Commit c7d1b209 authored by chenych's avatar chenych
Browse files

Update 0429

parent c8d12c06
...@@ -12,21 +12,21 @@ ...@@ -12,21 +12,21 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from typing import TYPE_CHECKING from typing import TYPE_CHECKING, Union
import torch
from transformers.integrations import is_deepspeed_zero3_enabled from transformers.integrations import is_deepspeed_zero3_enabled
from ...extras.misc import check_version from ...extras.misc import check_version
if TYPE_CHECKING: if TYPE_CHECKING:
from torch import nn
from transformers import PretrainedConfig, PreTrainedModel from transformers import PretrainedConfig, PreTrainedModel
from ...hparams import ModelArguments from ...hparams import ModelArguments
def _set_z3_leaf_modules(model: "PreTrainedModel", leaf_modules: list["torch.nn.Module"]) -> None: def _set_z3_leaf_modules(model: "PreTrainedModel", leaf_modules: list[Union["nn.Module", str]]) -> None:
check_version("deepspeed>=0.13.0") check_version("deepspeed>=0.13.0")
from deepspeed.utils import set_z3_leaf_modules # type: ignore from deepspeed.utils import set_z3_leaf_modules # type: ignore
...@@ -44,6 +44,19 @@ def add_z3_leaf_module(model: "PreTrainedModel") -> None: ...@@ -44,6 +44,19 @@ def add_z3_leaf_module(model: "PreTrainedModel") -> None:
_set_z3_leaf_modules(model, [DbrxFFN]) _set_z3_leaf_modules(model, [DbrxFFN])
if model_type == "deepseek_v2":
# deepseek v2 uses custom code
_set_z3_leaf_modules(model, ["DeepseekV2MoE"])
if model_type == "deepseek_v3" or model_type == "kimi_vl":
# deepseek v3 and kimi vl use custom code
_set_z3_leaf_modules(model, ["DeepseekV3MoE"])
if model_type == "granitemoe":
from transformers.models.granitemoe.modeling_granitemoe import GraniteMoeMoE
_set_z3_leaf_modules(model, [GraniteMoeMoE])
if model_type == "jamba": if model_type == "jamba":
from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock
...@@ -54,27 +67,55 @@ def add_z3_leaf_module(model: "PreTrainedModel") -> None: ...@@ -54,27 +67,55 @@ def add_z3_leaf_module(model: "PreTrainedModel") -> None:
_set_z3_leaf_modules(model, [JetMoeMoA, JetMoeMoE]) _set_z3_leaf_modules(model, [JetMoeMoA, JetMoeMoE])
if model_type in ["kimi_vl", "deepseek_v3"]: if model_type == "llama4":
check_version("transformers>=4.51.1") from transformers.models.llama4.modeling_llama4 import Llama4TextMoe
from transformers.models.deepseek_v3.modeling_deepseek_v3 import DeepseekV3MoE
_set_z3_leaf_modules(model, [DeepseekV3MoE]) _set_z3_leaf_modules(model, [Llama4TextMoe])
if model_type == "mixtral": if model_type == "mixtral":
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
_set_z3_leaf_modules(model, [MixtralSparseMoeBlock]) _set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
if model_type == "olmoe":
from transformers.models.olmoe.modeling_olmoe import OlmoeSparseMoeBlock
_set_z3_leaf_modules(model, [OlmoeSparseMoeBlock])
if model_type == "phimoe":
from transformers.models.phimoe.modeling_phimoe import PhimoeSparseMoeBlock
_set_z3_leaf_modules(model, [PhimoeSparseMoeBlock])
if model_type == "qwen2_moe": if model_type == "qwen2_moe":
from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock
_set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock]) _set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock])
if model_type == "qwen3_moe":
from transformers.models.qwen3_moe.modeling_qwen3_moe import Qwen3MoeSparseMoeBlock
_set_z3_leaf_modules(model, [Qwen3MoeSparseMoeBlock])
def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
model_type = getattr(config, "model_type", None) model_type = getattr(config, "model_type", None)
if model_args.moe_aux_loss_coef is not None: if model_args.moe_aux_loss_coef is not None:
if model_type in ["jamba", "mixtral", "qwen2_moe"]: if model_type in [
"dbrx",
"granitemoe",
"jamba",
"jetmoe",
"llama4",
"mixtral",
"olmoe",
"phimoe",
"qwen2_moe",
"qwen3_moe",
]:
setattr(config, "output_router_logits", is_trainable)
if model_type in ["granitemoe", "jamba", "llama4", "mixtral", "olmoe", "phimoe", "qwen2_moe", "qwen3_moe"]:
setattr(config, "router_aux_loss_coef", model_args.moe_aux_loss_coef) setattr(config, "router_aux_loss_coef", model_args.moe_aux_loss_coef)
elif model_type == "deepseek": elif model_type == "deepseek":
...@@ -82,6 +123,3 @@ def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_t ...@@ -82,6 +123,3 @@ def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_t
elif model_type == "jetmoe": elif model_type == "jetmoe":
setattr(config, "aux_loss_coef", model_args.moe_aux_loss_coef) setattr(config, "aux_loss_coef", model_args.moe_aux_loss_coef)
if model_type in ["dbrx", "jamba", "jetmoe", "mixtral", "qwen2_moe"]:
setattr(config, "output_router_logits", is_trainable)
...@@ -43,12 +43,6 @@ import torch ...@@ -43,12 +43,6 @@ import torch
import torch.nn.functional as F import torch.nn.functional as F
from ...extras import logging from ...extras import logging
from ...extras.misc import check_version
from ...extras.packages import is_transformers_version_greater_than
if is_transformers_version_greater_than("4.43.0"):
import transformers.modeling_flash_attention_utils
if TYPE_CHECKING: if TYPE_CHECKING:
...@@ -117,6 +111,7 @@ def configure_packing(model_args: "ModelArguments", is_trainable: bool) -> None: ...@@ -117,6 +111,7 @@ def configure_packing(model_args: "ModelArguments", is_trainable: bool) -> None:
if not is_trainable or not model_args.block_diag_attn: if not is_trainable or not model_args.block_diag_attn:
return return
check_version("transformers>=4.43.0") import transformers.modeling_flash_attention_utils
transformers.modeling_flash_attention_utils._get_unpad_data = get_unpad_data transformers.modeling_flash_attention_utils._get_unpad_data = get_unpad_data
logger.info_rank0("Using block diagonal attention for sequence packing without cross-attention.") logger.info_rank0("Using block diagonal attention for sequence packing without cross-attention.")
...@@ -122,9 +122,23 @@ def configure_quantization( ...@@ -122,9 +122,23 @@ def configure_quantization(
if getattr(config, "model_type", None) == "chatglm": if getattr(config, "model_type", None) == "chatglm":
raise ValueError("ChatGLM model is not supported yet.") raise ValueError("ChatGLM model is not supported yet.")
try:
from optimum.gptq import utils as gq_utils
if "language_model.model.layers" not in gq_utils.BLOCK_PATTERNS:
gq_utils.BLOCK_PATTERNS.insert(0, "language_model.model.layers")
except ImportError:
pass
block_name_to_quantize = None
if getattr(config, "model_type", None) in ["gemma3", "paligemma"]:
block_name_to_quantize = "language_model.model.layers"
init_kwargs["quantization_config"] = GPTQConfig( init_kwargs["quantization_config"] = GPTQConfig(
bits=model_args.export_quantization_bit, bits=model_args.export_quantization_bit,
tokenizer=tokenizer,
dataset=_get_quantization_dataset(tokenizer, model_args), dataset=_get_quantization_dataset(tokenizer, model_args),
block_name_to_quantize=block_name_to_quantize,
) )
init_kwargs["device_map"] = "auto" init_kwargs["device_map"] = "auto"
init_kwargs["max_memory"] = get_max_memory() init_kwargs["max_memory"] = get_max_memory()
......
...@@ -198,6 +198,11 @@ def patch_target_modules( ...@@ -198,6 +198,11 @@ def patch_target_modules(
return target_modules return target_modules
_register_composite_model(
model_type="internvl",
)
_register_composite_model( _register_composite_model(
model_type="gemma3", model_type="gemma3",
) )
......
...@@ -17,12 +17,12 @@ from typing import TYPE_CHECKING, Any ...@@ -17,12 +17,12 @@ from typing import TYPE_CHECKING, Any
import torch import torch
from peft import PeftModel from peft import PeftModel
from transformers import PreTrainedModel, PreTrainedTokenizerBase, is_torch_npu_available from transformers import PreTrainedModel, PreTrainedTokenizerBase
from transformers.integrations import is_deepspeed_zero3_enabled from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_utils import is_fsdp_enabled from transformers.modeling_utils import is_fsdp_enabled
from ..extras import logging from ..extras import logging
from ..extras.misc import infer_optim_dtype, is_env_enabled from ..extras.misc import infer_optim_dtype
from ..extras.packages import is_transformers_version_greater_than from ..extras.packages import is_transformers_version_greater_than
from .model_utils.attention import configure_attn_implementation, print_attn_implementation from .model_utils.attention import configure_attn_implementation, print_attn_implementation
from .model_utils.checkpointing import prepare_model_for_training from .model_utils.checkpointing import prepare_model_for_training
...@@ -54,16 +54,22 @@ def patch_tokenizer(tokenizer: "PreTrainedTokenizer", model_args: "ModelArgument ...@@ -54,16 +54,22 @@ def patch_tokenizer(tokenizer: "PreTrainedTokenizer", model_args: "ModelArgument
if model_args.model_max_length is not None and tokenizer.model_max_length < model_args.model_max_length: if model_args.model_max_length is not None and tokenizer.model_max_length < model_args.model_max_length:
tokenizer.model_max_length = model_args.model_max_length # enlarge the tokenizer max length tokenizer.model_max_length = model_args.model_max_length # enlarge the tokenizer max length
if model_args.new_special_tokens is not None: if model_args.add_tokens is not None:
num_added_tokens = tokenizer.add_special_tokens( num_added_tokens = tokenizer.add_tokens(new_tokens=model_args.add_tokens, special_tokens=False)
dict(additional_special_tokens=model_args.new_special_tokens), logger.info_rank0("Add tokens {} to tokenizer's vocabulary.".format(",".join(model_args.add_tokens)))
replace_additional_special_tokens=False,
)
logger.info_rank0("Add {} to special tokens.".format(",".join(model_args.new_special_tokens)))
if num_added_tokens > 0 and not model_args.resize_vocab: if num_added_tokens > 0 and not model_args.resize_vocab:
model_args.resize_vocab = True model_args.resize_vocab = True
logger.warning_rank0("New tokens have been added, changed `resize_vocab` to True.") logger.warning_rank0("New tokens have been added, changed `resize_vocab` to True.")
if model_args.add_special_tokens is not None:
num_added_special_tokens = tokenizer.add_tokens(new_tokens=model_args.add_special_tokens, special_tokens=True)
logger.info_rank0(
"Add special tokens {} to tokenizer's vocabulary.".format(",".join(model_args.add_special_tokens))
)
if num_added_special_tokens > 0 and not model_args.resize_vocab:
model_args.resize_vocab = True
logger.warning_rank0("New special tokens have been added, changed `resize_vocab` to True.")
def patch_processor( def patch_processor(
processor: "ProcessorMixin", processor: "ProcessorMixin",
...@@ -74,6 +80,7 @@ def patch_processor( ...@@ -74,6 +80,7 @@ def patch_processor(
setattr(processor, "image_max_pixels", model_args.image_max_pixels) setattr(processor, "image_max_pixels", model_args.image_max_pixels)
setattr(processor, "image_min_pixels", model_args.image_min_pixels) setattr(processor, "image_min_pixels", model_args.image_min_pixels)
setattr(processor, "image_do_pan_and_scan", model_args.image_do_pan_and_scan) setattr(processor, "image_do_pan_and_scan", model_args.image_do_pan_and_scan)
setattr(processor, "crop_to_patches", model_args.crop_to_patches)
setattr(processor, "video_max_pixels", model_args.video_max_pixels) setattr(processor, "video_max_pixels", model_args.video_max_pixels)
setattr(processor, "video_min_pixels", model_args.video_min_pixels) setattr(processor, "video_min_pixels", model_args.video_min_pixels)
setattr(processor, "video_fps", model_args.video_fps) setattr(processor, "video_fps", model_args.video_fps)
...@@ -95,10 +102,6 @@ def patch_config( ...@@ -95,10 +102,6 @@ def patch_config(
else: else:
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None)) model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
if is_torch_npu_available():
# avoid JIT compile on NPU devices, see https://zhuanlan.zhihu.com/p/660875458
torch.npu.set_compile_mode(jit_compile=is_env_enabled("NPU_JIT_COMPILE"))
configure_attn_implementation(config, model_args, is_trainable) configure_attn_implementation(config, model_args, is_trainable)
configure_rope(config, model_args, is_trainable) configure_rope(config, model_args, is_trainable)
configure_longlora(config, model_args, is_trainable) configure_longlora(config, model_args, is_trainable)
...@@ -121,6 +124,12 @@ def patch_config( ...@@ -121,6 +124,12 @@ def patch_config(
if getattr(config, "model_type", None) == "kimi_vl" and is_trainable: if getattr(config, "model_type", None) == "kimi_vl" and is_trainable:
setattr(config.text_config, "topk_method", "greedy") setattr(config.text_config, "topk_method", "greedy")
if "InternVLChatModel" in getattr(config, "architectures", []):
raise ValueError(
"Please download the internvl models in a Hugging Face–compatible format "
"(for example, https://huggingface.co/OpenGVLab/InternVL3-8B-hf)."
)
if "LlavaLlamaForCausalLM" in getattr(config, "architectures", []): if "LlavaLlamaForCausalLM" in getattr(config, "architectures", []):
raise ValueError("Please download llava models with hf-compatible format: https://huggingface.co/llava-hf") raise ValueError("Please download llava models with hf-compatible format: https://huggingface.co/llava-hf")
......
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .muon import Muon
__all__ = ["Muon"]
# Copyright 2025 Moonshot AI and the LlamaFactory team.
#
# This code is based on the MoonshotAI's Moonlight library.
# https://github.com/MoonshotAI/Moonlight/blob/master/examples/toy_train.py
# and the Keller Jordan's Muon library.
# https://github.com/KellerJordan/Muon/blob/master/muon.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# MIT License
#
# Copyright (c) 2025 Moonshot AI
# Copyright (c) 2024 Keller Jordan
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import math
import torch
def zeropower_via_newtonschulz5(G: "torch.Tensor", steps: int) -> "torch.Tensor":
"""Newton-Schulz iteration to compute the zeroth power / orthogonalization of G.
We opt to use a quintic iteration whose coefficients are selected to maximize the slope at zero.
For the purpose of minimizing steps, it turns out to be empirically effective to keep increasing
the slope at zero even beyond the point where the iteration no longer converges all the way to
one everywhere on the interval. This iteration therefore does not produce UV^T but rather something
like US'V^T where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
if G.size(0) > G.size(1):
X = X.T
# Ensure spectral norm is at most 1
X = X / (X.norm() + 1e-7)
# Perform the NS iterations
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
class Muon(torch.optim.Optimizer):
"""Muon - MomentUm Orthogonalized by Newton-schulz.
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- We believe this optimizer is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
Arguments:
muon_params: The parameters to be optimized by Muon.
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
momentum: The momentum used by the internal SGD. (0.95 is a good default)
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
adamw_params: The parameters to be optimized by AdamW. Any parameters in `muon_params` which are
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
adamw_lr: The learning rate for the internal AdamW.
adamw_betas: The betas for the internal AdamW.
adamw_eps: The epsilon for the internal AdamW.
adamw_wd: The weight decay for the internal AdamW.
"""
def __init__(
self,
lr=1e-3,
wd=0.1,
muon_params=None,
momentum=0.95,
nesterov=True,
ns_steps=5,
adamw_params=None,
adamw_betas=(0.9, 0.95),
adamw_eps=1e-8,
):
defaults = dict(
lr=lr,
wd=wd,
momentum=momentum,
nesterov=nesterov,
ns_steps=ns_steps,
adamw_betas=adamw_betas,
adamw_eps=adamw_eps,
)
params = list(muon_params)
adamw_params = list(adamw_params) if adamw_params is not None else []
params.extend(adamw_params)
super().__init__(params, defaults)
# Sort parameters into those for which we will use Muon, and those for which we will not
for p in muon_params:
# Use Muon for every parameter in muon_params which is >= 2D and doesn't look like an embedding or head layer
assert p.ndim == 2, p.ndim
self.state[p]["use_muon"] = True
for p in adamw_params:
# Do not use Muon for parameters in adamw_params
self.state[p]["use_muon"] = False
def adjust_lr_for_muon(self, lr: float, param_shape: list[int]) -> float:
A, B = param_shape[:2]
# We adjust the learning rate and weight decay based on the size of the parameter matrix
# as describted in the paper
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
adjusted_lr = lr * adjusted_ratio
return adjusted_lr
def step(self, closure=None):
"""Perform a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
# Muon loop
params = [p for p in group["params"] if self.state[p]["use_muon"]]
lr = group["lr"]
wd = group["wd"]
momentum = group["momentum"]
# generate weight updates in distributed fashion
for p in params:
# sanity check
g = p.grad
if g is None:
continue
if g.ndim > 2:
g = g.view(g.size(0), -1)
assert g is not None
# calc update
state = self.state[p]
if "momentum_buffer" not in state:
state["momentum_buffer"] = torch.zeros_like(g)
buf = state["momentum_buffer"]
buf.mul_(momentum).add_(g)
if group["nesterov"]:
g = g.add(buf, alpha=momentum)
else:
g = buf
u = zeropower_via_newtonschulz5(g, steps=group["ns_steps"])
# scale update
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
# apply weight decay
p.data.mul_(1 - lr * wd)
# apply update
p.data.add_(u, alpha=-adjusted_lr)
# Adam backup
params = [p for p in group["params"] if not self.state[p]["use_muon"]]
lr = group["lr"]
beta1, beta2 = group["adamw_betas"]
eps = group["adamw_eps"]
weight_decay = group["wd"]
for p in params:
g = p.grad
if g is None:
continue
state = self.state[p]
if "step" not in state:
state["step"] = 0
state["moment1"] = torch.zeros_like(g)
state["moment2"] = torch.zeros_like(g)
state["step"] += 1
step = state["step"]
buf1 = state["moment1"]
buf2 = state["moment2"]
buf1.lerp_(g, 1 - beta1)
buf2.lerp_(g.square(), 1 - beta2)
g = buf1 / (eps + buf2.sqrt())
bias_correction1 = 1 - beta1**step
bias_correction2 = 1 - beta2**step
scale = bias_correction1 / bias_correction2**0.5
p.data.mul_(1 - lr * weight_decay)
p.data.add_(g, alpha=-lr / scale)
return loss
...@@ -188,7 +188,7 @@ class LogCallback(TrainerCallback): ...@@ -188,7 +188,7 @@ class LogCallback(TrainerCallback):
self.webui_mode = is_env_enabled("LLAMABOARD_ENABLED") self.webui_mode = is_env_enabled("LLAMABOARD_ENABLED")
if self.webui_mode and not use_ray(): if self.webui_mode and not use_ray():
signal.signal(signal.SIGABRT, self._set_abort) signal.signal(signal.SIGABRT, self._set_abort)
self.logger_handler = logging.LoggerHandler(os.environ.get("LLAMABOARD_WORKDIR")) self.logger_handler = logging.LoggerHandler(os.getenv("LLAMABOARD_WORKDIR"))
logging.add_handler(self.logger_handler) logging.add_handler(self.logger_handler)
transformers.logging.add_handler(self.logger_handler) transformers.logging.add_handler(self.logger_handler)
......
...@@ -63,9 +63,6 @@ def run_dpo( ...@@ -63,9 +63,6 @@ def run_dpo(
else: else:
ref_model = None ref_model = None
# Update arguments
training_args.remove_unused_columns = False # important for multimodal and pairwise dataset
# Initialize our Trainer # Initialize our Trainer
trainer = CustomDPOTrainer( trainer = CustomDPOTrainer(
model=model, model=model,
......
...@@ -59,9 +59,6 @@ def run_kto( ...@@ -59,9 +59,6 @@ def run_kto(
else: else:
ref_model = create_ref_model(model_args, finetuning_args) ref_model = create_ref_model(model_args, finetuning_args)
# Update arguments
training_args.remove_unused_columns = False # important for multimodal and pairwise dataset
# Initialize our Trainer # Initialize our Trainer
trainer = CustomKTOTrainer( trainer = CustomKTOTrainer(
model=model, model=model,
......
...@@ -40,6 +40,11 @@ class CustomTrainer(Trainer): ...@@ -40,6 +40,11 @@ class CustomTrainer(Trainer):
kwargs["processing_class"] = kwargs.pop("tokenizer") kwargs["processing_class"] = kwargs.pop("tokenizer")
super().__init__(**kwargs) super().__init__(**kwargs)
if processor is not None:
# avoid wrong loss under gradient accumulation
# https://github.com/huggingface/transformers/pull/36044#issuecomment-2746657112
self.model_accepts_loss_kwargs = False
self.finetuning_args = finetuning_args self.finetuning_args = finetuning_args
if processor is not None: if processor is not None:
......
...@@ -48,9 +48,6 @@ def run_rm( ...@@ -48,9 +48,6 @@ def run_rm(
template=template, model=model, pad_to_multiple_of=8, **tokenizer_module template=template, model=model, pad_to_multiple_of=8, **tokenizer_module
) )
# Update arguments
training_args.remove_unused_columns = False # important for multimodal and pairwise dataset
# Initialize our Trainer # Initialize our Trainer
trainer = PairwiseTrainer( trainer = PairwiseTrainer(
model=model, model=model,
......
...@@ -60,6 +60,8 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer): ...@@ -60,6 +60,8 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
super().__init__(**kwargs) super().__init__(**kwargs)
if processor is not None: if processor is not None:
# avoid wrong loss under gradient accumulation
# https://github.com/huggingface/transformers/pull/36044#issuecomment-2746657112
self.model_accepts_loss_kwargs = False self.model_accepts_loss_kwargs = False
self.finetuning_args = finetuning_args self.finetuning_args = finetuning_args
......
...@@ -20,7 +20,7 @@ from typing import TYPE_CHECKING, Optional ...@@ -20,7 +20,7 @@ from typing import TYPE_CHECKING, Optional
from ...data import SFTDataCollatorWith4DAttentionMask, get_dataset, get_template_and_fix_tokenizer from ...data import SFTDataCollatorWith4DAttentionMask, get_dataset, get_template_and_fix_tokenizer
from ...extras.constants import IGNORE_INDEX from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger from ...extras.logging import get_logger
from ...extras.misc import calculate_tps, get_logits_processor from ...extras.misc import calculate_tps
from ...extras.ploting import plot_loss from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer from ...model import load_model, load_tokenizer
from ..trainer_utils import create_modelcard_and_push from ..trainer_utils import create_modelcard_and_push
...@@ -65,11 +65,6 @@ def run_sft( ...@@ -65,11 +65,6 @@ def run_sft(
**tokenizer_module, **tokenizer_module,
) )
# Override the decoding parameters of Seq2SeqTrainer
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
training_args.remove_unused_columns = False # important for multimodal dataset
# Metric utils # Metric utils
metric_module = {} metric_module = {}
if training_args.predict_with_generate: if training_args.predict_with_generate:
...@@ -82,7 +77,6 @@ def run_sft( ...@@ -82,7 +77,6 @@ def run_sft(
gen_kwargs = generating_args.to_dict(obey_generation_config=True) gen_kwargs = generating_args.to_dict(obey_generation_config=True)
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
gen_kwargs["logits_processor"] = get_logits_processor()
# Initialize our Trainer # Initialize our Trainer
trainer = CustomSeq2SeqTrainer( trainer = CustomSeq2SeqTrainer(
......
...@@ -490,6 +490,35 @@ def _create_adam_mini_optimizer( ...@@ -490,6 +490,35 @@ def _create_adam_mini_optimizer(
return optimizer return optimizer
def _create_muon_optimizer(
model: "PreTrainedModel",
training_args: "TrainingArguments",
) -> "torch.optim.Optimizer":
from ..third_party.muon import Muon
muon_params, adamw_params = [], []
for name, param in model.named_parameters():
if param.requires_grad:
# Use Muon for 2D parameters that aren't embeddings or heads
if param.ndim == 2 and "embed" not in name and "lm_head" not in name:
muon_params.append(param)
else:
adamw_params.append(param)
optimizer = Muon(
lr=training_args.learning_rate,
wd=training_args.weight_decay,
muon_params=muon_params,
adamw_params=adamw_params,
adamw_betas=(training_args.adam_beta1, training_args.adam_beta2),
adamw_eps=training_args.adam_epsilon,
)
logger.info_rank0(
f"Using Muon optimizer with {len(muon_params)} Muon params and {len(adamw_params)} AdamW params."
)
return optimizer
def create_custom_optimizer( def create_custom_optimizer(
model: "PreTrainedModel", model: "PreTrainedModel",
training_args: "TrainingArguments", training_args: "TrainingArguments",
...@@ -510,6 +539,9 @@ def create_custom_optimizer( ...@@ -510,6 +539,9 @@ def create_custom_optimizer(
if finetuning_args.use_adam_mini: if finetuning_args.use_adam_mini:
return _create_adam_mini_optimizer(model, training_args) return _create_adam_mini_optimizer(model, training_args)
if finetuning_args.use_muon:
return _create_muon_optimizer(model, training_args)
def create_custom_scheduler( def create_custom_scheduler(
training_args: "TrainingArguments", training_args: "TrainingArguments",
...@@ -648,6 +680,12 @@ def get_ray_trainer( ...@@ -648,6 +680,12 @@ def get_ray_trainer(
if ray_args.ray_init_kwargs is not None: if ray_args.ray_init_kwargs is not None:
ray.init(**ray_args.ray_init_kwargs) ray.init(**ray_args.ray_init_kwargs)
if ray_args.ray_storage_filesystem is not None:
# this means we are using s3/gcs
storage_path = ray_args.ray_storage_path
else:
storage_path = Path(ray_args.ray_storage_path).absolute().as_posix()
trainer = TorchTrainer( trainer = TorchTrainer(
training_function, training_function,
train_loop_config=train_loop_config, train_loop_config=train_loop_config,
...@@ -659,7 +697,8 @@ def get_ray_trainer( ...@@ -659,7 +697,8 @@ def get_ray_trainer(
), ),
run_config=RunConfig( run_config=RunConfig(
name=ray_args.ray_run_name, name=ray_args.ray_run_name,
storage_path=Path(ray_args.ray_storage_path).absolute().as_posix(), storage_filesystem=ray_args.ray_storage_filesystem,
storage_path=storage_path,
), ),
) )
return trainer return trainer
...@@ -18,7 +18,7 @@ from typing import TYPE_CHECKING, Any, Optional ...@@ -18,7 +18,7 @@ from typing import TYPE_CHECKING, Any, Optional
import torch import torch
import torch.distributed as dist import torch.distributed as dist
from transformers import PreTrainedModel from transformers import EarlyStoppingCallback, PreTrainedModel
from ..data import get_template_and_fix_tokenizer from ..data import get_template_and_fix_tokenizer
from ..extras import logging from ..extras import logging
...@@ -61,6 +61,9 @@ def _training_function(config: dict[str, Any]) -> None: ...@@ -61,6 +61,9 @@ def _training_function(config: dict[str, Any]) -> None:
if finetuning_args.use_swanlab: if finetuning_args.use_swanlab:
callbacks.append(get_swanlab_callback(finetuning_args)) callbacks.append(get_swanlab_callback(finetuning_args))
if finetuning_args.early_stopping_steps is not None:
callbacks.append(EarlyStoppingCallback(early_stopping_patience=finetuning_args.early_stopping_steps))
callbacks.append(ReporterCallback(model_args, data_args, finetuning_args, generating_args)) # add to last callbacks.append(ReporterCallback(model_args, data_args, finetuning_args, generating_args)) # add to last
if finetuning_args.stage == "pt": if finetuning_args.stage == "pt":
......
...@@ -77,10 +77,10 @@ class WebChatModel(ChatModel): ...@@ -77,10 +77,10 @@ class WebChatModel(ChatModel):
if not lazy_init: # read arguments from command line if not lazy_init: # read arguments from command line
super().__init__() super().__init__()
if demo_mode and os.environ.get("DEMO_MODEL") and os.environ.get("DEMO_TEMPLATE"): # load demo model if demo_mode and os.getenv("DEMO_MODEL") and os.getenv("DEMO_TEMPLATE"): # load demo model
model_name_or_path = os.environ.get("DEMO_MODEL") model_name_or_path = os.getenv("DEMO_MODEL")
template = os.environ.get("DEMO_TEMPLATE") template = os.getenv("DEMO_TEMPLATE")
infer_backend = os.environ.get("DEMO_BACKEND", "huggingface") infer_backend = os.getenv("DEMO_BACKEND", "huggingface")
super().__init__( super().__init__(
dict(model_name_or_path=model_name_or_path, template=template, infer_backend=infer_backend) dict(model_name_or_path=model_name_or_path, template=template, infer_backend=infer_backend)
) )
......
...@@ -56,11 +56,11 @@ def can_quantize_to(quantization_method: str) -> "gr.Dropdown": ...@@ -56,11 +56,11 @@ def can_quantize_to(quantization_method: str) -> "gr.Dropdown":
Inputs: top.quantization_method Inputs: top.quantization_method
Outputs: top.quantization_bit Outputs: top.quantization_bit
""" """
if quantization_method == QuantizationMethod.BITS_AND_BYTES.value: if quantization_method == QuantizationMethod.BNB:
available_bits = ["none", "8", "4"] available_bits = ["none", "8", "4"]
elif quantization_method == QuantizationMethod.HQQ.value: elif quantization_method == QuantizationMethod.HQQ:
available_bits = ["none", "8", "6", "5", "4", "3", "2", "1"] available_bits = ["none", "8", "6", "5", "4", "3", "2", "1"]
elif quantization_method == QuantizationMethod.EETQ.value: elif quantization_method == QuantizationMethod.EETQ:
available_bits = ["none", "8"] available_bits = ["none", "8"]
return gr.Dropdown(choices=available_bits) return gr.Dropdown(choices=available_bits)
......
...@@ -23,7 +23,7 @@ from transformers.trainer import TRAINING_ARGS_NAME ...@@ -23,7 +23,7 @@ from transformers.trainer import TRAINING_ARGS_NAME
from transformers.utils import is_torch_npu_available from transformers.utils import is_torch_npu_available
from ..extras.constants import LLAMABOARD_CONFIG, PEFT_METHODS, TRAINING_STAGES from ..extras.constants import LLAMABOARD_CONFIG, PEFT_METHODS, TRAINING_STAGES
from ..extras.misc import is_gpu_or_npu_available, torch_gc, use_ray from ..extras.misc import is_accelerator_available, torch_gc, use_ray
from ..extras.packages import is_gradio_available from ..extras.packages import is_gradio_available
from .common import ( from .common import (
DEFAULT_CACHE_DIR, DEFAULT_CACHE_DIR,
...@@ -108,7 +108,7 @@ class Runner: ...@@ -108,7 +108,7 @@ class Runner:
if not get("eval.output_dir"): if not get("eval.output_dir"):
return ALERTS["err_no_output_dir"][lang] return ALERTS["err_no_output_dir"][lang]
if not from_preview and not is_gpu_or_npu_available(): if not from_preview and not is_accelerator_available():
gr.Warning(ALERTS["warn_no_cuda"][lang]) gr.Warning(ALERTS["warn_no_cuda"][lang])
return "" return ""
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment