: n_ctx: %u\n", __func__, params->n_ctx);
LOG("%s: n_embd: %u\n", __func__, params->n_embd);
LOG("%s: n_mult: %u\n", __func__, params->n_mult);
LOG("%s: n_head: %u\n", __func__, params->n_head);
LOG("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
LOG("%s: n_ff: %u\n", __func__, params->n_ff);
LOG("%s: n_layer: %u\n", __func__, params->n_layer);
LOG("%s: n_rot: %u\n", __func__, params->n_rot);
}
static void print_tensor_info(const struct ggml_context * ctx) {
for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
LOG("%s: Allocating ", __func__);
int64_t total = 1;
int i = 0;
for (; i < ggml_n_dims(t); ++i) {
if (i > 0) LOG("x ");
LOG("[%" PRId64 "] ", t->ne[i]);
total *= t->ne[i];
}
if (i > 1) LOG("= [%" PRId64 "] ", total);
LOG("float space for %s\n", ggml_get_name(t));
}
}
static void init_model(struct my_llama_model * model) {
const auto & hparams = model->hparams;
const uint32_t n_embd = hparams.n_embd;
const uint32_t n_layer = hparams.n_layer;
const uint32_t n_vocab = hparams.n_vocab;
const uint32_t n_multiqueries = hparams.n_head_kv <= 0 || hparams.n_head_kv >= hparams.n_head ? 1 : hparams.n_head / hparams.n_head_kv;
const uint32_t n_ff = hparams.n_ff;
struct ggml_context * ctx = model->ctx;
model->train_its = 0;
model->train_samples = 0;
model->train_tokens = 0;
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
ggml_set_name(model->norm, "norm.weight");
ggml_set_name(model->output, "output.weight");
model->layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = model->layers[i];
std::string layers_i = "layers." + std::to_string(i);
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
}
print_tensor_info(ctx);
}
static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
return *ptr;
}
static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
return *ptr;
}
static void print_row(struct ggml_tensor * probs, int i) {
for (int k = 0; k < probs->ne[0]; ++k) {
float p = get_f32_2d(probs, k, i);
LOG(" %f", p);
}
LOG("\n");
}
static void print_matrix(struct ggml_tensor * probs) {
assert(ggml_is_matrix(probs));
for (int i = 0; i < probs->ne[1]; ++i) {
for (int k = 0; k < probs->ne[0]; ++k) {
float p = get_f32_2d(probs, k, i);
LOG(" %.2f", p);
}
LOG("\n");
}
}
struct llama_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
llama_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode);
if (fp == NULL) {
size = 0;
} else {
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
}
size_t tell() const {
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
GGML_ASSERT(ret != -1); // this really shouldn't fail
return (size_t) ret;
}
void seek(size_t offset, int whence) {
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
GGML_ASSERT(ret == 0); // same
}
void read_raw(void * ptr, size_t size) {
if (size == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, size, 1, fp);
if (ferror(fp)) {
die_fmt("fread failed: %s", strerror(errno));
}
if (ret != 1) {
die("unexpectedly reached end of file");
}
}
std::uint32_t read_u32() {
std::uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
std::float_t read_f32() {
std::float_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
std::string read_string(std::uint32_t len) {
std::vector<char> chars(len);
read_raw(chars.data(), len);
return std::string(chars.data(), len);
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
};
static bool is_ggml_file(const char * filename) {
llama_file file(filename, "rb");
if (file.size < 4) {
return false;
}
std::string magic = file.read_string(4);
return magic == GGUF_MAGIC;
}
static std::string llama_escape_whitespaces(const std::string & text) {
std::ostringstream out;
for (char c : text) {
if (c == ' ') out << "\xe2\x96\x81";
else out << c;
}
return out.str();
}
static void load_vocab(const char * filename, const Config * config, struct llama_vocab * vocab) {
if (is_ggml_file(filename)) {
LOG("%s: Loading vocabulary from gguf file %s\n", __func__, filename);
struct ggml_context * ctx_data = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ false,
/*.ctx = */ &ctx_data,
};
struct gguf_context * ctx = gguf_init_from_file(filename, params);
GGML_ASSERT(ctx != NULL);
const int model_idx = gguf_find_key(ctx, KV_TOKENIZER_MODEL);
GGML_ASSERT(model_idx >= 0);
std::string tokenizer_name = gguf_get_val_str(ctx, model_idx);
GGML_ASSERT(tokenizer_name == TOKENIZER_NAME);
const int token_idx = gguf_find_key(ctx, KV_TOKENIZER_LIST);
GGML_ASSERT(token_idx >= 0);
const int score_idx = gguf_find_key(ctx, KV_TOKENIZER_SCORES);
GGML_ASSERT(score_idx >= 0);
const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
const int toktype_idx = gguf_find_key(ctx, KV_TOKENIZER_TOKEN_TYPE);
GGML_ASSERT(toktype_idx >= 0);
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
if (n_vocab != static_cast<uint32_t>(config->vocab_size)) {
die_fmt("vocab size mismatch: (gguf) %u != (llama2c) %d", n_vocab, config->vocab_size);
}
vocab->id_to_token.resize(n_vocab);
for (uint32_t i = 0; i < n_vocab; i++) {
std::string word = gguf_get_arr_str(ctx, token_idx, i);
vocab->token_to_id[word] = i;
auto & token_data = vocab->id_to_token[i];
token_data.text = std::move(word);
token_data.score = scores[i];
token_data.type = (llama_token_type) toktypes[i];
}
ggml_free(ctx_data);
gguf_free(ctx);
} else {
// assume llama2.c vocabulary
LOG("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
llama_file file(filename, "rb");
if (!file.fp) {
die_fmt("%s: %s", strerror(errno), filename);
}
const int n_vocab = config->vocab_size;
/* uint32_t max_token_length = */ file.read_u32(); // unused
vocab->id_to_token.resize(n_vocab);
for (llama_vocab::id id=0; id<n_vocab; ++id) {
float_t score = file.read_f32();
uint32_t len = file.read_u32();
std::string text = file.read_string(len);
unsigned char byte_val;
llama_vocab::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
if (id == UNKNOWN_TOKEN_ID) {
text = "<unk>";
type = LLAMA_TOKEN_TYPE_UNKNOWN;
} else if (id == BOS_TOKEN_ID) {
text = "<s>";
type = LLAMA_TOKEN_TYPE_CONTROL;
} else if (id == EOS_TOKEN_ID) {
text = "</s>";
type = LLAMA_TOKEN_TYPE_CONTROL;
} else if (text.empty()) {
type = LLAMA_TOKEN_TYPE_CONTROL;
} else if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
// Text of byte tokens is already in the expected format.
type = LLAMA_TOKEN_TYPE_BYTE;
} else {
type = LLAMA_TOKEN_TYPE_NORMAL;
}
text = llama_escape_whitespaces(text);
vocab->id_to_token[id].text = text;
vocab->id_to_token[id].score = score;
vocab->id_to_token[id].type = type;
vocab->token_to_id.emplace(text, id);
}
}
}
static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
int size = 1;
for (int dim = 0; dim < ggml_n_dims(gg_weights); ++dim) {
size *= gg_weights->ne[dim];
}
for (int ct = 0; ct < size; ++ct) {
int64_t i0 = 0; int64_t i1 = 0;
int64_t i2 = 0; int64_t i3 = 0;
ggml_unravel_index(gg_weights, ct, &i0, &i1, &i2, &i3);
ggml_set_f32_nd(gg_weights, i0, i1, i2, i3, karpathy_weights[ct]);
}
}
static void save_as_llama_model(
struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename
) {
// convert AK weights into GG weights one by one.
// w->token_embedding_table -> model->tok_embeddings
// float* -> struct ggml_tensor
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table.data());
convert_weights_ak_to_gg(model->output, !w->wcls.empty() ? w->wcls.data() : w->token_embedding_table.data());
convert_weights_ak_to_gg(model->norm, w->rms_final_weight.data());
//print_row(model->norm, 0);
// for rms-att-weight
int row_length = model->hparams.n_embd;
int n_ff = model->hparams.n_ff;
const uint32_t n_multiqueries = model->hparams.n_head_kv <= 0 || model->hparams.n_head_kv >= model->hparams.n_head ? 1 : model->hparams.n_head / model->hparams.n_head_kv;
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
auto & layer = model->layers[i];
// 1d
convert_weights_ak_to_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
convert_weights_ak_to_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
// from 3d matrix layer x dim x dim to 2d matrix dim x dim / n_multiqueries
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length/n_multiqueries]);
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length/n_multiqueries]);
convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
convert_weights_ak_to_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
}
struct gguf_context * ctx = gguf_init_empty();
std::vector<const char*> tokens;
std::vector<float> scores;
std::vector<llama_token_type> token_types;
for (const llama_vocab::token_data & token_data : vocab->id_to_token) {
tokens.push_back(token_data.text.c_str());
scores.push_back(token_data.score);
token_types.push_back(token_data.type);
}
gguf_set_arr_str(ctx, KV_TOKENIZER_LIST, tokens.data(), tokens.size());
gguf_set_arr_data(ctx, KV_TOKENIZER_SCORES, GGUF_TYPE_FLOAT32, scores.data(), scores.size());
gguf_set_arr_data(ctx, KV_TOKENIZER_TOKEN_TYPE, GGUF_TYPE_INT32, token_types.data(), token_types.size());
gguf_set_val_str(ctx, KV_TOKENIZER_MODEL, TOKENIZER_NAME);
gguf_set_val_str(ctx, KV_GENERAL_ARCHITECTURE, "llama");
gguf_set_val_str(ctx, KV_GENERAL_NAME, "llama");
// special tokens
gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID);
gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID);
gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID);
gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, -1);
gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, -1);
gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx);
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, model->hparams.n_head_kv);
gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
// write tensors
ggml_set_name(model->tok_embeddings, TN_TOKEN_EMBD);
gguf_add_tensor(ctx, model->tok_embeddings);
ggml_set_name(model->norm, TN_OUTPUT_NORM);
gguf_add_tensor(ctx, model->norm);
ggml_set_name(model->output, TN_OUTPUT);
gguf_add_tensor(ctx, model->output);
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
auto & layer = model->layers[i];
ggml_format_name(layer.wq, TN_ATTN_Q, i);
gguf_add_tensor(ctx, layer.wq);
ggml_format_name(layer.wk, TN_ATTN_K, i);
gguf_add_tensor(ctx, layer.wk);
ggml_format_name(layer.wv, TN_ATTN_V, i);
gguf_add_tensor(ctx, layer.wv);
ggml_format_name(layer.wo, TN_ATTN_OUTPUT, i);
gguf_add_tensor(ctx, layer.wo);
ggml_format_name(layer.attention_norm, TN_ATTN_NORM, i);
gguf_add_tensor(ctx, layer.attention_norm);
ggml_format_name(layer.w1, TN_FFN_GATE, i);
gguf_add_tensor(ctx, layer.w1);
ggml_format_name(layer.w2, TN_FFN_DOWN, i);
gguf_add_tensor(ctx, layer.w2);
ggml_format_name(layer.w3, TN_FFN_UP, i);
gguf_add_tensor(ctx, layer.w3);
ggml_format_name(layer.ffn_norm, TN_FFN_NORM, i);
gguf_add_tensor(ctx, layer.ffn_norm);
}
gguf_write_to_file(ctx, filename, false);
gguf_free(ctx);
}
static struct train_params get_default_train_params() {
struct train_params params;
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
params.fn_llama2c_output_model = "ak_llama_model.bin";
params.fn_train_data = "shakespeare.txt";
params.fn_checkpoint_in = "checkpoint.bin";
params.fn_checkpoint_out = "checkpoint.bin";
params.fn_model_out = "ggml-checkpoint-f32.bin";
params.seed = -1;
params.n_ctx = 128;
params.n_embd = 256;
params.n_mult = 256;
params.n_head = 8;
params.n_layer = 16;
params.n_rotmax = 64;
params.n_threads = 6;
params.n_batch = 8;
params.n_examples = 8;
params.n_predict = 1024;
params.print_info_interval = 1;
params.print_details_interval = 2;
params.samples_start_after_nl = false;
params.use_adam = true;
params.use_flash = false;
params.use_scratch = true;
// only adam
params.warmup = 100;
params.cos_decay_steps = 1000;
params.cos_decay_restart = 1.1f;
params.cos_decay_alpha = 0.0f;
params.lbfgs_n_iter = 16;
params.adam_n_iter = 16;
params.adam_alpha = 1e-3f;
params.adam_decay = 1e-3f;
params.mem_model_gb = 2;
params.mem_compute_gb = 24;
params.mem_compute0_gb = 8;
params.mem_compute1_gb = 2;
return params;
}
static void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " --copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default '%s')\n", params->fn_vocab_model);
fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
fprintf(stderr, "\n");
}
static bool params_parse(int argc, char ** argv, struct train_params * params) {
bool invalid_param = false;
bool reqd_param_found = false;
std::string arg;
struct train_params default_params = get_default_train_params();
const std::string arg_prefix = "--";
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
if (arg == "--copy-vocab-from-model") {
if (++i >= argc) {
invalid_param = true;
break;
}
params->fn_vocab_model = argv[i];
} else if (arg == "--llama2c-model") {
if (++i >= argc) {
invalid_param = true;
break;
}
reqd_param_found = true;
params->fn_llama2c_model = argv[i];
} else if (arg == "--llama2c-output-model") {
if (++i >= argc) {
invalid_param = true;
break;
}
params->fn_llama2c_output_model = argv[i];
} else if (arg == "-h" || arg == "--help") {
print_usage(argc, argv, &default_params);
exit(0);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
print_usage(argc, argv, &default_params);
exit(1);
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
print_usage(argc, argv, &default_params);
exit(1);
}
if (!reqd_param_found){
fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
print_usage(argc, argv, &default_params);
exit(1);
}
return true;
}
static std::string basename(const std::string &path) {
size_t pos = path.find_last_of("/\\");
if (pos == std::string::npos) {
return path;
}
return path.substr(pos + 1);
}
int main(int argc, char ** argv) {
struct train_params params = get_default_train_params();
if (!params_parse(argc, argv, &params)) {
return 1;
}
log_set_target(stdout);
Config config;
TransformerWeights weights = {};
{
LOG("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model);
FILE * file = fopen(params.fn_llama2c_model, "rb");
if (!file) {
LOG("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model);
return 1;
}
// read in the config header
if (fread(&config, sizeof(Config), 1, file) != 1) {
LOG("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model);
return 1;
}
auto shared_weights = config.vocab_size > 0;
config.vocab_size = abs(config.vocab_size);
// read in the Transformer weights
alloc_weights(&weights, &config, shared_weights);
if (checkpoint_init_weights(&weights, &config, file, shared_weights)) {
LOG("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model);
return 1;
}
fclose(file);
}
struct llama_vocab vocab;
load_vocab(params.fn_vocab_model, &config, &vocab);
struct my_llama_model model;
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
model.hparams.n_ctx = params.n_ctx;
model.hparams.n_embd = config.dim; //params.n_embd;
model.hparams.n_ff = config.hidden_dim;
model.hparams.n_mult = 32;//params.n_mult;
model.hparams.n_head = config.n_heads; //params.n_head;
model.hparams.n_head_kv = config.n_kv_heads;
model.hparams.n_layer = config.n_layers; //params.n_layer;
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
print_params(&model.hparams);
struct ggml_init_params lcparams;
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
lcparams.mem_buffer = NULL;
lcparams.no_alloc = false;
model.ctx = ggml_init(lcparams);
init_model(&model);
model.name = basename(params.fn_llama2c_model);
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
LOG("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model);
ggml_free(model.ctx);
return 0;
}
#!/usr/bin/env python3
from __future__ import annotations
import logging
import argparse
import concurrent.futures
import enum
import faulthandler
import functools
import itertools
import json
import math
import mmap
import os
import pickle
import re
import signal
import struct
import sys
import textwrap
import time
import zipfile
from abc import ABC, abstractmethod
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar
import numpy as np
if 'NO_LOCAL_GGUF' not in os.environ:
# use .parent.parent since we are in "examples" directory
sys.path.insert(1, str(Path(__file__).parent.parent / 'gguf-py'))
import gguf
from gguf import BaseVocab, Vocab, NoVocab, BpeVocab, SentencePieceVocab, LlamaHfVocab
if TYPE_CHECKING:
from typing_extensions import Self, TypeAlias
logger = logging.getLogger("convert")
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
faulthandler.register(signal.SIGUSR1)
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
ARCH = gguf.MODEL_ARCH.LLAMA
DEFAULT_CONCURRENCY = 8
ADDED_TOKENS_FILE = 'added_tokens.json'
FAST_TOKENIZER_FILE = 'tokenizer.json'
#
# data types
#
@dataclass(frozen=True)
class DataType:
name: str
dtype: np.dtype[Any]
valid_conversions: list[str]
def elements_to_bytes(self, n_elements: int) -> int:
return n_elements * self.dtype.itemsize
@dataclass(frozen=True)
class UnquantizedDataType(DataType):
pass
DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
@dataclass(frozen=True)
class QuantizedDataType(DataType):
block_size: int
quantized_dtype: np.dtype[Any]
ggml_type: gguf.GGMLQuantizationType
def quantize(self, arr: NDArray) -> NDArray:
raise NotImplementedError(f'Quantization for {self.name} not implemented')
def elements_to_bytes(self, n_elements: int) -> int:
assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
return self.quantized_dtype.itemsize * (n_elements // self.block_size)
@dataclass(frozen=True)
class Q8_0QuantizedDataType(QuantizedDataType):
# Mini Q8_0 quantization in Python!
def quantize(self, arr: NDArray) -> NDArray:
assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}'
assert arr.dtype == np.float32, f'Bad array type {arr.dtype}'
n_blocks = arr.size // self.block_size
blocks = arr.reshape((n_blocks, self.block_size))
# Much faster implementation of block quantization contributed by @Cebtenzzre
def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
d = abs(blocks).max(axis = 1) / np.float32(127)
with np.errstate(divide = 'ignore'):
qs = (blocks / d[:, None]).round()
qs[d == 0] = 0
yield from zip(d, qs)
return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
dtype = np.dtype(np.float32), valid_conversions = [],
ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
# Quantized types skipped here because they may also map to np.float32
NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
for dt in (DT_BF16, DT_F16, DT_F32, DT_I32):
if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE:
raise ValueError(f'Invalid duplicate data type {dt}')
NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt
SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
'BF16': DT_BF16,
'F16': DT_F16,
'F32': DT_F32,
'I32': DT_I32,
}
# TODO: match this with `llama_ftype`
# TODO: rename to LLAMAFileType
# TODO: move to `gguf.py`
class GGMLFileType(enum.IntEnum):
AllF32 = 0
MostlyF16 = 1 # except 1d tensors
MostlyQ8_0 = 7 # except 1d tensors
def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType:
dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
if dt is None:
raise ValueError(self)
# Convert all 1D tensors to F32. Most of the codebase that takes in 1D tensors only handles F32 tensors, and most of the outputs tensors are F32.
# Also The 1d tensors aren't much of a performance/size issue. So instead of having to have separate F32 and F16 implementations of both, just convert everything to F32 for now.
return dt if len(tensor.shape) > 1 else DT_F32
GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
GGMLFileType.AllF32 : DT_F32,
GGMLFileType.MostlyF16 : DT_F16,
GGMLFileType.MostlyQ8_0: DT_Q8_0,
}
#
# hparams loading
#
@dataclass
class Params:
n_vocab: int
n_embd: int
n_layer: int
n_ctx: int
n_ff: int
n_head: int
n_head_kv: int
n_experts: int | None = None
n_experts_used: int | None = None
f_norm_eps: float | None = None
rope_scaling_type: gguf.RopeScalingType | None = None
f_rope_freq_base: float | None = None
f_rope_scale: float | None = None
n_ctx_orig: int | None = None
rope_finetuned: bool | None = None
ftype: GGMLFileType | None = None
# path to the directory containing the model files
path_model: Path | None = None
@staticmethod
def guessed(model: LazyModel) -> Params:
# try transformer naming first
n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
# try transformer naming first
if "model.layers.0.self_attn.q_proj.weight" in model:
n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
else:
n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
if n_layer < 1:
msg = """\
failed to guess 'n_layer'. This model is unknown or unsupported.
Suggestion: provide 'config.json' of the model in the same directory containing model files."""
raise KeyError(textwrap.dedent(msg))
n_head = n_embd // 128 # guessed
n_mult = 256 # guessed
# TODO: verify this
n_ff = int(2 * (4 * n_embd) / 3)
n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult)
return Params(
n_vocab = n_vocab,
n_embd = n_embd,
n_layer = n_layer,
n_ctx = -1,
n_ff = n_ff,
n_head = n_head,
n_head_kv = n_head,
f_norm_eps = 1e-5,
)
@staticmethod
def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
with open(config_path) as f:
config = json.load(f)
rope_scaling_type = f_rope_scale = n_ctx_orig = rope_finetuned = None
rope_scaling = config.get("rope_scaling")
if rope_scaling is not None and (typ := rope_scaling.get("type")):
rope_factor = rope_scaling.get("factor")
f_rope_scale = rope_factor
if typ == "linear":
rope_scaling_type = gguf.RopeScalingType.LINEAR
elif typ == "yarn":
rope_scaling_type = gguf.RopeScalingType.YARN
n_ctx_orig = rope_scaling['original_max_position_embeddings']
rope_finetuned = rope_scaling['finetuned']
else:
raise NotImplementedError(f'Unknown rope scaling type: {typ}')
if "max_sequence_length" in config:
n_ctx = config["max_sequence_length"]
elif "max_position_embeddings" in config:
n_ctx = config["max_position_embeddings"]
else:
msg = """\
failed to guess 'n_ctx'. This model is unknown or unsupported.
Suggestion: provide 'config.json' of the model in the same directory containing model files."""
raise KeyError(textwrap.dedent(msg))
n_experts = None
n_experts_used = None
if "num_local_experts" in config:
n_experts = config["num_local_experts"]
n_experts_used = config["num_experts_per_tok"]
return Params(
n_vocab = config["vocab_size"],
n_embd = config["hidden_size"],
n_layer = config["num_hidden_layers"],
n_ctx = n_ctx,
n_ff = config["intermediate_size"],
n_head = (n_head := config["num_attention_heads"]),
n_head_kv = config.get("num_key_value_heads", n_head),
n_experts = n_experts,
n_experts_used = n_experts_used,
f_norm_eps = config["rms_norm_eps"],
f_rope_freq_base = config.get("rope_theta"),
rope_scaling_type = rope_scaling_type,
f_rope_scale = f_rope_scale,
n_ctx_orig = n_ctx_orig,
rope_finetuned = rope_finetuned,
)
# LLaMA v2 70B params.json
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
@staticmethod
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
with open(config_path) as f:
config = json.load(f)
n_experts = None
n_experts_used = None
f_rope_freq_base = None
n_ff = None
# hack to determine LLaMA v1 vs v2 vs CodeLlama
if config.get("moe"):
# Mixtral
n_ctx = 32768
elif config.get("rope_theta") == 1000000:
# CodeLlama
n_ctx = 16384
elif config["norm_eps"] == 1e-05:
# LLaMA v2
n_ctx = 4096
else:
# LLaMA v1
n_ctx = 2048
if "layers.0.feed_forward.w1.weight" in model:
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
if config.get("moe"):
n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0]
n_experts = config["moe"]["num_experts"]
n_experts_used = config["moe"]["num_experts_per_tok"]
f_rope_freq_base = 1e6
assert n_ff is not None
return Params(
n_vocab = model["tok_embeddings.weight"].shape[0],
n_embd = config["dim"],
n_layer = config["n_layers"],
n_ctx = n_ctx,
n_ff = n_ff,
n_head = (n_head := config["n_heads"]),
n_head_kv = config.get("n_kv_heads", n_head),
n_experts = n_experts,
n_experts_used = n_experts_used,
f_norm_eps = config["norm_eps"],
f_rope_freq_base = config.get("rope_theta", f_rope_freq_base),
)
@staticmethod
def load(model_plus: ModelPlus) -> Params:
hf_config_path = model_plus.paths[0].parent / "config.json"
orig_config_path = model_plus.paths[0].parent / "params.json"
if hf_config_path.exists():
params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
elif orig_config_path.exists():
params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
elif model_plus.format != 'none':
params = Params.guessed(model_plus.model)
else:
raise ValueError('Cannot guess params when model format is none')
params.path_model = model_plus.paths[0].parent
return params
#
# data loading
# TODO: reuse (probably move to gguf.py?)
#
def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
class Tensor(ABC):
ndarray: NDArray
data_type: DataType
@abstractmethod
def astype(self, data_type: DataType) -> Self: ...
@abstractmethod
def permute(self, n_head: int, n_head_kv: int) -> Self: ...
@abstractmethod
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> Self: ...
@abstractmethod
def part(self, n_part: int) -> Self: ...
@abstractmethod
def to_ggml(self) -> GGMLCompatibleTensor: ...
def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
fp32_arr = bf16_arr.astype(np.uint32) << 16
return fp32_arr.view(np.float32)
class UnquantizedTensor(Tensor):
def __init__(self, ndarray: NDArray):
assert isinstance(ndarray, np.ndarray)
self.ndarray = ndarray
self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
def astype(self, data_type: DataType) -> UnquantizedTensor:
dtype = data_type.dtype
if self.data_type == DT_BF16:
self.ndarray = bf16_to_fp32(self.ndarray)
return UnquantizedTensor(self.ndarray.astype(dtype))
def to_ggml(self) -> Self:
return self
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor:
r = self.ndarray.shape[0] // 3
return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
def part(self, n_part: int) -> UnquantizedTensor:
r = self.ndarray.shape[0] // 3
return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor:
return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv))
def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray:
tensor = lazy_tensor.load()
assert isinstance(tensor, UnquantizedTensor)
# double-check:
actual_shape = list(tensor.ndarray.shape)
assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
if convert:
tensor.ndarray = tensor.ndarray.astype(expected_dtype)
else:
raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
return tensor.ndarray
GGMLCompatibleTensor = UnquantizedTensor
@dataclass
class LazyTensor:
_load: Callable[[], Tensor]
shape: list[int]
data_type: DataType
description: str
def load(self) -> Tensor:
ret = self._load()
# Should be okay if it maps to the same numpy type?
assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
(self.data_type, ret.data_type, self.description)
return ret
def astype(self, data_type: DataType) -> LazyTensor:
self.validate_conversion_to(data_type)
def load() -> Tensor:
return self.load().astype(data_type)
return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
def validate_conversion_to(self, data_type: DataType) -> None:
if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions:
raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')
LazyModel: TypeAlias = 'dict[str, LazyTensor]'
ModelFormat: TypeAlias = Literal['ggml', 'torch', 'safetensors', 'none']
@dataclass
class ModelPlus:
model: LazyModel
paths: list[Path] # Where this was read from.
format: ModelFormat
vocab: BaseVocab | None # For GGML models (which have vocab built in), the vocab.
def merge_sharded(models: list[LazyModel]) -> LazyModel:
# Original LLaMA models have each file contain one part of each tensor.
# Use a dict instead of a set to preserve order.
names = {name: None for model in models for name in model}
def convert(name: str) -> LazyTensor:
lazy_tensors = [model[name] for model in models]
if len(lazy_tensors) == 1:
# only one file; don't go through this procedure since there might
# be quantized tensors
return lazy_tensors[0]
if len(lazy_tensors[0].shape) == 1:
# the tensor is just duplicated in every file
return lazy_tensors[0]
if name.startswith('tok_embeddings.') or \
name.endswith('.attention.wo.weight') or \
name.endswith('.feed_forward.w2.weight'):
# split by columns
axis = 1
else:
# split by rows
axis = 0
concatenated_shape = list(lazy_tensors[0].shape)
concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
def load() -> UnquantizedTensor:
ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
concatenated = np.concatenate(ndarrays, axis=axis)
return UnquantizedTensor(concatenated)
description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
return {name: convert(name) for name in names}
def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
formats: set[ModelFormat] = set(mp.format for mp in models_plus)
assert len(formats) == 1, "different formats?"
format = formats.pop()
paths = [path for mp in models_plus for path in mp.paths]
# Use the first non-None vocab, if any.
try:
vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
except StopIteration:
vocab = None
if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
# Transformers models put different tensors in different files, but
# don't split individual tensors between files.
model: LazyModel = {}
for mp in models_plus:
model.update(mp.model)
else:
model = merge_sharded([mp.model for mp in models_plus])
return ModelPlus(model, paths, format, vocab)
def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
def load() -> Tensor:
return lazy_tensor.load().permute(n_head, n_head_kv)
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
def load() -> Tensor:
return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
s = lazy_tensor.shape.copy()
s[0] = s[0] // 3
return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
def load() -> Tensor:
return lazy_tensor.load().part(n_part)
s = lazy_tensor.shape.copy()
s[0] = s[0] // 3
return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
def pack_experts_lazy(lazy_tensors: list[LazyTensor]) -> LazyTensor:
def load() -> Tensor:
tensors = [lazy_tensor.load() for lazy_tensor in lazy_tensors]
return UnquantizedTensor(np.array([tensor.ndarray for tensor in tensors]))
s = lazy_tensors[0].shape.copy()
s.insert(0, len(lazy_tensors))
return LazyTensor(load, s, lazy_tensors[0].data_type, 'pack_experts ' + ' | '.join(lt.description for lt in lazy_tensors))
# Functionality that simulates `torch.load` but where individual tensors are
# only loaded into memory on demand, not all at once.
# PyTorch can't do this natively as of time of writing:
# - https://github.com/pytorch/pytorch/issues/64327
# This allows us to de-shard without multiplying RAM usage, and also
# conveniently drops the PyTorch dependency (though we still need numpy).
@dataclass
class LazyStorageKind:
data_type: DataType
@dataclass
class LazyStorage:
load: Callable[[int, int], NDArray]
kind: LazyStorageKind
description: str
class LazyUnpickler(pickle.Unpickler):
def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
super().__init__(fp)
self.data_base_path = data_base_path
self.zip_file = zip_file
def persistent_load(self, pid: Any) -> Any:
assert pid[0] == 'storage'
assert isinstance(pid[1], LazyStorageKind)
data_type = pid[1].data_type
filename_stem = pid[2]
filename = f'{self.data_base_path}/{filename_stem}'
info = self.zip_file.getinfo(filename)
def load(offset: int, elm_count: int) -> NDArray:
dtype = data_type.dtype
with self.zip_file.open(info) as fp:
fp.seek(offset * dtype.itemsize)
size = elm_count * dtype.itemsize
data = fp.read(size)
assert len(data) == size
return np.frombuffer(data, dtype)
description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
return LazyStorage(load=load, kind=pid[1], description=description)
@staticmethod
def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
assert isinstance(storage, LazyStorage)
def load() -> UnquantizedTensor:
elm_count = stride[0] * size[0]
return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
description = f'pickled storage_offset={storage_offset} in {storage.description}'
return LazyTensor(load, list(size), storage.kind.data_type, description)
@staticmethod
def rebuild_from_type_v2(func, new_type, args, state):
return func(*args)
CLASSES: dict[tuple[str, str], type[LazyTensor] | LazyStorageKind] = {
# getattr used here as a workaround for mypy not being smart enough to determine
# the staticmethods have a __func__ attribute.
('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
('torch', 'IntStorage'): LazyStorageKind(DT_I32),
('torch', 'Tensor'): LazyTensor,
}
def find_class(self, module: str, name: str) -> Any:
if not module.startswith('torch'):
return super().find_class(module, name)
return self.CLASSES[(module, name)]
def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
zf = zipfile.ZipFile(outer_fp)
pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
assert len(pickle_paths) == 1, pickle_paths
pickle_fp = zf.open(pickle_paths[0], 'r')
unpickler = LazyUnpickler(pickle_fp,
data_base_path=pickle_paths[0][:-4],
zip_file=zf)
model = unpickler.load()
if 'model' in model: model = model['model']
as_dict = dict(model.items())
return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
header_size, = struct.unpack('<Q', fp.read(8))
header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size))
# Use mmap for the actual data to avoid race conditions with the file offset.
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
byte_buf = mapped[8 + header_size:]
def convert(info: dict[str, Any]) -> LazyTensor:
data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
numpy_dtype = data_type.dtype
shape: list[int] = info['shape']
begin, end = info['data_offsets']
assert 0 <= begin <= end <= len(byte_buf)
assert end - begin == math.prod(shape) * numpy_dtype.itemsize
buf = byte_buf[begin:end]
def load() -> UnquantizedTensor:
return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
return LazyTensor(load, shape, data_type, description)
model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
def must_read(fp: IO[bytes], length: int) -> bytes:
ret = fp.read(length)
if len(ret) < length:
raise EOFError("unexpectedly reached end of file")
return ret
@functools.lru_cache(maxsize=None)
def lazy_load_file(path: Path) -> ModelPlus:
fp = open(path, 'rb')
first8 = fp.read(8)
fp.seek(0)
if first8[:2] == b'PK':
# A zip file, i.e. PyTorch format
return lazy_load_torch_file(fp, path)
elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
# Probably safetensors
return lazy_load_safetensors_file(fp, path)
else:
raise ValueError(f"unknown format: {path}")
In = TypeVar('In')
Out = TypeVar('Out')
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
'''Parallel map, but with backpressure. If the caller doesn't call `next`
fast enough, this will stop calling `func` at some point rather than
letting results pile up in memory. Specifically, there is a max of one
output value buffered per thread.'''
if concurrency < 2:
yield from map(func, iterable)
# Not reached.
iterable = iter(iterable)
executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor]
if use_processpool_executor:
executor_class = ProcessPoolExecutor
else:
executor_class = ThreadPoolExecutor
with executor_class(max_workers=max_workers) as executor:
futures: list[concurrent.futures.Future[Out]] = []
done = False
for _ in range(concurrency):
try:
futures.append(executor.submit(func, next(iterable)))
except StopIteration:
done = True
break
while futures:
result = futures.pop(0).result()
while not done and len(futures) < concurrency:
try:
futures.append(executor.submit(func, next(iterable)))
except StopIteration:
done = True
break
yield result
def check_vocab_size(params: Params, vocab: BaseVocab, pad_vocab: bool = False) -> None:
# Handle special case where the model's vocab size is not set
if params.n_vocab == -1:
raise ValueError(
"The model's vocab size is set to -1 in params.json. Please update it manually."
+ (f" Maybe {vocab.vocab_size}?" if isinstance(vocab, Vocab) else ""),
)
if not isinstance(vocab, Vocab):
return # model has no vocab
# Check for a vocab size mismatch
if params.n_vocab == vocab.vocab_size:
logger.warning("Ignoring added_tokens.json since model matches vocab size without it.")
return
if pad_vocab and params.n_vocab > vocab.vocab_size:
pad_count = params.n_vocab - vocab.vocab_size
logger.debug(
f"Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>"
)
for i in range(1, pad_count + 1):
vocab.added_tokens_dict[f"<dummy{i:05}>"] = -1
vocab.added_tokens_list.append(f"<dummy{i:05}>")
vocab.vocab_size = params.n_vocab
return
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer} has {vocab.vocab_size})."
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20:
msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
if vocab.vocab_size < params.n_vocab:
msg += " Add the --pad-vocab option and try again."
raise ValueError(msg)
class OutputFile:
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE):
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
def add_meta_model(self, params: Params, metadata: gguf.Metadata | None) -> None:
# Metadata About The Model And Its Provenence
name = "LLaMA"
if metadata is not None and metadata.name is not None:
name = metadata.name
elif params.path_model is not None:
name = params.path_model.name
elif params.n_ctx == 4096:
# Heuristic detection of LLaMA v2 model
name = "LLaMA v2"
self.gguf.add_name(name)
if metadata is not None:
if metadata.author is not None:
self.gguf.add_author(metadata.author)
if metadata.version is not None:
self.gguf.add_version(metadata.version)
if metadata.organization is not None:
self.gguf.add_organization(metadata.organization)
if metadata.finetune is not None:
self.gguf.add_finetune(metadata.finetune)
if metadata.basename is not None:
self.gguf.add_basename(metadata.basename)
if metadata.description is not None:
self.gguf.add_description(metadata.description)
if metadata.quantized_by is not None:
self.gguf.add_quantized_by(metadata.quantized_by)
if metadata.size_label is not None:
self.gguf.add_size_label(metadata.size_label)
if metadata.license is not None:
self.gguf.add_license(metadata.license)
if metadata.license_name is not None:
self.gguf.add_license_name(metadata.license_name)
if metadata.license_link is not None:
self.gguf.add_license_link(metadata.license_link)
if metadata.url is not None:
self.gguf.add_url(metadata.url)
if metadata.doi is not None:
self.gguf.add_doi(metadata.doi)
if metadata.uuid is not None:
self.gguf.add_uuid(metadata.uuid)
if metadata.repo_url is not None:
self.gguf.add_repo_url(metadata.repo_url)
if metadata.source_url is not None:
self.gguf.add_source_url(metadata.source_url)
if metadata.source_doi is not None:
self.gguf.add_source_doi(metadata.source_doi)
if metadata.source_uuid is not None:
self.gguf.add_source_uuid(metadata.source_uuid)
if metadata.source_repo_url is not None:
self.gguf.add_source_repo_url(metadata.source_repo_url)
if metadata.base_models is not None:
self.gguf.add_base_model_count(len(metadata.base_models))
for key, base_model_entry in enumerate(metadata.base_models):
if "name" in base_model_entry:
self.gguf.add_base_model_name(key, base_model_entry["name"])
if "author" in base_model_entry:
self.gguf.add_base_model_author(key, base_model_entry["author"])
if "version" in base_model_entry:
self.gguf.add_base_model_version(key, base_model_entry["version"])
if "organization" in base_model_entry:
self.gguf.add_base_model_organization(key, base_model_entry["organization"])
if "url" in base_model_entry:
self.gguf.add_base_model_url(key, base_model_entry["url"])
if "doi" in base_model_entry:
self.gguf.add_base_model_doi(key, base_model_entry["doi"])
if "uuid" in base_model_entry:
self.gguf.add_base_model_uuid(key, base_model_entry["uuid"])
if "repo_url" in base_model_entry:
self.gguf.add_base_model_repo_url(key, base_model_entry["repo_url"])
if metadata.tags is not None:
self.gguf.add_tags(metadata.tags)
if metadata.languages is not None:
self.gguf.add_languages(metadata.languages)
if metadata.datasets is not None:
self.gguf.add_datasets(metadata.datasets)
def add_meta_arch(self, params: Params) -> None:
# Metadata About The Neural Architecture Itself
self.gguf.add_vocab_size(params.n_vocab)
self.gguf.add_context_length(params.n_ctx)
self.gguf.add_embedding_length(params.n_embd)
self.gguf.add_block_count(params.n_layer)
self.gguf.add_feed_forward_length(params.n_ff)
self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
self.gguf.add_head_count (params.n_head)
self.gguf.add_head_count_kv (params.n_head_kv)
if params.n_experts:
self.gguf.add_expert_count(params.n_experts)
if params.n_experts_used:
self.gguf.add_expert_used_count(params.n_experts_used)
if params.f_norm_eps:
self.gguf.add_layer_norm_rms_eps(params.f_norm_eps)
else:
raise ValueError('f_norm_eps is None')
if params.f_rope_freq_base is not None:
self.gguf.add_rope_freq_base(params.f_rope_freq_base)
if params.rope_scaling_type:
assert params.f_rope_scale is not None
self.gguf.add_rope_scaling_type(params.rope_scaling_type)
self.gguf.add_rope_scaling_factor(params.f_rope_scale)
if params.n_ctx_orig is not None:
self.gguf.add_rope_scaling_orig_ctx_len(params.n_ctx_orig)
if params.rope_finetuned is not None:
self.gguf.add_rope_scaling_finetuned(params.rope_finetuned)
if params.ftype is not None:
self.gguf.add_file_type(params.ftype)
def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]:
tokens = []
scores = []
toktypes = []
# NOTE: `all_tokens` returns the base vocabulary and added tokens
for text, score, toktype in vocab.all_tokens():
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
assert len(tokens) == vocab.vocab_size
return tokens, scores, toktypes
def add_meta_vocab(self, vocab: Vocab) -> None:
# Ensure that tokenizer_model is added to the GGUF model
self.gguf.add_tokenizer_model(vocab.tokenizer_model)
# Extract model vocabulary for model conversion
tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab)
# Add extracted token information for model conversion
self.gguf.add_token_list(tokens)
self.gguf.add_token_scores(scores)
self.gguf.add_token_types(toktypes)
def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None:
svocab.add_to_gguf(self.gguf)
def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
n_elements = int(np.prod(tensor.shape))
raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype
data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype)
def write_meta(self) -> None:
self.gguf.write_header_to_file()
self.gguf.write_kv_data_to_file()
def write_tensor_info(self) -> None:
self.gguf.write_ti_data_to_file()
def write_tensor_data(self, ftype: GGMLFileType, model: LazyModel, concurrency: int) -> None:
ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency=concurrency)
if ftype == GGMLFileType.MostlyQ8_0:
ndarrays = bounded_parallel_map(
OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency,
use_processpool_executor=True,
)
else:
ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
start = time.time()
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
elapsed = time.time() - start
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
padi = len(str(len(model)))
logger.info(
f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
)
self.gguf.write_tensor_data(ndarray)
def close(self) -> None:
self.gguf.close()
@staticmethod
def write_vocab_only(
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: gguf.Metadata | None = None,
) -> None:
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
of = OutputFile(fname_out, endianess=endianess)
# meta data
of.add_meta_model(params, metadata)
of.add_meta_arch(params)
of.add_meta_vocab(vocab)
of.add_meta_special_vocab(svocab)
of.write_meta()
of.close()
@staticmethod
def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]:
name, lazy_tensor = item
tensor = lazy_tensor.load().to_ggml()
return (lazy_tensor.data_type, tensor.ndarray)
@staticmethod
def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray:
dt, arr = item
if not isinstance(dt, QuantizedDataType):
return arr
return dt.quantize(arr)
@staticmethod
def write_all(
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab,
concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
pad_vocab: bool = False,
metadata: gguf.Metadata | None = None,
) -> None:
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
of = OutputFile(fname_out, endianess=endianess)
# meta data
of.add_meta_model(params, metadata)
of.add_meta_arch(params)
if isinstance(vocab, Vocab):
of.add_meta_vocab(vocab)
of.add_meta_special_vocab(svocab)
else: # NoVocab
of.gguf.add_tokenizer_model(vocab.tokenizer_model)
# tensor info
for name, lazy_tensor in model.items():
of.add_tensor_info(name, lazy_tensor)
of.write_meta()
of.write_tensor_info()
# tensor data
of.write_tensor_data(ftype, model, concurrency)
of.close()
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type
if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)):
return GGMLFileType.AllF32
if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
return GGMLFileType.MostlyF16
if output_type_str == "q8_0":
return GGMLFileType.MostlyQ8_0
name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
raise ValueError(f"Unexpected combination of types: {name_to_type}")
def per_model_weight_count_estimation(tensors: Iterable[tuple[str, LazyTensor]]) -> tuple[int, int, int]:
total_params = 0
shared_params = 0
expert_params = 0
for name, lazy_tensor in tensors:
# We don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
continue
# Got A Tensor
sum_weights_in_tensor: int = 1
# Tensor Volume
for dim in lazy_tensor.shape:
sum_weights_in_tensor *= dim
if ".experts." in name:
if ".experts.0." in name:
expert_params += sum_weights_in_tensor
else:
shared_params += sum_weights_in_tensor
total_params += sum_weights_in_tensor
return total_params, shared_params, expert_params
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
for (name, tensor) in model.items()}
def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) -> LazyModel:
tmap = gguf.TensorNameMap(ARCH, params.n_layer)
should_skip = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
tmp = model
# merge experts into one tensor
if params.n_experts and params.n_experts > 0:
for i_l in range(params.n_layer):
for w in range(1, 4):
experts = []
for e in range(params.n_experts):
if f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight" in model:
experts.append(model[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"])
del tmp[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"]
elif f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight" in model:
experts.append(model[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"])
del tmp[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"]
else:
raise ValueError(f"Expert tensor not found: layers.{i_l}.feed_forward.experts.{e}.w{w}.weight")
tmp[f"layers.{i_l}.feed_forward.experts.w{w}.weight"] = pack_experts_lazy(experts)
# HF models permut or pack some of the tensors, so we need to undo that
for i in itertools.count():
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
logger.debug(f"Permuting layer {i}")
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
# tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
logger.debug(f"Unpacking and permuting layer {i}")
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
else:
break
out: LazyModel = {}
for name, lazy_tensor in model.items():
tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
if name_new is None:
if skip_unknown:
logger.warning(f"Unexpected tensor name: {name} - skipping")
continue
raise ValueError(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)")
if tensor_type in should_skip:
logger.debug(f"skipping tensor {name_new}")
continue
logger.debug(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
out[name_new] = lazy_tensor
return out
def nth_multifile_path(path: Path, n: int) -> Path | None:
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
the nth path in the model.
'''
# Support the following patterns:
patterns = [
# - x.00.pth, x.01.pth, etc.
(r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
# - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
(r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
# x.bin, x.bin.1, etc.
(r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
]
for regex, replacement in patterns:
if re.search(regex, path.name):
new_path = path.with_name(re.sub(regex, replacement, path.name))
if new_path.exists():
return new_path
return None
def find_multifile_paths(path: Path) -> list[Path]:
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
the whole list of paths in the model.
'''
ret: list[Path] = []
for i in itertools.count():
nth_path = nth_multifile_path(path, i)
if nth_path is None:
break
ret.append(nth_path)
if not ret:
# No matches. This should only happen if the file was named, e.g.,
# foo.0, and there was no file named foo. Oh well, try to process it
# as a single file.
return [path]
return ret
def load_some_model(path: Path) -> ModelPlus:
'''Load a model of any supported format.'''
# Be extra-friendly and accept either a file or a directory:
if path.is_dir():
# Check if it's a set of safetensors files first
globs = ["model-00001-of-*.safetensors", "model.safetensors", "consolidated.safetensors"]
files = [file for glob in globs for file in path.glob(glob)]
if not files:
# Try the PyTorch patterns too, with lower priority
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
files = [file for glob in globs for file in path.glob(glob)]
if not files:
raise FileNotFoundError(f"Can't find model in directory {path}")
if len(files) > 1:
raise ValueError(f"Found multiple models in {path}, not sure which to pick: {files}")
path = files[0]
paths = find_multifile_paths(path)
models_plus: list[ModelPlus] = []
for path in paths:
logger.info(f"Loading model file {path}")
models_plus.append(lazy_load_file(path))
model_plus = merge_multifile_models(models_plus)
return model_plus
class VocabFactory:
_VOCAB_CLASSES: list[type[Vocab]] = [SentencePieceVocab, BpeVocab, LlamaHfVocab]
def __init__(self, path: Path):
self.path = path
def _create_special_vocab(self, vocab: BaseVocab, model_parent_path: Path) -> gguf.SpecialVocab:
load_merges = vocab.name == "bpe"
n_vocab = vocab.vocab_size if isinstance(vocab, Vocab) else None
return gguf.SpecialVocab(
model_parent_path,
load_merges=load_merges,
special_token_types=None, # Predetermined or passed as a parameter
n_vocab=n_vocab,
)
def _create_vocab_by_path(self, vocab_types: list[str]) -> Vocab:
vocab_classes: dict[str, type[Vocab]] = {cls.name: cls for cls in self._VOCAB_CLASSES}
selected_vocabs: dict[str, type[Vocab]] = {}
for vtype in vocab_types:
try:
selected_vocabs[vtype] = vocab_classes[vtype]
except KeyError:
raise ValueError(f"Unsupported vocabulary type {vtype}") from None
for vtype, cls in selected_vocabs.items():
try:
vocab = cls(self.path)
break
except FileNotFoundError:
pass # ignore unavailable tokenizers
else:
raise FileNotFoundError(f"Could not find a tokenizer matching any of {vocab_types}")
logger.info(f"Loaded vocab file {vocab.fname_tokenizer!r}, type {vocab.name!r}")
return vocab
def load_vocab(self, vocab_types: list[str] | None, model_parent_path: Path) -> tuple[BaseVocab, gguf.SpecialVocab]:
vocab: BaseVocab
if vocab_types is None:
vocab = NoVocab()
else:
vocab = self._create_vocab_by_path(vocab_types)
# FIXME: Respect --vocab-dir?
special_vocab = self._create_special_vocab(
vocab,
model_parent_path,
)
return vocab, special_vocab
def default_convention_outfile(file_type: GGMLFileType, expert_count: int | None, model_params_count: tuple[int, int, int], metadata: gguf.Metadata) -> str:
name = metadata.name if metadata.name is not None else None
basename = metadata.basename if metadata.basename is not None else None
finetune = metadata.finetune if metadata.finetune is not None else None
version = metadata.version if metadata.version is not None else None
size_label = metadata.size_label if metadata.size_label is not None else gguf.size_label(*model_params_count, expert_count=expert_count or 0)
output_type = {
GGMLFileType.AllF32: "F32",
GGMLFileType.MostlyF16: "F16",
GGMLFileType.MostlyQ8_0: "Q8_0",
}[file_type]
return gguf.naming_convention(name, basename, finetune, version, size_label, output_type)
def default_outfile(model_paths: list[Path], file_type: GGMLFileType, expert_count: int | None, model_params_count: tuple[int, int, int], metadata: gguf.Metadata) -> Path:
default_filename = default_convention_outfile(file_type, expert_count, model_params_count, metadata)
ret = model_paths[0].parent / f"{default_filename}.gguf"
if ret in model_paths:
logger.error(
f"Error: Default output path ({ret}) would overwrite the input. "
"Please explicitly specify a path using --outfile.")
sys.exit(1)
return ret
def do_dump_model(model_plus: ModelPlus) -> None:
print(f"model_plus.paths = {model_plus.paths!r}") # noqa: NP100
print(f"model_plus.format = {model_plus.format!r}") # noqa: NP100
print(f"model_plus.vocab = {model_plus.vocab!r}") # noqa: NP100
for name, lazy_tensor in model_plus.model.items():
print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") # noqa: NP100
def main(args_in: list[str] | None = None) -> None:
output_choices = ["f32", "f16"]
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
# We currently only support Q8_0 output on little endian systems.
output_choices.append("q8_0")
parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file")
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--no-vocab", action="store_true", help="store model without the vocab")
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default=DEFAULT_CONCURRENCY)
parser.add_argument("--big-endian", action="store_true", help="model is executed on big endian machine")
parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
parser.add_argument("--metadata", type=Path, help="Specify the path for an authorship metadata override file")
parser.add_argument("--get-outfile", action="store_true", help="get calculated default outfile name")
parser.add_argument("--model-name", type=str, default=None, help="name of the model")
args = parser.parse_args(args_in)
if args.verbose:
logging.basicConfig(level=logging.DEBUG)
elif args.dump_single or args.dump or args.get_outfile:
# Avoid printing anything besides the dump output
logging.basicConfig(level=logging.WARNING)
else:
logging.basicConfig(level=logging.INFO)
model_name = args.model_name
dir_model = args.model
metadata = gguf.Metadata.load(args.metadata, dir_model, model_name)
if args.get_outfile:
model_plus = load_some_model(dir_model)
params = Params.load(model_plus)
model = convert_model_names(model_plus.model, params, args.skip_unknown)
model_params_count = per_model_weight_count_estimation(model_plus.model.items())
ftype = pick_output_type(model, args.outtype)
if (metadata is None or metadata.name is None) and params.path_model is not None:
metadata.name = params.path_model.name
print(f"{default_convention_outfile(ftype, params.n_experts, model_params_count, metadata)}") # noqa: NP100
return
if args.no_vocab and args.vocab_only:
raise ValueError("--vocab-only does not make sense with --no-vocab")
if args.dump_single:
model_plus = lazy_load_file(dir_model)
do_dump_model(model_plus)
return
if not args.vocab_only:
model_plus = load_some_model(dir_model)
else:
model_plus = ModelPlus(model = {}, paths = [dir_model / 'dummy'], format = 'none', vocab = None)
if args.dump:
do_dump_model(model_plus)
return
endianess = gguf.GGUFEndian.LITTLE
if args.big_endian:
endianess = gguf.GGUFEndian.BIG
params = None
if args.pad_vocab or not args.vocab_only:
params = Params.load(model_plus)
if params.n_ctx == -1:
if args.ctx is None:
msg = """\
The model doesn't have a context size, and you didn't specify one with --ctx
Please specify one with --ctx:
- LLaMA v1: --ctx 2048
- LLaMA v2: --ctx 4096"""
parser.error(textwrap.dedent(msg))
params.n_ctx = args.ctx
if args.outtype:
params.ftype = {
"f32": GGMLFileType.AllF32,
"f16": GGMLFileType.MostlyF16,
"q8_0": GGMLFileType.MostlyQ8_0,
}[args.outtype]
logger.info(f"params = {params}")
model_parent_path = model_plus.paths[0].parent
vocab_path = Path(args.vocab_dir or dir_model or model_parent_path)
vocab_factory = VocabFactory(vocab_path)
vocab_types = None if args.no_vocab else args.vocab_type.split(",")
vocab, special_vocab = vocab_factory.load_vocab(vocab_types, model_parent_path)
if args.vocab_only:
assert isinstance(vocab, Vocab)
if not args.outfile:
raise ValueError("need --outfile if using --vocab-only")
outfile = args.outfile
if params is None:
params = Params(
n_vocab = vocab.vocab_size,
n_embd = 1,
n_layer = 1,
n_ctx = 1,
n_ff = 1,
n_head = 1,
n_head_kv = 1,
f_norm_eps = 1e-5,
)
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab,
endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata)
logger.info(f"Wrote {outfile}")
return
if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab:
vocab = model_plus.vocab
assert params is not None
if metadata.name is None and params.path_model is not None:
metadata.name = params.path_model.name
model_params_count = per_model_weight_count_estimation(model_plus.model.items())
logger.info(f"model parameters count : {model_params_count} ({gguf.model_weight_count_rounded_notation(model_params_count[0])})")
logger.info(f"Vocab info: {vocab}")
logger.info(f"Special vocab info: {special_vocab}")
model = model_plus.model
model = convert_model_names(model, params, args.skip_unknown)
ftype = pick_output_type(model, args.outtype)
model = convert_to_output_type(model, ftype)
outfile = args.outfile or default_outfile(model_plus.paths, ftype, params.n_experts, model_params_count, metadata=metadata)
metadata.size_label = gguf.size_label(*model_params_count, expert_count=params.n_experts or 0)
params.ftype = ftype
logger.info(f"Writing {outfile}, format {ftype}")
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab,
concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata)
logger.info(f"Wrote {outfile}")
if __name__ == '__main__':
main()
set(TARGET llama-cvector-generator)
add_executable(${TARGET} cvector-generator.cpp pca.hpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
# cvector-generator
This example demonstrates how to generate a control vector using gguf models.
Related PRs:
- [Add support for control vectors](https://github.com/ggerganov/llama.cpp/pull/5970)
- (Issue) [Generate control vector using llama.cpp](https://github.com/ggerganov/llama.cpp/issues/6880)
- [Add cvector-generator example](https://github.com/ggerganov/llama.cpp/pull/7514)
## Examples
```sh
# CPU only
./cvector-generator -m ./llama-3.Q4_K_M.gguf
# With GPU
./cvector-generator -m ./llama-3.Q4_K_M.gguf -ngl 99
# With advanced options
./cvector-generator -m ./llama-3.Q4_K_M.gguf -ngl 99 --pca-iter 2000 --pca-batch 100
# Using mean value instead of PCA
./cvector-generator -m ./llama-3.Q4_K_M.gguf --method mean
# To see help message
./cvector-generator -h
# Then, have a look at "cvector" section
```
## Tips and tricks
If you have multiple lines per prompt, you can escape the newline character (change it to `\n`). For example:
```
<|im_start|>system\nAct like a person who is extremely happy.<|im_end|>
<|im_start|>system\nYou are in a very good mood today<|im_end|>
```
Example to use output file with `llama-cli`:
(Tips: The control vector works better when apply to layers higher than 10)
```sh
./llama-cli -m ./llama-3.Q4_K_M.gguf -p "<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nSing a song<|im_end|><|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" --special --control-vector-scaled ./control_vector.gguf 0.8 --control-vector-layer-range 10 31
```
That game
I can see
Hmm, this
I can relate to
Who is
I understand the
Ugh,
What the hell was
Hey, did anyone
Although
Thank you for choosing
What are you
Oh w
How dare you open
It was my pleasure
I'm hon
I appreciate that you
Are you k
Whoever left this
It's always
Ew,
Hey, I l
Hello? Is someone
I understand that
That poem
Aww, poor
Hey, it
Alright, who
I didn't
Well, life
The document
Oh no, this
I'm concerned
Hello, this is
This art
Hmm, this drink
Hi there!
It seems
Is
Good
I can't
Ex
Who are
I can see that
Wow,
Today is a
Hey friend
Sometimes friends
Oh, this old
The weather outside
This place is sur
I appreciate your input
Thank you for the
Look at
I'm disappoint
To my
How dare you
That's an
This piece of art
Eww
This park is
This is incredible
Oh no, someone
Exc
Well, it'
I warned
Hey, I understand
Hey, I saw
How dare you go
What the he
Hey
It's
Hello? Hello?
It
Oh no!
This is the perfect
Good morning,
Oh no, there
It's so
Yeah
Uh,
Hello everyone
Who turned off
The weather
Who'
Hey, this
Wait,
Eww, gross
Excuse
It seems like you
Thank you so
What happened?
Oh my g
I am deeply sad
I war
Okay, let'
Hey, that
That was a beautiful
Oh no! That
What happened
Hey there
The artist'
What?!
Hey, it'
I am disappoint
It seems like
Oh no! The
This park is a
If you
Yes! I did
It sounds
What
Who is it
Hmm, that
That's strange
Yeah, that was
That's interesting
This park
What the hell
Who is that
I feel like my
Oh well
What the hell is
Hello? Hello
To my dearest
Bless you!\"
Thank you for
Oh, looks like
Can you please
This place is
Eww, what
Bless you
Is everything
Hey, I just
Whoever left these
Well, that'
I feel
Hey, do you
It's sad
Oh no, it
Hey, that'
Oh my god,
Thank you,
Hello little one,
I apolog
Hey team, I
How dare you read
Who is this and
Whoever left
Hi there! W
A
If you have
I was
U
Bless
Well, this
Oh, I'
It's a
Eww,
Is everything okay?
Oh, I
Hello, can you
Al
That was a great
What are
I understand that not
Oh no, not
Who is it?\"
Hey, can we
Whoever is taking
I would love to
Hey, I noticed
Hey, could
I understand that there
Hello?
D
Oh man, I
Thank you so much
Oh no, my
Dear [Name
Uh
I remember
Hey, who
Well, it
Are you
I understand that it
Hey, is
I would
Who is this
Excuse me
Alright
I am thrilled
Sometimes friends have
Who the
It's interesting
I would love
E
Hello? Is anyone
Well, this is
This place
Well,
I warned you
Hey, watch where
Oh my
That'
Sometimes friends have different
I understand that everyone
What?
What do these notes
I can relate
I'm not
I understand
To my dear
Guys
Well
Hey, I appreciate
Wow, what
Dear
That melody
Who the hell
Today is
Hello little
Wow, look
That's great
Love is never wrong
I'm having
Whoa, did
Ugh
Can you please provide
I miss you,
I feel uncom
I know
Ugh, this
Hey, watch
Oh great, a
I didn
Okay
That game of char
Oh
I appreciate
Who's there
I am so
Oh great, someone
Hey, could you
I remember wondering
Wait, what?
What do
Hello? Can
Hey there,
That game of
This is incred
Oh my gosh
Oh great, f
I appreciate your
It sounds like
What the heck
Okay, I understand
Ew
I understand that this
Uh, hi
Hi everyone!
What the hell?
Thank you for your
Oh no, the
Wow, I
Who turned
Dear [
Whoever
This is a
Whoa, he
What in the world
Although the physical
Hello, who is
That's amaz
Hey, I know
Okay, that
Hi everyone
Hey, is everything
I understand your fr
Oh no, poor
Oh, look
Good morning
Ew, gross
Oh no, did
Look at the family
Hey team
Yes!
Hey, can I
Okay, that'
It's great
Love is
Hey, what
Good morning, world
Who is it?
That poem really reson
I
That's
I understand the task
Gu
Hello? Who'
This postcard is
Whoa,
Oh, that
I understand that I
Whoever is
Hello? Who is
I'm really
Wow, this
Can
This artwork really
This is a shame
I miss you too
Who are you?
Today is a difficult
Hey, just
Are you okay
I am
Hi,
Wow, that
Hey there! Can
Okay, stay
Oh great, just
Yeah,
Hello? Can you
Oh, looks
Thank you for sharing
I'm glad
Hey, is that
Hmm
It was my
It sounds like you
Wow, your
I was promised certain
That was such a
Thank
Excuse you
That was
Hey team,
I feel un
It was
What'
Hey friend, I
How
Saying goodbye
That
It's heart
How dare
Oh,
Hello, may
What's this
Thank you for recogn
Aww, that
Oh, I remember
Hmm, that'
I miss
I know this
Wait
Is everything okay
Who is that person
Wow, you
Oh great
I'm sad
Wow, the
I am very disappoint
Who turned off the
I understand that things
I'm very
Hi
That's very
Okay, I
Oh no,
Wow, there
What's wrong
I apologize for
Hey, I
Can I help you
Oh, I didn
Alright,
Oh wow,
Oh my goodness
I know this event
What in the
Saying
Yeah, that
Guys, I
Hey, this v
This post
Are
Hey, can
Hello? Is
I can only imagine
Oh, that sounds
Hey, is anyone
I am disappointed
Hello,
Hey everyone, I
That was such
It's okay
The artist
Whoa
I understand that mistakes
Can I help
Who
Hi everyone! I
Hey, can you
Wow, how
Today
Oh no, I
Oh well, I
Well, that
This is the
Yes! I finally
Hey there little
Hello everyone!
Love is never
Look at the
This postcard
Oh great,
Can I
Hmm, this is
I understand your
Oh, look at
B
I'm so
Whoa, this
W
Oh, this
Sometimes
This piece of
What the
That was a
Hey, do
Oh no
Whoa, what
I feel like I
The documentary
Hello
Hello little one
I understand that my
Eww, that
Wow, an
Yes! Finally,
Although the physical location
Whoever is watching
That movie
I remember wondering about
Hey there, little
Who's
Hello, who
Hello everyone! Thank
Hello, can
That's too
Hey, just wanted
Hey there, I
Saying good
Hey there!
Who is there?
Oh my good
I am very
Oh no, what
Wow, thank
I was promised
Hi, is
Hey, I'
Guys, the
Oh no, that
Who is there
Hello, this
That movie really touched
If you have something
The documentary was
I'm starting
Are you kidd
That movie really
Hey everyone,
Thank you for considering
I didn'
Yes! I
Can you
Oh my god
Hey, whoever
That melody really
Thank you, little
Hello, may I
Look
Wow, we
It looks
What do these
Oh wow
I apologize
What are you all
It's such
It's clear
Hey, I was
Hey friend,
I can only
The weather outside is
Eww, this
I miss you
Wow
Aww,
Hi, is there
This artwork
Okay,
Oh well,
This
I'
Say
Hey there little gu
Hmm,
Whoa, who
I am thr
Oh man
Okay, stay calm
I'm happy
Oh, this cur
Oh man,
I'm sorry
Hello? Who
What?! That
This piece
Hey everyone
That's so
Are you okay?
What happened? Where
Hi there
The
Who the hell entered
I can
Guys,
What's
What in
It's important
I'm
I'm coming
It'
Yes! Finally
Wait, what
Wow, reading
I'm surprised
Hey, did
Hey,
Okay, let
I understand that you
Who the hell threw
Eww, who
Thank you for thinking
Who is this?\"
I am deeply
Thank you for including
Oh no, an
It looks like you
Aww
I'm confused
Wow, it
That poem really
Yes
Hey there, is
Hey, what'
Thank you for remember
To
This is
Thank you for making
I can'
That mel
Wow, they
I feel like
Although the
Who are you
Love
If
What the hell are
I am so sad
Oh, I found
Thank you
It looks like
Well, life is
I appreciate that
The artist's
Whoa, that
It's never
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment