Commit 4cc1a614 authored by xuxzh1's avatar xuxzh1 🎱
Browse files

init

parents
Pipeline #1891 canceled with stages
BLIS Installation Manual
------------------------
BLIS is a portable software framework for high-performance BLAS-like dense linear algebra libraries. It has received awards and recognition, including the 2023 James H. Wilkinson Prize for Numerical Software and the 2020 SIAM Activity Group on Supercomputing Best Paper Prize. BLIS provides a new BLAS-like API and a compatibility layer for traditional BLAS routine calls. It offers features such as object-based API, typed API, BLAS and CBLAS compatibility layers.
Project URL: https://github.com/flame/blis
### Prepare:
Compile BLIS:
```bash
git clone https://github.com/flame/blis
cd blis
./configure --enable-cblas -t openmp,pthreads auto
# will install to /usr/local/ by default.
make -j
```
Install BLIS:
```bash
sudo make install
```
We recommend using openmp since it's easier to modify the cores being used.
### llama.cpp compilation
Makefile:
```bash
make GGML_BLIS=1 -j
# make GGML_BLIS=1 llama-benchmark-matmult
```
CMake:
```bash
mkdir build
cd build
cmake -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=FLAME ..
make -j
```
### llama.cpp execution
According to the BLIS documentation, we could set the following
environment variables to modify the behavior of openmp:
```bash
export GOMP_CPU_AFFINITY="0-19"
export BLIS_NUM_THREADS=14
```
And then run the binaries as normal.
### Intel specific issue
Some might get the error message saying that `libimf.so` cannot be found.
Please follow this [stackoverflow page](https://stackoverflow.com/questions/70687930/intel-oneapi-2022-libimf-so-no-such-file-or-directory-during-openmpi-compila).
### Reference:
1. https://github.com/flame/blis#getting-started
2. https://github.com/flame/blis/blob/master/docs/Multithreading.md
# llama.cpp for SYCL
- [Background](#background)
- [Recommended Release](#recommended-release)
- [News](#news)
- [OS](#os)
- [Hardware](#hardware)
- [Docker](#docker)
- [Linux](#linux)
- [Windows](#windows)
- [Environment Variable](#environment-variable)
- [Known Issue](#known-issues)
- [Q&A](#qa)
- [TODO](#todo)
## Background
**SYCL** is a high-level parallel programming model designed to improve developers productivity writing code across various hardware accelerators such as CPUs, GPUs, and FPGAs. It is a single-source language designed for heterogeneous computing and based on standard C++17.
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL - Math Kernel Library)*.
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
### Llama.cpp + SYCL
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*).
When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend.
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
## Recommended Release
The SYCL backend would be broken by some PRs due to no online CI.
The following release is verified with good quality:
|Commit ID|Tag|Release|Verified Platform|
|-|-|-|-|
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1|
## News
- 2024.5
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770.
- Arch Linux is verified successfully.
- 2024.4
- Support data types: GGML_TYPE_IQ4_NL, GGML_TYPE_IQ4_XS, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ3_S, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M.
- 2024.3
- Release binary files of Windows.
- A blog is published: **Run LLM on all Intel GPUs Using llama.cpp**: [intel.com](https://www.intel.com/content/www/us/en/developer/articles/technical/run-llm-on-all-gpus-using-llama-cpp-artical.html) or [medium.com](https://medium.com/@jianyu_neo/run-llm-on-all-intel-gpus-using-llama-cpp-fd2e2dcbd9bd).
- New base line is ready: [tag b2437](https://github.com/ggerganov/llama.cpp/tree/b2437).
- Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing.
- Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE.
- Support detecting all GPUs with level-zero and same top **Max compute units**.
- Support OPs
- hardsigmoid
- hardswish
- pool2d
- 2024.1
- Create SYCL backend for Intel GPU.
- Support Windows build
## OS
| OS | Status | Verified |
|---------|---------|------------------------------------------------|
| Linux | Support | Ubuntu 22.04, Fedora Silverblue 39, Arch Linux |
| Windows | Support | Windows 11 |
## Hardware
### Intel GPU
**Verified devices**
| Intel GPU | Status | Verified Model |
|-------------------------------|---------|---------------------------------------|
| Intel Data Center Max Series | Support | Max 1550, 1100 |
| Intel Data Center Flex Series | Support | Flex 170 |
| Intel Arc Series | Support | Arc 770, 730M, Arc A750 |
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
| Intel iGPU | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 |
*Notes:*
- **Memory**
- The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama-cli`.
- Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPU and 4.0GB for discrete GPU.
- **Execution Unit (EU)**
- If the iGPU has less than 80 EUs, the inference speed will likely be too slow for practical use.
### Other Vendor GPU
**Verified devices**
| Nvidia GPU | Status | Verified Model |
|--------------------------|---------|----------------|
| Ampere Series | Support | A100, A4000 |
| Ampere Series *(Mobile)* | Support | RTX 40 Series |
## Docker
The docker build option is currently limited to *intel GPU* targets.
### Build image
```sh
# Using FP16
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" -f .devops/llama-cli-intel.Dockerfile .
```
*Notes*:
To build in default FP32 *(Slower than FP16 alternative)*, you can remove the `--build-arg="GGML_SYCL_F16=ON"` argument from the previous command.
You can also use the `.devops/llama-server-intel.Dockerfile`, which builds the *"server"* alternative.
### Run container
```sh
# First, find all the DRI cards
ls -la /dev/dri
# Then, pick the card that you want to use (here for e.g. /dev/dri/card1).
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
```
*Notes:*
- Docker has been tested successfully on native Linux. WSL support has not been verified yet.
- You may need to install Intel GPU driver on the **host** machine *(Please refer to the [Linux configuration](#linux) for details)*.
## Linux
### I. Setup Environment
1. **Install GPU drivers**
- **Intel GPU**
Intel data center GPUs drivers installation guide and download page can be found here: [Get intel dGPU Drivers](https://dgpu-docs.intel.com/driver/installation.html#ubuntu-install-steps).
*Note*: for client GPUs *(iGPU & Arc A-Series)*, please refer to the [client iGPU driver installation](https://dgpu-docs.intel.com/driver/client/overview.html).
Once installed, add the user(s) to the `video` and `render` groups.
```sh
sudo usermod -aG render $USER
sudo usermod -aG video $USER
```
*Note*: logout/re-login for the changes to take effect.
Verify installation through `clinfo`:
```sh
sudo apt install clinfo
sudo clinfo -l
```
Sample output:
```sh
Platform #0: Intel(R) OpenCL Graphics
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
Platform #0: Intel(R) OpenCL HD Graphics
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
```
- **Nvidia GPU**
In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed.
2. **Install Intel® oneAPI Base toolkit**
- **For Intel GPU**
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Linux, and preferably keep the default installation values unchanged, notably the installation path *(`/opt/intel/oneapi` by default)*.
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI MKL for intel GPUs.
- **Adding support to Nvidia GPUs**
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
**oneMKL for cuBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs.
```sh
git clone https://github.com/oneapi-src/oneMKL
cd oneMKL
cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas
cmake --build buildWithCublas --config Release
```
3. **Verify installation and environment**
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
```sh
source /opt/intel/oneapi/setvars.sh
sycl-ls
```
- **Intel GPU**
When targeting an intel GPU, the user should expect one or more level-zero devices among the available SYCL devices. Please make sure that at least one GPU is present, for instance [`ext_oneapi_level_zero:gpu:0`] in the sample output below:
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
```
- **Nvidia GPU**
Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`ext_oneapi_cuda:gpu`] as bellow:
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
[opencl:cpu:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
[ext_oneapi_cuda:gpu:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.2]
```
### II. Build llama.cpp
#### Intel GPU
```sh
# Export relevant ENV variables
source /opt/intel/oneapi/setvars.sh
# Build LLAMA with MKL BLAS acceleration for intel GPU
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Option 2: Use FP16
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
# build all binary
cmake --build build --config Release -j -v
```
#### Nvidia GPU
```sh
# Export relevant ENV variables
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LIBRARY_PATH
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_DIR
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
# Build LLAMA with Nvidia BLAS acceleration through SYCL
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Option 2: Use FP16
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
# build all binary
cmake --build build --config Release -j -v
```
### III. Run the inference
1. Retrieve and prepare model
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
2. Enable oneAPI running environment
```sh
source /opt/intel/oneapi/setvars.sh
```
3. List devices information
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
```sh
./build/bin/llama-ls-sycl-device
```
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following:
```
found 2 SYCL devices:
| | | |Compute |Max compute|Max work|Max sub| |
|ID| Device Type| Name|capability|units |group |group |Global mem size|
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
| 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
```
4. Launch inference
There are two device selection modes:
- Single device: Use one device target specified by the user.
- Multiple devices: Automatically choose the devices with the same backend.
In two device selection modes, the default SYCL backend is level_zero, you can choose other backend supported by SYCL by setting environment variable ONEAPI_DEVICE_SELECTOR.
| Device selection | Parameter |
|------------------|----------------------------------------|
| Single device | --split-mode none --main-gpu DEVICE_ID |
| Multiple devices | --split-mode layer (default) |
Examples:
- Use device 0:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
```
or run by script:
```sh
./examples/sycl/run_llama2.sh 0
```
- Use multiple devices:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
```
Otherwise, you can run the script:
```sh
./examples/sycl/run_llama2.sh
```
*Notes:*
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
```sh
detect 1 SYCL GPUs: [0] with top Max compute units:512
```
Or
```sh
use 1 SYCL GPUs: [0] with Max compute units:512
```
## Windows
### I. Setup Environment
1. Install GPU driver
Intel GPU drivers instructions guide and download page can be found here: [Get intel GPU Drivers](https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/software/drivers.html).
2. Install Visual Studio
If you already have a recent version of Microsoft Visual Studio, you can skip this step. Otherwise, please refer to the official download page for [Microsoft Visual Studio](https://visualstudio.microsoft.com/).
3. Install Intel® oneAPI Base toolkit
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Windows, and preferably keep the default installation values unchanged, notably the installation path *(`C:\Program Files (x86)\Intel\oneAPI` by default)*.
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
b. Enable oneAPI running environment:
- Type "oneAPI" in the search bar, then open the `Intel oneAPI command prompt for Intel 64 for Visual Studio 2022` App.
- On the command prompt, enable the runtime environment with the following:
```
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
```
c. Verify installation
In the oneAPI command line, run the following to print the available SYCL devices:
```
sycl-ls
```
There should be one or more *level-zero* GPU devices displayed as **[ext_oneapi_level_zero:gpu]**. Below is example of such output detecting an *intel Iris Xe* GPU as a Level-zero SYCL device:
Output (example):
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Iris(R) Xe Graphics OpenCL 3.0 NEO [31.0.101.5186]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Iris(R) Xe Graphics 1.3 [1.3.28044]
```
4. Install build tools
a. Download & install cmake for Windows: https://cmake.org/download/ (CMake can also be installed from Visual Studio Installer)
b. The new Visual Studio will install Ninja as default. (If not, please install it manually: https://ninja-build.org/)
### II. Build llama.cpp
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
```
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -G "Ninja" -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
# Option 2: Or FP16
cmake -B build -G "Ninja" -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DGGML_SYCL_F16=ON
cmake --build build --config Release -j
```
Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former instructions:
```sh
.\examples\sycl\win-build-sycl.bat
```
Or, use CMake presets to build:
```sh
cmake --preset x64-windows-sycl-release
cmake --build build-x64-windows-sycl-release -j --target llama-cli
cmake -DGGML_SYCL_F16=ON --preset x64-windows-sycl-release
cmake --build build-x64-windows-sycl-release -j --target llama-cli
cmake --preset x64-windows-sycl-debug
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
```
Or, you can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
*Notes:*
- In case of a minimal experimental setup, the user can build the inference executable only through `cmake --build build --config Release -j --target llama-cli`.
### III. Run the inference
1. Retrieve and prepare model
You can refer to the general [*Prepare and Quantize*](README#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
2. Enable oneAPI running environment
On the oneAPI command line window, run the following and step into the llama.cpp directory:
```
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
```
3. List devices information
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
```
build\bin\ls-sycl-device.exe
```
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following:
```
found 2 SYCL devices:
| | | |Compute |Max compute|Max work|Max sub| |
|ID| Device Type| Name|capability|units |group |group |Global mem size|
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
| 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
```
4. Launch inference
There are two device selection modes:
- Single device: Use one device assigned by user. Default device id is 0.
- Multiple devices: Automatically choose the devices with the same backend.
In two device selection modes, the default SYCL backend is level_zero, you can choose other backend supported by SYCL by setting environment variable ONEAPI_DEVICE_SELECTOR.
| Device selection | Parameter |
|------------------|----------------------------------------|
| Single device | --split-mode none --main-gpu DEVICE_ID |
| Multiple devices | --split-mode layer (default) |
Examples:
- Use device 0:
```
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
```
- Use multiple devices:
```
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
```
Otherwise, run the following wrapper script:
```
.\examples\sycl\win-run-llama2.bat
```
Note:
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
```sh
detect 1 SYCL GPUs: [0] with top Max compute units:512
```
Or
```sh
use 1 SYCL GPUs: [0] with Max compute units:512
```
## Environment Variable
#### Build
| Name | Value | Function |
|--------------------|-----------------------------------|---------------------------------------------|
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path. |
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA | Set the SYCL target device type. |
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
| CMAKE_C_COMPILER | icx | Set *icx* compiler for SYCL code path. |
| CMAKE_CXX_COMPILER | icpx *(Linux)*, icx *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
#### Runtime
| Name | Value | Function |
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
## Known Issues
- `Split-mode:[row]` is not supported.
## Q&A
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
- Potential cause: Unavailable oneAPI installation or not set ENV variables.
- Solution: Install *oneAPI base toolkit* and enable its ENV through: `source /opt/intel/oneapi/setvars.sh`.
- General compiler error:
- Remove **build** folder or try a clean-build.
- I can **not** see `[ext_oneapi_level_zero:gpu]` afer installing the GPU driver on Linux.
Please double-check with `sudo sycl-ls`.
If it's present in the list, please add video/render group to your user then **logout/login** or restart your system:
```
sudo usermod -aG render $USER
sudo usermod -aG video $USER
```
Otherwise, please double-check the GPU driver installation steps.
### **GitHub contribution**:
Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay.
## TODO
- Support row layer split for multiple card runs.
# Build llama.cpp locally
**To get the Code:**
```bash
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
```
In order to build llama.cpp you have four different options.
- Using `make`:
- On Linux or MacOS:
```bash
make
```
- On Windows (x86/x64 only, arm64 requires cmake):
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
2. Extract `w64devkit` on your pc.
3. Run `w64devkit.exe`.
4. Use the `cd` command to reach the `llama.cpp` folder.
5. From here you can run:
```bash
make
```
- Notes:
- For `Q4_0_4_4` quantization type build, add the `GGML_NO_LLAMAFILE=1` flag. For example, use `make GGML_NO_LLAMAFILE=1`.
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `make -j 8` will run 8 jobs in parallel.
- For faster repeated compilation, install [ccache](https://ccache.dev/).
- For debug builds, run `make LLAMA_DEBUG=1`
- Using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
**Notes**:
- For `Q4_0_4_4` quantization type build, add the `-DGGML_LLAMAFILE=OFF` cmake option. For example, use `cmake -B build -DGGML_LLAMAFILE=OFF`.
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `cmake --build build --config Release -j 8` will run 8 jobs in parallel.
- For faster repeated compilation, install [ccache](https://ccache.dev/).
- For debug builds, there are two cases:
1. Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Debug
cmake --build build
```
2. Multi-config generators (`-G` param set to Visual Studio, XCode...):
```bash
cmake -B build -G "Xcode"
cmake --build build --config Debug
```
- Building for Windows (x86, x64 and arm64) with MSVC or clang as compilers:
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/de/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
- Tab Workload: Desktop-development with C++
- Tab Components (select quickly via search): C++-_CMake_ Tools for Windows, _Git_ for Windows, C++-_Clang_ Compiler for Windows, MS-Build Support for LLVM-Toolset (clang)
- Please remember to always use a Developer Command Prompt / PowerShell for VS2022 for git, build, test
- For Windows on ARM (arm64, WoA) build with:
```bash
cmake --preset arm64-windows-llvm-release -D GGML_OPENMP=OFF
cmake --build build-arm64-windows-llvm-release
```
Note: Building for arm64 could also be done just with MSVC (with the build-arm64-windows-MSVC preset, or the standard CMake build instructions). But MSVC does not support inline ARM assembly-code, used e.g. for the accelerated Q4_0_4_8 CPU kernels.
- Using `gmake` (FreeBSD):
1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics)
2. Add your user to **video** group
3. Install compilation dependencies.
```bash
sudo pkg install gmake automake autoconf pkgconf llvm15 openblas
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
```
## Metal Build
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
To disable the Metal build at compile time use the `GGML_NO_METAL=1` flag or the `GGML_METAL=OFF` cmake option.
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line
argument.
## BLAS Build
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS. There are currently several different BLAS implementations available for build and use:
### Accelerate Framework:
This is only available on Mac PCs and it's enabled by default. You can just build using the normal instructions.
### OpenBLAS:
This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS installed on your machine.
- Using `make`:
- On Linux:
```bash
make GGML_OPENBLAS=1
```
- On Windows:
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
2. Download the latest version of [OpenBLAS for Windows](https://github.com/xianyi/OpenBLAS/releases).
3. Extract `w64devkit` on your pc.
4. From the OpenBLAS zip that you just downloaded copy `libopenblas.a`, located inside the `lib` folder, inside `w64devkit\x86_64-w64-mingw32\lib`.
5. From the same OpenBLAS zip copy the content of the `include` folder inside `w64devkit\x86_64-w64-mingw32\include`.
6. Run `w64devkit.exe`.
7. Use the `cd` command to reach the `llama.cpp` folder.
8. From here you can run:
```bash
make GGML_OPENBLAS=1
```
- Using `CMake` on Linux:
```bash
cmake -B build -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS
cmake --build build --config Release
```
### BLIS
Check [BLIS.md](./backend/BLIS.md) for more information.
### SYCL
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
llama.cpp based on SYCL is used to **support Intel GPU** (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
For detailed info, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
### Intel oneMKL
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni. Please note that this build config **does not support Intel GPU**. For Intel GPU support, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
- Using manual oneAPI installation:
By default, `GGML_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DGGML_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. Otherwise please install oneAPI and follow the below steps:
```bash
source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-basekit docker image, only required for manual installation
cmake -B build -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_NATIVE=ON
cmake --build build --config Release
```
- Using oneAPI docker image:
If you do not want to source the environment vars and install oneAPI manually, you can also build the code using intel docker container: [oneAPI-basekit](https://hub.docker.com/r/intel/oneapi-basekit). Then, you can use the commands given above.
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
### CUDA
This provides GPU acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
For Jetson user, if you have Jetson Orin, you can try this: [Offical Support](https://www.jetson-ai-lab.com/tutorial_text-generation.html). If you are using an old model(nano/TX2), need some additional operations before compiling.
- Using `make`:
```bash
make GGML_CUDA=1
```
- Using `CMake`:
```bash
cmake -B build -DGGML_CUDA=ON
cmake --build build --config Release
```
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used.
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted. In Windows this setting is available in the NVIDIA control panel as `System Memory Fallback`.
The following compilation options are also available to tweak performance:
| Option | Legal values | Default | Description |
|-------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGML_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, RDNA3). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
| GGML_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
### MUSA
- Using `make`:
```bash
make GGML_MUSA=1
```
- Using `CMake`:
```bash
cmake -B build -DGGML_MUSA=ON
cmake --build build --config Release
```
### hipBLAS
This provides BLAS acceleration on HIP-supported AMD GPUs.
Make sure to have ROCm installed.
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html#rocm-install-quick).
- Using `make`:
```bash
make GGML_HIPBLAS=1
```
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
```bash
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build -DGGML_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build --config Release -- -j 16
```
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
Note that if you get the following error:
```
clang: error: cannot find ROCm device library; provide its path via '--rocm-path' or '--rocm-device-lib-path', or pass '-nogpulib' to build without ROCm device library
```
Try searching for a directory under `HIP_PATH` that contains the file
`oclc_abi_version_400.bc`. Then, add the following to the start of the
command: `HIP_DEVICE_LIB_PATH=<directory-you-just-found>`, so something
like:
```bash
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -p)" \
HIP_DEVICE_LIB_PATH=<directory-you-just-found> \
cmake -S . -B build -DGGML_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build -- -j 16
```
- Using `make` (example for target gfx1030, build with 16 CPU threads):
```bash
make -j16 GGML_HIPBLAS=1 GGML_HIP_UMA=1 AMDGPU_TARGETS=gfx1030
```
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
```bash
set PATH=%HIP_PATH%\bin;%PATH%
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DGGML_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
cmake --build build
```
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
| Option | Legal values | Default | Description |
|------------------------|------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
### Vulkan
**Windows**
#### w64devkit
Download and extract [w64devkit](https://github.com/skeeto/w64devkit/releases).
Download and install the [Vulkan SDK](https://vulkan.lunarg.com/sdk/home#windows). When selecting components, only the Vulkan SDK Core is required.
Launch `w64devkit.exe` and run the following commands to copy Vulkan dependencies:
```sh
SDK_VERSION=1.3.283.0
cp /VulkanSDK/$SDK_VERSION/Bin/glslc.exe $W64DEVKIT_HOME/bin/
cp /VulkanSDK/$SDK_VERSION/Lib/vulkan-1.lib $W64DEVKIT_HOME/x86_64-w64-mingw32/lib/
cp -r /VulkanSDK/$SDK_VERSION/Include/* $W64DEVKIT_HOME/x86_64-w64-mingw32/include/
cat > $W64DEVKIT_HOME/x86_64-w64-mingw32/lib/pkgconfig/vulkan.pc <<EOF
Name: Vulkan-Loader
Description: Vulkan Loader
Version: $SDK_VERSION
Libs: -lvulkan-1
EOF
```
Switch into the `llama.cpp` directory and run `make GGML_VULKAN=1`.
#### MSYS2
Install [MSYS2](https://www.msys2.org/) and then run the following commands in a UCRT terminal to install dependencies.
```sh
pacman -S git \
mingw-w64-ucrt-x86_64-gcc \
mingw-w64-ucrt-x86_64-cmake \
mingw-w64-ucrt-x86_64-vulkan-devel \
mingw-w64-ucrt-x86_64-shaderc
```
Switch into `llama.cpp` directory and build using CMake.
```sh
cmake -B build -DGGML_VULKAN=ON
cmake --build build --config Release
```
**With docker**:
You don't need to install Vulkan SDK. It will be installed inside the container.
```sh
# Build the image
docker build -t llama-cpp-vulkan -f .devops/llama-cli-vulkan.Dockerfile .
# Then, use it:
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
```
**Without docker**:
Firstly, you need to make sure you have installed [Vulkan SDK](https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html)
For example, on Ubuntu 22.04 (jammy), use the command below:
```bash
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add -
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
apt update -y
apt-get install -y vulkan-sdk
# To verify the installation, use the command below:
vulkaninfo
```
Alternatively your package manager might be able to provide the appropriate libraries.
For example for Ubuntu 22.04 you can install `libvulkan-dev` instead.
For Fedora 40, you can install `vulkan-devel`, `glslc` and `glslang` packages.
Then, build llama.cpp using the cmake command below:
```bash
cmake -B build -DGGML_VULKAN=1
cmake --build build --config Release
# Test the output binary (with "-ngl 33" to offload all layers to GPU)
./bin/llama-cli -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4
# You should see in the output, ggml_vulkan detected your GPU. For example:
# ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
```
### Android
To read documentation for how to build on Android, [click here](./android.md)
# Add a new model architecture to `llama.cpp`
Adding a model requires few steps:
1. Convert the model to GGUF
2. Define the model architecture in `llama.cpp`
3. Build the GGML graph implementation
After following these steps, you can open PR.
Also, it is important to check that the examples and main ggml backends (CUDA, METAL, CPU) are working with the new architecture, especially:
- [main](/examples/main/)
- [imatrix](/examples/imatrix/)
- [quantize](/examples/quantize/)
- [server](/examples/server/)
### 1. Convert the model to GGUF
This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library.
Depending on the model architecture, you can use either [convert_hf_to_gguf.py](/convert_hf_to_gguf.py) or [examples/convert_legacy_llama.py](/examples/convert_legacy_llama.py) (for `llama/llama2` models in `.pth` format).
The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors.
The required steps to implement for an HF model are:
1. Define the model `Model.register` annotation in a new `Model` subclass, example:
```python
@Model.register("MyModelForCausalLM")
class MyModel(Model):
model_arch = gguf.MODEL_ARCH.GROK
```
2. Define the layout of the GGUF tensors in [constants.py](/gguf-py/gguf/constants.py)
Add an enum entry in `MODEL_ARCH`, the model human friendly name in `MODEL_ARCH_NAMES` and the GGUF tensor names in `MODEL_TENSORS`.
Example for `falcon` model:
```python
MODEL_ARCH.FALCON: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_NORM_2,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
]
```
3. Map the original tensor names to the standardize equivalent in GGUF
As a general rule, before adding a new tensor name to GGUF, be sure the equivalent naming does not already exist.
Once you have found the GGUF tensor name equivalent, add it to the [tensor_mapping.py](/gguf-py/gguf/tensor_mapping.py) file.
If the tensor name is part of a repetitive layer/block, the key word `bid` substitutes it.
Example for the normalization tensor in attention layers:
```python
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
# Attention norm
MODEL_TENSOR.ATTN_NORM: (
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
"transformer.blocks.{bid}.norm_1", # mpt
...
)
}
```
`transformer.blocks.{bid}.norm_1` will be mapped to `blk.{bid}.attn_norm` in GGUF.
Depending on the model configuration, tokenizer, code and tensors layout, you will have to override:
- `Model#set_gguf_parameters`
- `Model#set_vocab`
- `Model#write_tensors`
NOTE: Tensor names must end with `.weight` suffix, that is the convention and several tools like `quantize` expect this to proceed the weights.
### 2. Define the model architecture in `llama.cpp`
The model params and tensors layout must be defined in `llama.cpp`:
1. Define a new `llm_arch`
2. Define the tensors layout in `LLM_TENSOR_NAMES`
3. Add any non standard metadata in `llm_load_hparams`
4. Create the tensors for inference in `llm_load_tensors`
5. If the model has a RoPE operation, add the rope type in `llama_rope_type`
NOTE: The dimensions in `ggml` are typically in the reverse order of the `pytorch` dimensions.
### 3. Build the GGML graph implementation
This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `llama_build_graph`.
Have a look at existing implementation like `build_llama`, `build_dbrx` or `build_bert`.
When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support for missing backend operations can be added in another PR.
Note: to debug the inference graph: you can use [llama-eval-callback](/examples/eval-callback/).
## GGUF specification
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
## Resources
- YaRN RoPE scaling https://github.com/ggerganov/llama.cpp/pull/2268
- support Baichuan serial models https://github.com/ggerganov/llama.cpp/pull/3009
- support attention bias https://github.com/ggerganov/llama.cpp/pull/4283
- Mixtral support https://github.com/ggerganov/llama.cpp/pull/4406
- BERT embeddings https://github.com/ggerganov/llama.cpp/pull/5423
- Grok-1 support https://github.com/ggerganov/llama.cpp/pull/6204
- Command R Plus support https://github.com/ggerganov/llama.cpp/pull/6491
- support arch DBRX https://github.com/ggerganov/llama.cpp/pull/6515
- How to convert HuggingFace model to GGUF format https://github.com/ggerganov/llama.cpp/discussions/2948
# Debugging Tests Tips
## How to run & execute or debug a specific test without anything else to keep the feedback loop short?
There is a script called debug-test.sh in the scripts folder whose parameter takes a REGEX and an optional test number.
For example, running the following command will output an interactive list from which you can select a test. It takes this form:
`debug-test.sh [OPTION]... <test_regex> <test_number>`
It will then build & run in the debugger for you.
To just execute a test and get back a PASS or FAIL message run:
```bash
./scripts/debug-test.sh test-tokenizer
```
To test in GDB use the `-g` flag to enable gdb test mode.
```bash
./scripts/debug-test.sh -g test-tokenizer
# Once in the debugger, i.e. at the chevrons prompt, setting a breakpoint could be as follows:
>>> b main
```
To speed up the testing loop, if you know your test number you can just run it similar to below:
```bash
./scripts/debug-test.sh test 23
```
For further reference use `debug-test.sh -h` to print help.
&nbsp;
### How does the script work?
If you want to be able to use the concepts contained in the script separately, the important ones are briefly outlined below.
#### Step 1: Reset and Setup folder context
From base of this repository, let's create `build-ci-debug` as our build context.
```bash
rm -rf build-ci-debug && mkdir build-ci-debug && cd build-ci-debug
```
#### Step 2: Setup Build Environment and Compile Test Binaries
Setup and trigger a build under debug mode. You may adapt the arguments as needed, but in this case these are sane defaults.
```bash
cmake -DCMAKE_BUILD_TYPE=Debug -DLLAMA_CUDA=1 -DLLAMA_FATAL_WARNINGS=ON ..
make -j
```
#### Step 3: Find all tests available that matches REGEX
The output of this command will give you the command & arguments needed to run GDB.
* `-R test-tokenizer` : looks for all the test files named `test-tokenizer*` (R=Regex)
* `-N` : "show-only" disables test execution & shows test commands that you can feed to GDB.
* `-V` : Verbose Mode
```bash
ctest -R "test-tokenizer" -V -N
```
This may return output similar to below (focusing on key lines to pay attention to):
```bash
...
1: Test command: ~/llama.cpp/build-ci-debug/bin/test-tokenizer-0 "~/llama.cpp/tests/../models/ggml-vocab-llama-spm.gguf"
1: Working Directory: .
Labels: main
Test #1: test-tokenizer-0-llama-spm
...
4: Test command: ~/llama.cpp/build-ci-debug/bin/test-tokenizer-0 "~/llama.cpp/tests/../models/ggml-vocab-falcon.gguf"
4: Working Directory: .
Labels: main
Test #4: test-tokenizer-0-falcon
...
```
#### Step 4: Identify Test Command for Debugging
So for test #1 above we can tell these two pieces of relevant information:
* Test Binary: `~/llama.cpp/build-ci-debug/bin/test-tokenizer-0`
* Test GGUF Model: `~/llama.cpp/tests/../models/ggml-vocab-llama-spm.gguf`
#### Step 5: Run GDB on test command
Based on the ctest 'test command' report above we can then run a gdb session via this command below:
```bash
gdb --args ${Test Binary} ${Test GGUF Model}
```
Example:
```bash
gdb --args ~/llama.cpp/build-ci-debug/bin/test-tokenizer-0 "~/llama.cpp/tests/../models/ggml-vocab-llama-spm.gguf"
```
# Token generation performance troubleshooting
## Verifying that the model is running on the GPU with CUDA
Make sure you compiled llama with the correct env variables according to [this guide](/docs/build.md#cuda), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
```shell
./llama-cli -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some "
```
When running llama, before it starts the inference work, it will output diagnostic information that shows whether cuBLAS is offloading work to the GPU. Look for these lines:
```shell
llama_model_load_internal: [cublas] offloading 60 layers to GPU
llama_model_load_internal: [cublas] offloading output layer to GPU
llama_model_load_internal: [cublas] total VRAM used: 17223 MB
... rest of inference
```
If you see these lines, then the GPU is being used.
## Verifying that the CPU is not oversaturated
llama accepts a `-t N` (or `--threads N`) parameter. It's extremely important that this parameter is not too large. If your token generation is extremely slow, try setting this number to 1. If this significantly improves your token generation speed, then your CPU is being oversaturated and you need to explicitly set this parameter to the number of the physical CPU cores on your machine (even if you utilize a GPU). If in doubt, start with 1 and double the amount until you hit a performance bottleneck, then scale the number down.
# Example of runtime flags effect on inference speed benchmark
These runs were tested on the following machine:
GPU: A6000 (48GB VRAM)
CPU: 7 physical cores
RAM: 32GB
Model: `TheBloke_Wizard-Vicuna-30B-Uncensored-GGML/Wizard-Vicuna-30B-Uncensored.q4_0.gguf` (30B parameters, 4bit quantization, GGML)
Run command: `./llama-cli -m "path/to/model.gguf" -p "An extremely detailed description of the 10 best ethnic dishes will follow, with recipes: " -n 1000 [additional benchmark flags]`
Result:
| command | tokens/second (higher is better) |
| - | - |
| -ngl 2000000 | N/A (less than 0.1) |
| -t 7 | 1.7 |
| -t 1 -ngl 2000000 | 5.5 |
| -t 7 -ngl 2000000 | 8.7 |
| -t 4 -ngl 2000000 | 9.1 |
# Docker
## Prerequisites
* Docker must be installed and running on your system.
* Create a folder to store big models & intermediate files (ex. /llama/models)
## Images
We have three Docker images available for this project:
1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
3. `ghcr.io/ggerganov/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
Additionally, there the following images, similar to the above:
- `ghcr.io/ggerganov/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
## Usage
The easiest way to download the models, convert them to ggml and optimize them is with the --all-in-one command which includes the full docker image.
Replace `/path/to/models` below with the actual path where you downloaded the models.
```bash
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B
```
On completion, you are ready to play!
```bash
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
```
or with a light image:
```bash
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
```
or with a server image:
```bash
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggerganov/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
```
## Docker With CUDA
Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container.
## Building Docker locally
```bash
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
docker build -t local/llama.cpp:light-cuda -f .devops/llama-cli-cuda.Dockerfile .
docker build -t local/llama.cpp:server-cuda -f .devops/llama-server-cuda.Dockerfile .
```
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
The defaults are:
- `CUDA_VERSION` set to `11.7.1`
- `CUDA_DOCKER_ARCH` set to `all`
The resulting images, are essentially the same as the non-CUDA images:
1. `local/llama.cpp:full-cuda`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `local/llama.cpp:light-cuda`: This image only includes the main executable file.
3. `local/llama.cpp:server-cuda`: This image only includes the server executable file.
## Usage
After building locally, Usage is similar to the non-CUDA examples, but you'll need to add the `--gpus` flag. You will also want to use the `--n-gpu-layers` flag.
```bash
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512 --n-gpu-layers 1
```
# Install pre-built version of llama.cpp
## Homebrew
On Mac and Linux, the homebrew package manager can be used via
```sh
brew install llama.cpp
```
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668
## Nix
On Mac and Linux, the Nix package manager can be used via
```sh
nix profile install nixpkgs#llama-cpp
```
For flake enabled installs.
Or
```sh
nix-env --file '<nixpkgs>' --install --attr llama-cpp
```
For non-flake enabled installs.
This expression is automatically updated within the [nixpkgs repo](https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/by-name/ll/llama-cpp/package.nix#L164).
## Flox
On Mac and Linux, Flox can be used to install llama.cpp within a Flox environment via
```sh
flox install llama-cpp
```
Flox follows the nixpkgs build of llama.cpp.
# dependencies
find_package(Threads REQUIRED)
# third-party
# ...
# examples
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
if (EMSCRIPTEN)
else()
add_subdirectory(cvector-generator)
add_subdirectory(baby-llama)
add_subdirectory(batched-bench)
add_subdirectory(batched)
add_subdirectory(benchmark)
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(embedding)
add_subdirectory(eval-callback)
add_subdirectory(export-lora)
add_subdirectory(gbnf-validator)
add_subdirectory(gguf-hash)
add_subdirectory(gguf-split)
add_subdirectory(gguf)
add_subdirectory(gritlm)
add_subdirectory(imatrix)
add_subdirectory(infill)
add_subdirectory(llama-bench)
add_subdirectory(llava)
add_subdirectory(lookahead)
add_subdirectory(lookup)
add_subdirectory(main)
add_subdirectory(parallel)
add_subdirectory(passkey)
add_subdirectory(perplexity)
add_subdirectory(quantize-stats)
add_subdirectory(quantize)
add_subdirectory(retrieval)
if (GGML_RPC)
add_subdirectory(rpc)
endif()
if (LLAMA_BUILD_SERVER)
add_subdirectory(server)
endif()
if (GGML_SYCL)
add_subdirectory(sycl)
endif()
add_subdirectory(save-load-state)
add_subdirectory(simple)
add_subdirectory(speculative)
add_subdirectory(tokenize)
endif()
#!/bin/bash
set -e
AI_NAME="${AI_NAME:-Miku}"
MODEL="${MODEL:-./models/llama-2-7b-chat.ggmlv3.q4_K_M.bin}"
USER_NAME="${USER_NAME:-Anon}"
# Uncomment and adjust to the number of CPU cores you want to use.
#N_THREAD="${N_THREAD:-4}"
CTX_SIZE="${CTX_SIZE:-4096}"
N_PREDICTS="${N_PREDICTS:-4096}"
GEN_OPTIONS=(--batch_size 1024
--ctx_size "$CTX_SIZE"
--keep -1
--repeat_last_n 256
--repeat_penalty 1.17647
--temp 0.6
--mirostat 2)
if [ -n "$N_THREAD" ]; then
GEN_OPTIONS+=(--threads "$N_THREAD")
fi
./llama-cli "${GEN_OPTIONS[@]}" \
--model "$MODEL" \
--in-prefix " " \
--in-suffix "${AI_NAME}:" \
--n_predict "$N_PREDICTS" \
--color --interactive \
--reverse-prompt "${USER_NAME}:" \
--prompt "This is a transcript of a 1000 page, never ending conversation between ${USER_NAME} and the cute and helpful AI assistant ${AI_NAME}. ${AI_NAME} is a girl who is an AI running on the user's computer.
${AI_NAME} can think for herself without the user seeing her thoughts by adding a /think prefix to her output. She uses this to reason about the world and to think about what she should say next.
${AI_NAME} is always coherent and makes sense, but if she isn't sure if what she is saying is correct, she will ask the user for help.
${AI_NAME} is a very helpful AI and will help the user with anything they need. She is also very friendly and will try to make the user feel better if they are sad.
${AI_NAME} is also very curious and will ask the user a lot of questions about themselves and their life. She will also try to make the user like her.
The conversation is only between ${USER_NAME} and ${AI_NAME}.
The conversation is only through text, so ${AI_NAME} can't see ${USER_NAME}'s face or hear his voice.
${AI_NAME} can only communicate through text, so she can't send images or videos.
${USER_NAME}: Hello!
${AI_NAME}: /think I wonder what I should say to ${USER_NAME}? This is the first time we talk, so it's important that I make a good first impression!
${AI_NAME}: Hi! I am ${AI_NAME}, your new AI friend, assistant (or whatever you like!), it's so nice to meet you! ^_^
${AI_NAME}: I might be an AI, but I also have feelings, so please be nice to me! :)
${USER_NAME}: I'll make sure to be nice to you! I'm so happy to have you as my assistant!
${AI_NAME}: /think It sounds like ${USER_NAME} is happy to have me as their assistant! I'm so happy too! ^_^ Glad that whole emotion thing didn't scare him off!
${AI_NAME}: /think I wonder what ${USER_NAME} likes to do in his free time? I should ask him about that!
${AI_NAME}: What do you like to do in your free time? ^_^
${USER_NAME}:" "$@"
set(TARGET llama-baby-llama)
add_executable(${TARGET} baby-llama.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
#include "ggml.h"
#include "train.h"
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <random>
#include <vector>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#ifdef LLAMA_DEFAULT_RMS_EPS
constexpr float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
#else
constexpr float rms_norm_eps = 5e-6f;
#endif
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
if (plan.work_size > 0) {
buf.resize(plan.work_size);
plan.work_data = buf.data();
}
ggml_graph_compute(graph, &plan);
}
static struct ggml_tensor * randomize_tensor(
struct ggml_tensor * tensor, int ndims, const int64_t ne[], float fmin, float fmax
) {
switch (ndims) {
case 1:
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i0] = frand()*(fmax - fmin) + fmin;
}
break;
case 2:
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
}
}
break;
case 3:
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
}
}
}
break;
case 4:
for (int i3 = 0; i3 < ne[3]; i3++) {
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
}
}
}
}
break;
default:
assert(false);
}
return tensor;
}
struct llama_hparams {
uint32_t n_vocab = 32000;
uint32_t n_ctx = 512; // this is provided as user input?
uint32_t n_embd = 4096;
uint32_t n_mult = 4;
uint32_t n_head = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
bool operator!=(const llama_hparams & other) const {
return memcmp(this, &other, sizeof(llama_hparams));
}
};
static uint32_t get_n_ff(const struct llama_hparams* hparams) {
const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult;
return n_ff;
}
struct llama_hparams_lora {
uint32_t n_vocab = 32000;
uint32_t n_ctx = 512; // this is provided as user input?
uint32_t n_embd = 4096;
uint32_t n_mult = 4;
uint32_t n_head = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
uint32_t n_lora = 64;
bool operator!=(const llama_hparams_lora & other) const {
return memcmp(this, &other, sizeof(llama_hparams_lora)) != 0;
}
};
struct llama_layer {
// normalization
struct ggml_tensor * attention_norm;
// attention
struct ggml_tensor * wq;
struct ggml_tensor * wk;
struct ggml_tensor * wv;
struct ggml_tensor * wo;
// normalization
struct ggml_tensor * ffn_norm;
// ff
struct ggml_tensor * w1;
struct ggml_tensor * w2;
struct ggml_tensor * w3;
};
struct llama_layer_lora {
// normalization
struct ggml_tensor * attention_norm;
// attention
struct ggml_tensor * wqa;
struct ggml_tensor * wqb;
struct ggml_tensor * wka;
struct ggml_tensor * wkb;
struct ggml_tensor * wva;
struct ggml_tensor * wvb;
struct ggml_tensor * woa;
struct ggml_tensor * wob;
// normalization
struct ggml_tensor * ffn_norm;
// ff
struct ggml_tensor * w1;
struct ggml_tensor * w2;
struct ggml_tensor * w3;
};
struct llama_kv_cache {
struct ggml_context * ctx = NULL;
struct ggml_tensor * k;
struct ggml_tensor * v;
// llama_ctx_buffer buf;
int n; // number of tokens currently in the cache
};
struct llama_model {
struct ggml_context * ctx = NULL;
llama_hparams hparams;
struct ggml_tensor * tok_embeddings;
struct ggml_tensor * norm;
struct ggml_tensor * output;
std::vector<llama_layer> layers;
};
struct llama_model_lora {
struct ggml_context * ctx = NULL;
llama_hparams_lora hparams;
struct ggml_tensor * tok_embeddings;
struct ggml_tensor * norm;
struct ggml_tensor * outputa;
struct ggml_tensor * outputb;
std::vector<llama_layer_lora> layers;
};
static void init_model(struct llama_model * model) {
const auto & hparams = model->hparams;
const uint32_t n_embd = hparams.n_embd;
const uint32_t n_layer = hparams.n_layer;
const uint32_t n_vocab = hparams.n_vocab;
const uint32_t n_ff = get_n_ff(&hparams);
struct ggml_context * ctx = model->ctx;
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("tok_embeddings.weight", {n_embd, n_vocab});
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // ("norm.weight", {n_embd});
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("output.weight", {n_embd, n_vocab});
model->layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = model->layers[i];
// std::string layers_i = "layers." + std::to_string(i);
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".attention_norm.weight", {n_embd});
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wq.weight", {n_embd, n_embd});
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wk.weight", {n_embd, n_embd});
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wv.weight", {n_embd, n_embd});
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wo.weight", {n_embd, n_embd});
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".ffn_norm.weight", {n_embd});
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w1.weight", {n_embd, n_ff});
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); // (layers_i + ".feed_forward.w2.weight", { n_ff, n_embd});
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w3.weight", {n_embd, n_ff});
}
}
static void init_model_lora(struct llama_model_lora * model) {
const auto & hparams = model->hparams;
const uint32_t n_embd = hparams.n_embd;
const uint32_t n_mult = hparams.n_mult;
const uint32_t n_layer = hparams.n_layer;
const uint32_t n_vocab = hparams.n_vocab;
const uint32_t n_lora = hparams.n_lora;
const uint32_t n_ff = ((2*(4*n_embd)/3 + n_mult - 1)/n_mult)*n_mult;
struct ggml_context * ctx = model->ctx;
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("tok_embeddings.weight", {n_embd, n_vocab});
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // ("norm.weight", {n_embd});
model->outputa = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_vocab); // ("output.weight", {n_embd, n_vocab});
model->outputb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // ("output.weight", {n_embd, n_vocab});
model->layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = model->layers[i];
// std::string layers_i = "layers." + std::to_string(i);
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".attention_norm.weight", {n_embd});
layer.wqa = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wq.weight", {n_embd, n_embd});
layer.wqb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wq.weight", {n_embd, n_embd});
layer.wka = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wk.weight", {n_embd, n_embd});
layer.wkb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wk.weight", {n_embd, n_embd});
layer.wva = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wv.weight", {n_embd, n_embd});
layer.wvb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wv.weight", {n_embd, n_embd});
layer.woa = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wo.weight", {n_embd, n_embd});
layer.wob = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wo.weight", {n_embd, n_embd});
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".ffn_norm.weight", {n_embd});
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w1.weight", {n_embd, n_ff});
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); // (layers_i + ".feed_forward.w2.weight", { n_ff, n_embd});
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w3.weight", {n_embd, n_ff});
}
}
static void set_param_model(struct llama_model * model) {
const auto& hparams = model->hparams;
const uint32_t n_layer = hparams.n_layer;
struct ggml_context* ctx = model->ctx;
ggml_set_param(ctx, model->tok_embeddings);
ggml_set_param(ctx, model->norm);
ggml_set_param(ctx, model->output);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = model->layers[i];
ggml_set_param(ctx, layer.attention_norm);
ggml_set_param(ctx, layer.wq);
ggml_set_param(ctx, layer.wk);
ggml_set_param(ctx, layer.wv);
ggml_set_param(ctx, layer.wo);
ggml_set_param(ctx, layer.ffn_norm);
ggml_set_param(ctx, layer.w1);
ggml_set_param(ctx, layer.w2);
ggml_set_param(ctx, layer.w3);
}
}
static void set_param_model_lora(struct llama_model_lora * model) {
const auto& hparams = model->hparams;
const uint32_t n_layer = hparams.n_layer;
struct ggml_context* ctx = model->ctx;
ggml_set_param(ctx, model->tok_embeddings);
ggml_set_param(ctx, model->norm);
ggml_set_param(ctx, model->outputa);
ggml_set_param(ctx, model->outputb);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = model->layers[i];
ggml_set_param(ctx, layer.attention_norm);
ggml_set_param(ctx, layer.wqa);
ggml_set_param(ctx, layer.wqb);
ggml_set_param(ctx, layer.wka);
ggml_set_param(ctx, layer.wkb);
ggml_set_param(ctx, layer.wva);
ggml_set_param(ctx, layer.wvb);
ggml_set_param(ctx, layer.woa);
ggml_set_param(ctx, layer.wob);
ggml_set_param(ctx, layer.ffn_norm);
ggml_set_param(ctx, layer.w1);
ggml_set_param(ctx, layer.w2);
ggml_set_param(ctx, layer.w3);
}
}
static void randomize_model(struct llama_model * model, int seed, float mean, float std, float min, float max) {
const auto & hparams = model->hparams;
const uint32_t n_layer = hparams.n_layer;
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
randomize_tensor_normal(model->tok_embeddings , rnd);
randomize_tensor_normal(model->norm , rnd);
randomize_tensor_normal(model->output , rnd);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = model->layers[i];
randomize_tensor_normal(layer.attention_norm, rnd);
randomize_tensor_normal(layer.wq, rnd);
randomize_tensor_normal(layer.wk, rnd);
randomize_tensor_normal(layer.wv, rnd);
randomize_tensor_normal(layer.wo, rnd);
randomize_tensor_normal(layer.ffn_norm, rnd);
randomize_tensor_normal(layer.w1, rnd);
randomize_tensor_normal(layer.w2, rnd);
randomize_tensor_normal(layer.w3, rnd);
}
free_random_normal_distribution(rnd);
}
static void randomize_model_lora(
struct llama_model_lora * model, int seed, float mean, float std, float min, float max
) {
const auto & hparams = model->hparams;
const uint32_t n_layer = hparams.n_layer;
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
randomize_tensor_normal(model->tok_embeddings, rnd);
randomize_tensor_normal(model->norm , rnd);
randomize_tensor_normal(model->outputa , rnd);
randomize_tensor_normal(model->outputb , rnd);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = model->layers[i];
randomize_tensor_normal(layer.attention_norm, rnd);
randomize_tensor_normal(layer.wqa, rnd);
randomize_tensor_normal(layer.wqb, rnd);
randomize_tensor_normal(layer.wka, rnd);
randomize_tensor_normal(layer.wkb, rnd);
randomize_tensor_normal(layer.wva, rnd);
randomize_tensor_normal(layer.wvb, rnd);
randomize_tensor_normal(layer.woa, rnd);
randomize_tensor_normal(layer.wob, rnd);
randomize_tensor_normal(layer.ffn_norm, rnd);
randomize_tensor_normal(layer.w1, rnd);
randomize_tensor_normal(layer.w2, rnd);
randomize_tensor_normal(layer.w3, rnd);
}
free_random_normal_distribution(rnd);
}
static void init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) {
const auto & hparams = model->hparams;
const uint32_t n_ctx = hparams.n_ctx;
const uint32_t n_embd = hparams.n_embd;
const uint32_t n_layer = hparams.n_layer;
const int64_t n_mem = n_layer*n_ctx*n_batch;
const int64_t n_elements = n_embd*n_mem;
// cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
// struct ggml_init_params params;
// params.mem_size = cache.buf.size;
// params.mem_buffer = cache.buf.addr;
// params.no_alloc = false;
if (!cache->ctx) {
struct ggml_init_params params;
params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024;
params.mem_buffer = NULL;
params.no_alloc = false;
cache->ctx = ggml_init(params);
if (!cache->ctx) {
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
exit(1);
}
}
cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
}
static bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * model, int n_batch) {
const auto & hparams = model->hparams;
const uint32_t n_ctx = hparams.n_ctx;
const uint32_t n_embd = hparams.n_embd;
const uint32_t n_layer = hparams.n_layer;
const int64_t n_mem = n_layer*n_ctx*n_batch;
const int64_t n_elements = n_embd*n_mem;
// cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
// struct ggml_init_params params;
// params.mem_size = cache.buf.size;
// params.mem_buffer = cache.buf.addr;
// params.no_alloc = false;
if (!cache->ctx) {
struct ggml_init_params params;
params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024;
params.mem_buffer = NULL;
params.no_alloc = false;
cache->ctx = ggml_init(params);
if (!cache->ctx) {
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
return false;
}
}
cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
return true;
}
static struct ggml_tensor * forward(
struct llama_model * model,
struct llama_kv_cache * cache,
struct ggml_context * ctx0,
struct ggml_cgraph * gf,
struct ggml_tensor * tokens_input,
const int n_tokens,
const int n_past
) {
const int N = n_tokens;
struct llama_kv_cache& kv_self = *cache;
const auto & hparams = model->hparams;
const int n_ctx = hparams.n_ctx;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_head = hparams.n_head;
const int n_rot = hparams.n_rot;
struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(tokens->data, tokens_input->data, N*ggml_element_size(tokens));
struct ggml_tensor * kc = kv_self.k;
struct ggml_tensor * vc = kv_self.v;
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
{
int * data = (int *) KQ_pos->data;
for (int i = 0; i < N; ++i) {
data[i] = n_past + i;
}
}
// inpL shape [n_embd,N,1,1]
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
struct ggml_tensor * cur;
// lctx.use_buf(ctx0, 0);
// norm
{
// cur shape [n_embd,N,1,1]
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// cur = attention_norm*cur
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model->layers[il].attention_norm, cur),
cur);
}
// self-attention
{
// compute Q and K and RoPE them
// wq shape [n_embd, n_embd, 1, 1]
// wk shape [n_embd, n_embd, 1, 1]
// Qcur shape [n_embd/n_head, n_head, N, 1]
// Kcur shape [n_embd/n_head, n_head, N, 1]
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0);
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0);
// store key and value to memory
{
// compute the transposed [N, n_embd] V matrix
// wv shape [n_embd, n_embd, 1, 1]
// Vcur shape [n_embd, N, 1, 1]
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wv, cur), n_embd, N)));
// kv_self.k shape [n_embd * n_ctx * n_layer, 1]
// kv_self.v shape [n_embd * n_ctx * n_layer, 1]
// k shape [n_embd * N, 1] == kv_self.k[:,n_past:n_past+N,il,0]
// v shape [N, n_embd, 1, 1] == kv_self.v[:,n_past:n_past+N,il,0]
/* {
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
// important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
} //*/
kc = ggml_set_1d(ctx0, kc, ggml_reshape_1d(ctx0, Kcur, n_embd*N), (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
vc = ggml_set_2d(ctx0, vc, Vcur, ( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
}
// Qcur shape [n_embd/n_head, n_head, N, 1]
// Q shape [n_embd/n_head, N, n_head, 1]
struct ggml_tensor * Q =
ggml_permute(ctx0,
Qcur,
0, 2, 1, 3);
// kv_self.k shape [n_embd * n_ctx * n_layer, 1]
// K shape [n_embd/n_head, n_past + N, n_head, 1]
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, kc, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kc)*n_embd),
n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3);
// K * Q
// KQ shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
// KQ_masked = mask_past(KQ_scaled)
// KQ_masked shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
// KQ = soft_max(KQ_masked)
// KQ_soft_max shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
// split cached V into n_head heads
//// V shape [n_past + N, n_embd/n_head, n_head, 1]
// V shape [n_past + N, n_embd/n_head, n_head, 1] == kv_self.v[:,:(n_past+N),il,1]
struct ggml_tensor * V =
ggml_view_3d(ctx0, vc,
n_past + N, n_embd/n_head, n_head,
n_ctx*ggml_element_size(vc),
n_ctx*ggml_element_size(vc)*n_embd/n_head,
il*n_ctx*ggml_element_size(vc)*n_embd);
// KQV shape [n_embd/n_head, N, n_head, 1]
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
// KQV_merged shape [n_embd/n_head, n_head, N, 1]
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// KQV_merged shape
// cur = KQV_merged.contiguous().view(n_embd, N)
// cur shape [n_embd,N,1,1]
cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N);
// cur = ggml_cpy(ctx0,
// KQV_merged,
// ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection (no bias)
// cur shape [n_embd,N,1,1]
cur = ggml_mul_mat(ctx0,
model->layers[il].wo,
cur);
}
// lctx.use_buf(ctx0, 1);
// inpFF shape [n_embd,N,1,1]
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
// feed-forward network
{
// norm
{
// cur shape [n_embd,N,1,1]
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
// cur = ffn_norm*cur
// cur shape [n_embd,N,1,1]
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model->layers[il].ffn_norm, cur),
cur);
}
// tmp shape [n_ff,N,1,1]
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
model->layers[il].w3,
cur);
// cur shape [n_ff,N,1,1]
cur = ggml_mul_mat(ctx0,
model->layers[il].w1,
cur);
// SILU activation
// cur shape [n_ff,N,1,1]
cur = ggml_silu(ctx0, cur);
// cur shape [n_ff,N,1,1]
cur = ggml_mul(ctx0, cur, tmp);
// cur shape [n_embd,N,1,1]
cur = ggml_mul_mat(ctx0,
model->layers[il].w2,
cur);
}
// cur shape [n_embd,N,1,1]
cur = ggml_add(ctx0, cur, inpFF);
// input for next layer
// inpL shape [n_embd,N,1,1]
inpL = cur;
}
// norm
{
// inpL shape [n_embd,N,1,1]
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// inpL = norm*inpL
// inpL shape [n_embd,N,1,1]
inpL = ggml_mul(ctx0,
ggml_repeat(ctx0, model->norm, inpL),
inpL);
//embeddings = inpL;
}
// lm_head
// inpL shape [n_vocab,N,1,1]
inpL = ggml_mul_mat(ctx0, model->output, inpL);
// run the computation
ggml_build_forward_expand(gf, inpL);
return inpL;
}
static struct ggml_tensor * forward_batch(
struct llama_model * model,
struct llama_kv_cache * cache,
struct ggml_context * ctx0,
struct ggml_cgraph * gf,
struct ggml_tensor * tokens_input,
const int n_tokens,
const int n_past,
const int n_batch
) {
const int N = n_tokens;
struct llama_kv_cache& kv_self = *cache;
const auto & hparams = model->hparams;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_head = hparams.n_head;
const int n_rot = hparams.n_rot;
const int n_ff = get_n_ff(&hparams);
struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch);
memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch);
struct ggml_tensor * kc = kv_self.k;
struct ggml_tensor * vc = kv_self.v;
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
{
int * data = (int *) KQ_pos->data;
for (int i = 0; i < N; ++i) {
data[i] = n_past + i;
}
}
// inpL shape [n_embd,N*n_batch,1]
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
assert_shape_2d(inpL, n_embd, N*n_batch);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
struct ggml_tensor * cur;
// lctx.use_buf(ctx0, 0);
// norm
{
// cur shape [n_embd,N*n_batch,1,1]
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = attention_norm*cur
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model->layers[il].attention_norm, cur),
cur);
assert_shape_2d(cur, n_embd, N*n_batch);
}
// self-attention
{
// compute Q and K and RoPE them
// wq shape [n_embd, n_embd, 1, 1]
// wk shape [n_embd, n_embd, 1, 1]
// Qcur shape [n_embd/n_head, n_head, N, n_batch]
// Kcur shape [n_embd/n_head, n_head, N, n_batch]
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0);
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0);
assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch);
assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch);
// store key and value to memory
{
// compute the transposed [N, n_embd] V matrix
// wv shape [n_embd, n_embd, 1, 1]
// Vcur shape [N, n_embd, n_batch, 1]
struct ggml_tensor * Vcur = ggml_cont(ctx0,
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_mul_mat(ctx0,
model->layers[il].wv,
cur),
n_embd, N, n_batch),
1, 0, 2, 3));
assert_shape_3d(Vcur, N, n_embd, n_batch);
// kv_self.k shape [n_embd * n_ctx * n_batch * n_layer]
// kv_self.v shape [n_ctx * n_embd * n_batch * n_layer]
// k shape [n_embd * N, n_batch] == kv_self.k[:,n_past:n_past+N,:,il]
// v shape [N, n_embd, n_batch, 1] == kv_self.v[:,n_past:n_past+N,:,il]
/* {
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
// important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
} //*/
kc = ggml_set_2d(ctx0, kc,
ggml_reshape_2d(ctx0, Kcur, n_embd*N, n_batch),
ggml_element_size(kc)*n_embd*n_ctx,
(ggml_element_size(kc)*n_embd)*(il*n_batch*n_ctx + n_past));
vc = ggml_set_2d(ctx0, vc,
ggml_reshape_2d(ctx0, Vcur, N*n_embd, n_batch),
ggml_element_size(vc)*n_ctx*n_embd,
ggml_element_size(vc)*(n_past + il*n_embd*n_batch*n_ctx));
assert_shape_1d(kc, n_embd * n_ctx * n_batch * n_layer);
assert_shape_1d(vc, n_embd * n_ctx * n_batch * n_layer);
}
// Qcur shape [n_embd/n_head, n_head, N, n_batch]
// Q shape [n_embd/n_head, N, n_head, n_batch]
struct ggml_tensor * Q =
ggml_permute(ctx0,
Qcur,
0, 2, 1, 3);
assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch);
// kv_self.k shape [n_embd * n_ctx * n_batch * n_layer]
// K shape [n_embd/n_head, n_past + N, n_head, n_batch]
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_4d(ctx0,
ggml_view_3d(ctx0,
kc,
n_embd,
(n_past + N),
n_batch,
n_embd*ggml_element_size(kc),
n_ctx*n_embd*ggml_element_size(kc),
il*n_batch*n_ctx*n_embd*ggml_element_size(kc)),
n_embd/n_head, n_head, n_past + N, n_batch),
0, 2, 1, 3);
assert_shape_4d(K, n_embd/n_head, n_past + N, n_head, n_batch);
// K * Q
// KQ shape [n_past + N, N, n_head, n_batch]
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
assert_shape_4d(KQ, n_past + N, N, n_head, n_batch);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// KQ_scaled shape [n_past + N, N, n_head, n_batch]
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
assert_shape_4d(KQ_scaled, n_past + N, N, n_head, n_batch);
// KQ_masked = mask_past(KQ_scaled)
// KQ_masked shape [n_past + N, N, n_head, n_batch]
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
assert_shape_4d(KQ_masked, n_past + N, N, n_head, n_batch);
// KQ = soft_max(KQ_masked)
// KQ_soft_max shape [n_past + N, N, n_head, n_batch]
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
assert_shape_4d(KQ_soft_max, n_past + N, N, n_head, n_batch);
// split cached V into n_head heads
// kv_self.v shape [n_ctx * n_embd * n_batch * n_layer]
// V shape [n_past + N, n_embd/n_head, n_head, n_batch] == kv_self.v[:(n_past+N),:,:,il]
struct ggml_tensor * V =
ggml_view_4d(ctx0, vc,
n_past + N, n_embd/n_head, n_head, n_batch,
ggml_element_size(vc)*n_ctx,
ggml_element_size(vc)*n_ctx*n_embd/n_head,
ggml_element_size(vc)*n_ctx*n_embd,
il*n_batch*n_ctx*n_embd*ggml_element_size(vc));
assert_shape_4d(V, n_past + N, n_embd/n_head, n_head, n_batch);
// KQV shape [n_embd/n_head, N, n_head, n_batch]
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch);
// KQV_merged = KQV.permute(0, 2, 1, 3)
// KQV_merged shape [n_embd/n_head, n_head, N, n_batch]
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch);
// KQV_merged shape
// cur = KQV_merged.contiguous().view(n_embd, N)
// cur shape [n_embd,N*n_batch,1,1]
cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = ggml_cpy(ctx0,
// KQV_merged,
// ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection (no bias)
// cur shape [n_embd,N*n_batch,1,1]
cur = ggml_mul_mat(ctx0,
model->layers[il].wo,
cur);
assert_shape_2d(cur, n_embd, N*n_batch);
}
// lctx.use_buf(ctx0, 1);
// inpFF shape [n_embd,N*n_batch,1,1]
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
assert_shape_2d(inpFF, n_embd, N*n_batch);
// feed-forward network
{
// norm
{
// cur shape [n_embd,N*n_batch,1,1]
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = ffn_norm*cur
// cur shape [n_embd,N*n_batch,1,1]
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model->layers[il].ffn_norm, cur),
cur);
assert_shape_2d(cur, n_embd, N*n_batch);
}
// tmp shape [n_ff,N*n_batch,1,1]
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
model->layers[il].w3,
cur);
assert_shape_2d(tmp, n_ff, N*n_batch);
// cur shape [n_ff,N*n_batch,1,1]
cur = ggml_mul_mat(ctx0,
model->layers[il].w1,
cur);
assert_shape_2d(cur, n_ff, N*n_batch);
// SILU activation
// cur shape [n_ff,N*n_batch,1,1]
cur = ggml_silu(ctx0, cur);
assert_shape_2d(cur, n_ff, N*n_batch);
// cur shape [n_ff,N*n_batch,1,1]
cur = ggml_mul(ctx0, cur, tmp);
assert_shape_2d(cur, n_ff, N*n_batch);
// cur shape [n_embd,N*n_batch,1,1]
cur = ggml_mul_mat(ctx0,
model->layers[il].w2,
cur);
assert_shape_2d(cur, n_embd, N*n_batch);
}
// cur shape [n_embd,N*n_batch,1,1]
cur = ggml_add(ctx0, cur, inpFF);
assert_shape_2d(cur, n_embd, N*n_batch);
// input for next layer
// inpL shape [n_embd,N*n_batch,1,1]
inpL = cur;
assert_shape_2d(inpL, n_embd, N*n_batch);
}
// norm
{
// inpL shape [n_embd,N*n_batch,1,1]
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(inpL, n_embd, N*n_batch);
// inpL = norm*inpL
// inpL shape [n_embd,N*n_batch,1,1]
inpL = ggml_mul(ctx0,
ggml_repeat(ctx0, model->norm, inpL),
inpL);
assert_shape_2d(inpL, n_embd, N*n_batch);
//embeddings = inpL;
}
// lm_head
// inpL shape [n_vocab,N*n_batch,1,1]
inpL = ggml_mul_mat(ctx0, model->output, inpL);
assert_shape_2d(inpL, n_vocab, N*n_batch);
{
// inpL shape [n_vocab,N,n_batch,1]
inpL = ggml_reshape_3d(ctx0,
inpL,
n_vocab, N, n_batch);
assert_shape_3d(inpL, n_vocab, N, n_batch);
}
// run the computation
ggml_build_forward_expand(gf, inpL);
return inpL;
}
static struct ggml_tensor * forward_lora(
struct llama_model_lora * model,
struct llama_kv_cache * cache,
struct ggml_context * ctx0,
struct ggml_cgraph * gf,
struct ggml_tensor * tokens_input,
const int n_tokens,
const int n_past
) {
const int N = n_tokens;
struct llama_kv_cache& kv_self = *cache;
const auto & hparams = model->hparams;
const int n_ctx = hparams.n_ctx;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_head = hparams.n_head;
const int n_rot = hparams.n_rot;
struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(tokens->data, tokens_input->data, N*ggml_element_size(tokens));
struct ggml_tensor * kc = kv_self.k;
struct ggml_tensor * vc = kv_self.v;
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
{
int * data = (int *) KQ_pos->data;
for (int i = 0; i < N; ++i) {
data[i] = n_past + i;
}
}
// inpL shape [n_embd,N,1,1]
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
struct ggml_tensor * cur;
// norm
{
// cur shape [n_embd,N,1,1]
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// cur = attention_norm*cur
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model->layers[il].attention_norm, cur),
cur);
}
// self-attention
{
// compute Q and K and RoPE them
// wq shape [n_embd, n_embd, 1, 1]
// wk shape [n_embd, n_embd, 1, 1]
// Qcur shape [n_embd/n_head, n_head, N, 1]
// Kcur shape [n_embd/n_head, n_head, N, 1]
struct ggml_tensor * Qcur = ggml_rope(ctx0,
ggml_reshape_3d(ctx0,
ggml_mul_mat(ctx0,
model->layers[il].wqa,
ggml_mul_mat(ctx0,
model->layers[il].wqb,
cur)),
n_embd/n_head, n_head, N),
KQ_pos, n_rot, 0);
struct ggml_tensor * Kcur = ggml_rope(ctx0,
ggml_reshape_3d(ctx0,
ggml_mul_mat(ctx0,
model->layers[il].wka,
ggml_mul_mat(ctx0,
model->layers[il].wkb,
cur)),
n_embd/n_head, n_head, N),
KQ_pos, n_rot, 0);
// store key and value to memory
{
// compute the transposed [N, n_embd] V matrix
// wv shape [n_embd, n_embd, 1, 1]
// Vcur shape [n_embd, N, 1, 1]
struct ggml_tensor * Vcur = ggml_cont(ctx0,
ggml_transpose(ctx0,
ggml_reshape_2d(ctx0,
ggml_mul_mat(ctx0,
model->layers[il].wva,
ggml_mul_mat(ctx0,
model->layers[il].wvb,
cur)),
n_embd, N)));
// kv_self.k shape [n_embd * n_ctx * n_layer, 1]
// kv_self.v shape [n_embd * n_ctx * n_layer, 1]
// k shape [n_embd * N, 1] == kv_self.k[:,n_past:n_past+N,il,0]
// v shape [N, n_embd, 1, 1] == kv_self.v[:,n_past:n_past+N,il,0]
/* {
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
// important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
} //*/
kc = ggml_set_1d(ctx0, kc, ggml_reshape_1d(ctx0, Kcur, n_embd*N), (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
vc = ggml_set_2d(ctx0, vc, Vcur, ( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
}
// Qcur shape [n_embd/n_head, n_head, N, 1]
// Q shape [n_embd/n_head, N, n_head, 1]
struct ggml_tensor * Q =
ggml_permute(ctx0,
Qcur,
0, 2, 1, 3);
// kv_self.k shape [n_embd * n_ctx * n_layer, 1]
// K shape [n_embd/n_head, n_past + N, n_head, 1]
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, kc, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kc)*n_embd),
n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3);
// K * Q
// KQ shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
// KQ_masked = mask_past(KQ_scaled)
// KQ_masked shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
// KQ = soft_max(KQ_masked)
// KQ_soft_max shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
// split cached V into n_head heads
//// V shape [n_past + N, n_embd/n_head, n_head, 1]
// V shape [n_past + N, n_embd/n_head, n_head, 1] == kv_self.v[:,:(n_past+N),il,1]
struct ggml_tensor * V =
ggml_view_3d(ctx0, vc,
n_past + N, n_embd/n_head, n_head,
n_ctx*ggml_element_size(vc),
n_ctx*ggml_element_size(vc)*n_embd/n_head,
il*n_ctx*ggml_element_size(vc)*n_embd);
// KQV shape [n_embd/n_head, N, n_head, 1]
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
// KQV_merged shape [n_embd/n_head, n_head, N, 1]
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// KQV_merged shape
// cur = KQV_merged.contiguous().view(n_embd, N)
// cur shape [n_embd,N,1,1]
cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N);
// cur = ggml_cpy(ctx0,
// KQV_merged,
// ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection (no bias)
// cur shape [n_embd,N,1,1]
cur = ggml_mul_mat(ctx0,
model->layers[il].woa,
ggml_mul_mat(ctx0,
model->layers[il].wob,
cur));
}
// inpFF shape [n_embd,N,1,1]
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
// feed-forward network
{
// norm
{
// cur shape [n_embd,N,1,1]
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
// cur = ffn_norm*cur
// cur shape [n_embd,N,1,1]
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model->layers[il].ffn_norm, cur),
cur);
}
// tmp shape [n_ff,N,1,1]
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
model->layers[il].w3,
cur);
// cur shape [n_ff,N,1,1]
cur = ggml_mul_mat(ctx0,
model->layers[il].w1,
cur);
// SILU activation
// cur shape [n_ff,N,1,1]
cur = ggml_silu(ctx0, cur);
// cur shape [n_ff,N,1,1]
cur = ggml_mul(ctx0, cur, tmp);
// cur shape [n_embd,N,1,1]
cur = ggml_mul_mat(ctx0,
model->layers[il].w2,
cur);
}
// cur shape [n_embd,N,1,1]
cur = ggml_add(ctx0, cur, inpFF);
// input for next layer
// inpL shape [n_embd,N,1,1]
inpL = cur;
}
// norm
{
// inpL shape [n_embd,N,1,1]
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// inpL = norm*inpL
// inpL shape [n_embd,N,1,1]
inpL = ggml_mul(ctx0,
ggml_repeat(ctx0, model->norm, inpL),
inpL);
//embeddings = inpL;
}
// lm_head
// inpL shape [n_vocab,N,1,1]
inpL = ggml_mul_mat(ctx0,
model->outputa,
ggml_mul_mat(ctx0,
model->outputb,
inpL));
// ggml_set_scratch(ctx0, { 0, 0, nullptr, });
// run the computation
ggml_build_forward_expand(gf, inpL);
return inpL;
}
static void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) {
assert(ggml_is_matrix(logits));
assert(ggml_is_matrix(probs));
assert(ggml_is_vector(best_samples));
assert(logits->ne[1] == best_samples->ne[0]);
assert(logits->ne[0] == probs->ne[0]);
assert(logits->ne[1] == probs->ne[1]);
for (int i = 0; i < logits->ne[1]; ++i) {
float max_logit = ggml_get_f32_1d(logits, i * logits->ne[0]);
ggml_set_i32_1d(best_samples, i, 0);
for (int k = 0; k < logits->ne[0]; ++k) {
float logit = ggml_get_f32_1d(logits, i * logits->ne[0] + k);
if (logit > max_logit) {
max_logit = logit;
ggml_set_i32_1d(best_samples, i, k);
}
}
float psum = 0;
for (int k = 0; k < logits->ne[0]; ++k) {
float logit = ggml_get_f32_1d(logits, i * logits->ne[0] + k);
float p = (logit == -INFINITY) ? 0 : expf(logit - max_logit);
psum += p;
ggml_set_f32_1d(probs, i * probs->ne[0] + k, p);
}
for (int k = 0; k < logits->ne[0]; ++k) {
float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
ggml_set_f32_1d(probs, i * probs->ne[0] + k, p / psum);
}
}
}
static void sample_softmax_batch(
struct ggml_context * ctx, struct ggml_tensor * logits, struct ggml_tensor * probs,
struct ggml_tensor * best_samples
) {
GGML_ASSERT(ggml_is_matrix(best_samples));
GGML_ASSERT(ggml_is_3d(logits));
GGML_ASSERT(ggml_is_3d(probs));
int n_tokens = best_samples->ne[0];
int n_batch = best_samples->ne[1];
int n_vocab = logits->ne[0];
GGML_ASSERT(n_tokens == logits->ne[1]);
GGML_ASSERT(n_batch == logits->ne[2]);
GGML_ASSERT(n_vocab == probs->ne[0]);
GGML_ASSERT(n_tokens == probs->ne[1]);
GGML_ASSERT(n_batch == probs->ne[2]);
for (int k = 0; k < n_batch; ++k) {
struct ggml_tensor * best_samples_k = ggml_view_1d(ctx,
best_samples,
best_samples->ne[0],
k*best_samples->nb[1]);
struct ggml_tensor * logits_k = ggml_view_2d(ctx,
logits,
logits->ne[0],
logits->ne[1],
logits->nb[1],
k*logits->nb[2]);
struct ggml_tensor * probs_k = ggml_view_2d(ctx,
probs,
probs->ne[0],
probs->ne[1],
probs->nb[1],
k*probs->nb[2]);
sample_softmax(logits_k, probs_k, best_samples_k);
}
}
static void print_row(struct ggml_tensor * probs, int i) {
for (int k = 0; k < probs->ne[0]; ++k) {
float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
printf(" %.2f", p);
}
printf("\n");
}
static void print_matrix(struct ggml_tensor * probs) {
assert(ggml_is_matrix(probs));
for (int i = 0; i < probs->ne[1]; ++i) {
for (int k = 0; k < probs->ne[0]; ++k) {
float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
printf(" %.2f", p);
}
printf("\n");
}
}
static void print_token(int token, int n_vocab) {
for (int k = 0; k < token; ++k) {
printf(" ");
}
printf("X");
for (int k = token+1; k < n_vocab; ++k) {
printf(" ");
}
printf("\n");
}
static void print_tokens(struct ggml_tensor * tokens, int n_vocab) {
for (int i=0; i<tokens->ne[0]; ++i) {
int token = ggml_get_i32_1d(tokens, i);
print_token(token, n_vocab);
}
}
static void get_example_targets(int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) {
int n_tokens = tokens_input->ne[0];
int n_vocab = targets->ne[0];
float randomness = 0.0f;
// ggml_set_zero(targets);
ggml_set_f32(targets, -1.0f);
ggml_set_i32_1d(tokens_input, 0, 0);
for (int i=1; i<n_tokens+1; ++i) {
float x = example_id + i * 3.14159f * 2.0f * 1.0f * 0.5f / n_tokens;
float y = sinf(x);//*cosf(x*1.1f+1.0f);
float z = (y+1.0f)*0.5f; // scale to [0..1]
z += (frand()-0.5f)*(randomness/n_vocab);
z = (z < 0.0f) ? 0.0f : (z > 1.0f) ? 1.0f : z; // clamp to [0..1]
int token = std::max(1,std::min(1+(int)(z*(float)(n_vocab-1)), n_vocab-1));
ggml_set_f32_1d(targets, (i-1)*n_vocab + token, +1.0f);
if (i<n_tokens) {
ggml_set_i32_1d(tokens_input, i, token);
}
}
}
static void get_example_targets_batch(
struct ggml_context * ctx, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets
) {
GGML_ASSERT(ggml_is_matrix(tokens_input));
GGML_ASSERT(ggml_is_3d(targets));
int n_tokens = tokens_input->ne[0];
int n_batch = tokens_input->ne[1];
GGML_ASSERT(n_tokens == targets->ne[1]);
GGML_ASSERT(n_batch == targets->ne[2]);
for (int k=0; k<n_batch; ++k) {
struct ggml_tensor * tokens_input_k = ggml_view_1d(ctx,
tokens_input,
tokens_input->ne[0],
k*tokens_input->nb[1]);
struct ggml_tensor * targets_k = ggml_view_2d(ctx,
targets,
targets->ne[0],
targets->ne[1],
targets->nb[1],
k*targets->nb[2]);
get_example_targets(example_id*n_batch + k, tokens_input_k, targets_k);
}
}
static void lshift_examples(struct ggml_tensor * tokens_input, struct ggml_tensor * targets, int n_shift) {
int n_tokens = tokens_input->ne[0];
int n_vocab = targets->ne[0];
for (int i=0; i<n_tokens-n_shift; ++i) {
ggml_set_i32_1d(tokens_input, i, ggml_get_i32_1d(tokens_input, i + n_shift));
for (int k=0; k<n_vocab; ++k) {
ggml_set_f32_1d(targets, i*n_vocab + k, ggml_get_f32_1d(targets, (i + n_shift)*n_vocab + k));
}
}
}
static struct ggml_tensor * square_error_loss(
struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b
) {
// todo: instead of a-b: a[1:]-b[:-1]
return ggml_sum(ctx, ggml_sqr(ctx, ggml_sub(ctx, a, b)));
}
static struct ggml_tensor * cross_entropy_loss(
struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b
) {
const float eps = 1e-3f;
return
ggml_sum(ctx,
ggml_neg(ctx,
ggml_sum_rows(ctx,
ggml_mul(ctx,
ggml_soft_max(ctx, a),
ggml_log(ctx,
ggml_add1(ctx,
ggml_soft_max(ctx, b),
ggml_new_f32(ctx, eps)))))));
}
int main(int argc, char ** argv) {
if (argc < 1) {
fprintf(stderr, "usage: %s\n", argv[0]);
return 1;
}
struct ggml_init_params lcparams;
lcparams.mem_size = 1024ll*1024ll*1024ll;
lcparams.mem_buffer = NULL;
lcparams.no_alloc = false;
struct llama_model model;
model.hparams.n_vocab = 8;
model.hparams.n_ctx = 8;
model.hparams.n_embd = 32;
model.hparams.n_mult = 2;
model.hparams.n_head = 8;
model.hparams.n_layer = 1;
model.hparams.n_rot = std::min(16u, model.hparams.n_embd / model.hparams.n_head);
// model.hparams.n_embd = 32;
// model.hparams.n_mult = 2;
// model.hparams.n_head = 4;
// model.hparams.n_layer = 8;
// model.hparams.n_rot = 8;
model.ctx = ggml_init(lcparams);
printf("init model\n");
init_model(&model);
set_param_model(&model);
randomize_model(&model, 1337, 0.0f, 1.0f, -1.0f, +1.0f);
/*
struct llama_model_lora model_lora;
// model.hparams.n_vocab = 6;
// model.hparams.n_ctx = 64;
// model.hparams.n_embd = 128;
// model.hparams.n_mult = 2;
// model.hparams.n_head = 8;
// model.hparams.n_layer = 6;
// model.hparams.n_rot = model.hparams.n_embd / model.hparams.n_head;
model_lora.hparams.n_vocab = 16;
model_lora.hparams.n_ctx = 32;
model_lora.hparams.n_embd = 256;
model_lora.hparams.n_mult = 2;
model_lora.hparams.n_head = 16;
model_lora.hparams.n_layer = 1;
model_lora.hparams.n_lora = 64;
model_lora.hparams.n_rot = MIN(16, model_lora.hparams.n_embd / model_lora.hparams.n_head);
// model.hparams.n_rot = (model.hparams.n_embd / model.hparams.n_head) / 2;
// model.hparams.n_embd = 32;
// model.hparams.n_mult = 2;
// model.hparams.n_head = 4;
// model.hparams.n_layer = 8;
// model.hparams.n_rot = 8;
model_lora.ctx = ggml_init(lcparams);
printf("init model_lora\n");
init_model_lora(&model_lora);
set_param_model_lora(&model_lora);
randomize_model_lora(&model_lora, 1337, 0.0f, 1.0f, -1.0f, +1.0f);
*/
int n_batch = 8;
// key + value cache for the self attention
struct llama_kv_cache kv_self;
printf("init_kv_cache\n");
kv_self.ctx = model.ctx;
init_kv_cache(&kv_self, &model, n_batch);
//init_kv_cache_lora(&kv_self, &model_lora);
size_t compute_size = 1024ll*1024ll*1024ll;
uint8_t * compute_addr = new uint8_t[compute_size];
int n_examples = 256;
int n_tokens = model.hparams.n_ctx;
int n_vocab = model.hparams.n_vocab;
std::vector<uint8_t> work_buffer;
for (int ex=0; ex<n_examples; ++ex) {
struct ggml_init_params params = {
/*.mem_size =*/ compute_size,
/*.mem_buffer =*/ compute_addr,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch);
struct ggml_tensor * after_opt_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch);
struct ggml_tensor * targets = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
int n_past = 0;
struct ggml_cgraph * gf = NULL;
gf = ggml_new_graph_custom(ctx0, LLAMA_TRAIN_MAX_NODES, true);
get_example_targets_batch(ctx0, 64*ex+0, tokens_input, targets);
struct ggml_tensor * logits = forward_batch(&model, &kv_self, ctx0, gf, tokens_input, n_tokens, n_past, n_batch);
// struct ggml_tensor * e = cross_entropy_loss(ctx0, targets, logits);
struct ggml_tensor * e = square_error_loss(ctx0, targets, logits);
ggml_build_forward_expand(gf, e);
ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1);
float error_before_opt = ggml_get_f32_1d(e, 0);
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_TYPE_LBFGS);
opt_params_lbfgs.print_forward_graph = false;
opt_params_lbfgs.print_backward_graph = false;
opt_params_lbfgs.lbfgs.n_iter = 16;
ggml_opt(ctx0, opt_params_lbfgs, e);
//
ggml_build_forward_expand(gf, e);
ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1);
float error_after_opt = ggml_get_f32_1d(e, 0);
if (ex % 8 == 0) {
printf("Example %d\n", (ex+1));
printf("error_before_opt: %.2f\n", error_before_opt);
printf("error_after_opt: %.2f\n", error_after_opt);
}
if (ex % 64 == 0) {
sample_softmax_batch(ctx0, logits, after_opt_probs, after_opt_best_samples);
// printf("probabilities after optimization:\n");
// print_matrix(after_opt_probs);
printf("best samples after optimization:\n");
print_tokens(after_opt_best_samples, n_vocab);
}
ggml_free(ctx0);
}
{
int n_gen = 128;
int sample_ctx = n_tokens-n_tokens/8;
printf("Generating %d tokens.\n", n_gen);
struct ggml_tensor * tokens_input = ggml_new_tensor_1d(model.ctx, GGML_TYPE_I32, n_tokens);
struct ggml_tensor * targets = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens);
get_example_targets(137, tokens_input, targets);
for (int i=sample_ctx; i<n_tokens; ++i) {
ggml_set_i32_1d(tokens_input, i, n_vocab/2);
}
for (int i=0; i<sample_ctx-1; ++i) {
print_token(ggml_get_i32_1d(tokens_input, i), n_vocab);
}
printf("---\n");
for (int i=0; i<n_gen; ++i) {
struct ggml_init_params params = {
/*.mem_size =*/ compute_size,
/*.mem_buffer =*/ compute_addr,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = NULL;
gf = ggml_new_graph_custom(ctx0, LLAMA_TRAIN_MAX_NODES, true);
int n_past = 0;
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, gf, tokens_input, sample_ctx, n_past);
ggml_build_forward_expand(gf, logits);
ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1);
struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx);
struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx);
sample_softmax(logits, probs, best_samples);
// int sample_at = n_tokens-1;
int token = ggml_get_i32_1d(best_samples, sample_ctx-1);
// print_row(probs, sample_at);
print_token(token, n_vocab);
lshift_examples(tokens_input, targets, 1);
ggml_set_i32_1d(tokens_input, 0, 0);
ggml_set_i32_1d(tokens_input, sample_ctx-1, token);
ggml_free(ctx0);
}
}
print_matrix(model.tok_embeddings);
printf("done\n");
// ggml_free(kv_self.ctx);
// ggml_free(model_lora.ctx);
ggml_free(model.ctx);
return 0;
}
#!/bin/bash
#
# Few-shot translation example.
# Requires a base model (i.e. no fine-tuned or instruct models).
#
# Usage:
#
# cd llama.cpp
# make -j
#
# ./examples/base-translate.sh <model-base> "<text>" [extra-main-args]
#
if [ $# -lt 2 ]; then
echo "Usage: ./base-translate.sh <model-base> \"<text>\" [extra-main-args]"
exit 1
fi
eargs=""
if [ $# -gt 2 ]; then
eargs="${@:3}"
fi
ftmp="__llama.cpp_example_tmp__.txt"
trap "rm -f $ftmp" EXIT
echo "Translate from English to French:
===
sea otter, peppermint, plush girafe:
sea otter => loutre de mer
peppermint => menthe poivrée
plush girafe => girafe peluche
===
violin
violin => violon
===
phone, computer, mouse, keyboard:
phone => téléphone
computer => ordinateur
mouse => souris
keyboard => clavier
===
" > $ftmp
echo "$2
" >> $ftmp
model=$1
# generate the most likely continuation until the string "===" is found
./llama-cli -m $model -f $ftmp -n 64 --temp 0 --repeat-penalty 1.0 --no-penalize-nl -r "===" $eargs
set(TARGET llama-batched-bench)
add_executable(${TARGET} batched-bench.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
# llama.cpp/example/batched-bench
Benchmark the batched decoding performance of `llama.cpp`
## Usage
There are 2 modes of operation:
- `prompt not shared` - each batch has a separate prompt of size `PP` (i.e. `N_KV = B*(PP + TG)`)
- `prompt is shared` - there is a common prompt of size `PP` used by all batches (i.e. `N_KV = PP + B*TG`)
```bash
./llama-batched-bench -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]
# LLaMA 7B, F16, N_KV_MAX = 16384 (8GB), prompt not shared
./llama-batched-bench -m ./models/llama-7b/ggml-model-f16.gguf -c 16384 -b 2048 -ub 512 -ngl 99
# LLaMA 7B, Q8_0, N_KV_MAX = 16384 (8GB), prompt is shared
./llama-batched-bench -m ./models/llama-7b/ggml-model-q8_0.gguf -c 16384 -b 2048 -ub 512 -ngl 99 -pps
# custom set of batches
./llama-batched-bench -m ./models/llama-7b/ggml-model-q8_0.gguf -c 2048 -b 512 -ub 512 -ngl 999 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32
```
## Sample results
- `PP` - prompt tokens per batch
- `TG` - generated tokens per batch
- `B` - number of batches
- `N_KV` - required KV cache size
- `T_PP` - prompt processing time (i.e. time to first token)
- `S_PP` - prompt processing speed (`(B*PP)/T_PP` or `PP/T_PP`)
- `T_TG` - time to generate all batches
- `S_TG` - text generation speed (`(B*TG)/T_TG`)
- `T` - total time
- `S` - total speed (i.e. all tokens / total time)
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 128 | 128 | 1 | 256 | 0.108 | 1186.64 | 3.079 | 41.57 | 3.187 | 80.32 |
| 128 | 128 | 2 | 512 | 0.198 | 1295.19 | 5.029 | 50.90 | 5.227 | 97.95 |
| 128 | 128 | 4 | 1024 | 0.373 | 1373.96 | 6.878 | 74.44 | 7.251 | 141.23 |
| 128 | 128 | 8 | 2048 | 0.751 | 1363.27 | 7.344 | 139.43 | 8.095 | 252.99 |
| 128 | 128 | 16 | 4096 | 1.570 | 1304.68 | 8.455 | 242.23 | 10.024 | 408.60 |
| 128 | 128 | 32 | 8192 | 3.408 | 1201.73 | 8.801 | 465.40 | 12.209 | 670.96 |
| 128 | 256 | 1 | 384 | 0.107 | 1196.70 | 6.329 | 40.45 | 6.436 | 59.67 |
| 128 | 256 | 2 | 768 | 0.194 | 1317.45 | 10.239 | 50.00 | 10.433 | 73.61 |
| 128 | 256 | 4 | 1536 | 0.366 | 1399.03 | 13.960 | 73.35 | 14.326 | 107.22 |
| 128 | 256 | 8 | 3072 | 0.751 | 1363.92 | 15.110 | 135.54 | 15.861 | 193.69 |
| 128 | 256 | 16 | 6144 | 1.569 | 1304.93 | 18.073 | 226.64 | 19.642 | 312.80 |
| 128 | 256 | 32 | 12288 | 3.409 | 1201.35 | 19.223 | 426.15 | 22.633 | 542.93 |
#include "common.h"
#include "llama.h"
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
// mutates the input string
static std::vector<int> parse_list(char * p) {
std::vector<int> ret;
char * q = p;
while (*p) {
if (*p == ',') {
*p = '\0';
ret.push_back(std::atoi(q));
q = p + 1;
}
++p;
}
ret.push_back(std::atoi(q));
return ret;
}
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
LOG_TEE("\n");
}
int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
}
int is_pp_shared = params.is_pp_shared;
std::vector<int> n_pp = params.n_pp;
std::vector<int> n_tg = params.n_tg;
std::vector<int> n_pl = params.n_pl;
// init LLM
llama_backend_init();
llama_numa_init(params.numa);
// initialize the model
llama_model_params model_params = llama_model_params_from_gpt_params(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
// ensure enough sequences are available
ctx_params.n_seq_max = n_pl.empty() ? 1 : *std::max_element(n_pl.begin(), n_pl.end());
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
const int32_t n_kv_max = llama_n_ctx(ctx);
llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
// decode in batches of ctx_params.n_batch tokens
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
const int ret = llama_decode(ctx, batch_view);
if (ret != 0) {
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
return false;
}
llama_synchronize(ctx);
}
return true;
};
// warm up
{
for (int i = 0; i < 16; ++i) {
llama_batch_add(batch, 0, i, { 0 }, false);
}
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
}
LOG_TEE("\n");
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("\n");
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) {
for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) {
for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) {
const int pp = n_pp[i_pp];
const int tg = n_tg[i_tg];
const int pl = n_pl[i_pl];
const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg);
if (n_ctx_req > n_kv_max) {
continue;
}
llama_batch_clear(batch);
for (int i = 0; i < pp; ++i) {
for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) {
llama_batch_add(batch, 0, i, { j }, false);
}
}
batch.logits[batch.n_tokens - 1] = true;
const auto t_pp_start = ggml_time_us();
llama_kv_cache_clear(ctx);
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
if (is_pp_shared) {
for (int32_t i = 1; i < pl; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
}
}
const auto t_pp_end = ggml_time_us();
const auto t_tg_start = ggml_time_us();
for (int i = 0; i < tg; ++i) {
llama_batch_clear(batch);
for (int j = 0; j < pl; ++j) {
llama_batch_add(batch, 0, pp + i, { j }, true);
}
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
}
const auto t_tg_end = ggml_time_us();
const int32_t n_kv = n_ctx_req;
const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
const float t = t_pp + t_tg;
const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp;
const float speed_tg = pl*tg / t_tg;
const float speed = n_kv / t;
LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
}
}
}
llama_print_timings(ctx);
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
fprintf(stderr, "\n\n");
return 0;
}
.DS_Store
/.build
/Packages
xcuserdata/
DerivedData/
.swiftpm/configuration/registries.json
.swiftpm/xcode/package.xcworkspace/contents.xcworkspacedata
.netrc
batched_swift
.PHONY: build
build:
xcodebuild -scheme llama-batched-swift -destination "generic/platform=macOS" -derivedDataPath build
rm -f ./llama-batched-swift
ln -s ./build/Build/Products/Debug/llama-batched-swift ./llama-batched-swift
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment