Commit 84987715 authored by chenych's avatar chenych
Browse files

update to v0.9.2

parent 317a82e2
...@@ -26,10 +26,11 @@ from ..model import load_model, load_tokenizer ...@@ -26,10 +26,11 @@ from ..model import load_model, load_tokenizer
if TYPE_CHECKING: if TYPE_CHECKING:
from datasets import Dataset
from peft import LoraModel from peft import LoraModel
from transformers import PreTrainedModel from transformers import PreTrainedModel
from ..data.data_utils import DatasetModule
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_keys: Sequence[str] = []) -> None: def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_keys: Sequence[str] = []) -> None:
state_dict_a = model_a.state_dict() state_dict_a = model_a.state_dict()
...@@ -101,12 +102,12 @@ def load_reference_model( ...@@ -101,12 +102,12 @@ def load_reference_model(
return model return model
def load_train_dataset(**kwargs) -> "Dataset": def load_dataset_module(**kwargs) -> "DatasetModule":
model_args, data_args, training_args, _, _ = get_train_args(kwargs) model_args, data_args, training_args, _, _ = get_train_args(kwargs)
tokenizer_module = load_tokenizer(model_args) tokenizer_module = load_tokenizer(model_args)
template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args) template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
dataset_module = get_dataset(template, model_args, data_args, training_args, kwargs["stage"], **tokenizer_module) dataset_module = get_dataset(template, model_args, data_args, training_args, kwargs["stage"], **tokenizer_module)
return dataset_module["train_dataset"] return dataset_module
def patch_valuehead_model() -> None: def patch_valuehead_model() -> None:
......
...@@ -617,6 +617,7 @@ def get_swanlab_callback(finetuning_args: "FinetuningArguments") -> "TrainerCall ...@@ -617,6 +617,7 @@ def get_swanlab_callback(finetuning_args: "FinetuningArguments") -> "TrainerCall
experiment_name=finetuning_args.swanlab_run_name, experiment_name=finetuning_args.swanlab_run_name,
mode=finetuning_args.swanlab_mode, mode=finetuning_args.swanlab_mode,
config={"Framework": "🦙LlamaFactory"}, config={"Framework": "🦙LlamaFactory"},
logdir=finetuning_args.swanlab_logdir,
) )
return swanlab_callback return swanlab_callback
......
...@@ -86,6 +86,9 @@ def _training_function(config: Dict[str, Any]) -> None: ...@@ -86,6 +86,9 @@ def _training_function(config: Dict[str, Any]) -> None:
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["TrainerCallback"]] = None) -> None: def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["TrainerCallback"]] = None) -> None:
args = read_args(args) args = read_args(args)
if "-h" in args or "--help" in args:
get_train_args(args)
ray_args = get_ray_args(args) ray_args = get_ray_args(args)
callbacks = callbacks or [] callbacks = callbacks or []
if ray_args.use_ray: if ray_args.use_ray:
...@@ -182,6 +185,7 @@ def export_model(args: Optional[Dict[str, Any]] = None) -> None: ...@@ -182,6 +185,7 @@ def export_model(args: Optional[Dict[str, Any]] = None) -> None:
except Exception as e: except Exception as e:
logger.warning_rank0(f"Cannot save tokenizer, please copy the files manually: {e}.") logger.warning_rank0(f"Cannot save tokenizer, please copy the files manually: {e}.")
with open(os.path.join(model_args.export_dir, "Modelfile"), "w", encoding="utf-8") as f: ollama_modelfile = os.path.join(model_args.export_dir, "Modelfile")
with open(ollama_modelfile, "w", encoding="utf-8") as f:
f.write(template.get_ollama_modelfile(tokenizer)) f.write(template.get_ollama_modelfile(tokenizer))
logger.info_rank0(f"Saved ollama modelfile to {model_args.export_dir}.") logger.info_rank0(f"Ollama modelfile saved in {ollama_modelfile}")
...@@ -1894,6 +1894,28 @@ LOCALES = { ...@@ -1894,6 +1894,28 @@ LOCALES = {
"info": "クラウド版またはオフライン版 SwanLab を使用します。", "info": "クラウド版またはオフライン版 SwanLab を使用します。",
}, },
}, },
"swanlab_logdir": {
"en": {
"label": "SwanLab log directory",
"info": "The log directory for SwanLab.",
},
"ru": {
"label": "SwanLab 로그 디렉토리",
"info": "SwanLab의 로그 디렉토리.",
},
"zh": {
"label": "SwanLab 日志目录",
"info": "SwanLab 的日志目录。",
},
"ko": {
"label": "SwanLab 로그 디렉토리",
"info": "SwanLab의 로그 디렉토리.",
},
"ja": {
"label": "SwanLab ログ ディレクトリ",
"info": "SwanLab のログ ディレクトリ。",
},
},
"cmd_preview_btn": { "cmd_preview_btn": {
"en": { "en": {
"value": "Preview command", "value": "Preview command",
......
...@@ -20,7 +20,7 @@ from datasets import load_dataset ...@@ -20,7 +20,7 @@ from datasets import load_dataset
from transformers import AutoTokenizer from transformers import AutoTokenizer
from llamafactory.extras.constants import IGNORE_INDEX from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.train.test_utils import load_train_dataset from llamafactory.train.test_utils import load_dataset_module
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data") DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
...@@ -36,7 +36,6 @@ TRAIN_ARGS = { ...@@ -36,7 +36,6 @@ TRAIN_ARGS = {
"dataset_dir": "REMOTE:" + DEMO_DATA, "dataset_dir": "REMOTE:" + DEMO_DATA,
"template": "llama3", "template": "llama3",
"cutoff_len": 8192, "cutoff_len": 8192,
"overwrite_cache": True,
"output_dir": "dummy_dir", "output_dir": "dummy_dir",
"overwrite_output_dir": True, "overwrite_output_dir": True,
"fp16": True, "fp16": True,
...@@ -45,7 +44,7 @@ TRAIN_ARGS = { ...@@ -45,7 +44,7 @@ TRAIN_ARGS = {
@pytest.mark.parametrize("num_samples", [16]) @pytest.mark.parametrize("num_samples", [16])
def test_feedback_data(num_samples: int): def test_feedback_data(num_samples: int):
train_dataset = load_train_dataset(**TRAIN_ARGS) train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
original_data = load_dataset(DEMO_DATA, name="kto_en_demo", split="train") original_data = load_dataset(DEMO_DATA, name="kto_en_demo", split="train")
indexes = random.choices(range(len(original_data)), k=num_samples) indexes = random.choices(range(len(original_data)), k=num_samples)
......
...@@ -21,7 +21,7 @@ from datasets import load_dataset ...@@ -21,7 +21,7 @@ from datasets import load_dataset
from transformers import AutoTokenizer from transformers import AutoTokenizer
from llamafactory.extras.constants import IGNORE_INDEX from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.train.test_utils import load_train_dataset from llamafactory.train.test_utils import load_dataset_module
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data") DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
...@@ -37,7 +37,6 @@ TRAIN_ARGS = { ...@@ -37,7 +37,6 @@ TRAIN_ARGS = {
"dataset_dir": "REMOTE:" + DEMO_DATA, "dataset_dir": "REMOTE:" + DEMO_DATA,
"template": "llama3", "template": "llama3",
"cutoff_len": 8192, "cutoff_len": 8192,
"overwrite_cache": True,
"output_dir": "dummy_dir", "output_dir": "dummy_dir",
"overwrite_output_dir": True, "overwrite_output_dir": True,
"fp16": True, "fp16": True,
...@@ -55,7 +54,7 @@ def _convert_sharegpt_to_openai(messages: List[Dict[str, str]]) -> List[Dict[str ...@@ -55,7 +54,7 @@ def _convert_sharegpt_to_openai(messages: List[Dict[str, str]]) -> List[Dict[str
@pytest.mark.parametrize("num_samples", [16]) @pytest.mark.parametrize("num_samples", [16])
def test_pairwise_data(num_samples: int): def test_pairwise_data(num_samples: int):
train_dataset = load_train_dataset(**TRAIN_ARGS) train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
original_data = load_dataset(DEMO_DATA, name="dpo_en_demo", split="train") original_data = load_dataset(DEMO_DATA, name="dpo_en_demo", split="train")
indexes = random.choices(range(len(original_data)), k=num_samples) indexes = random.choices(range(len(original_data)), k=num_samples)
......
...@@ -20,7 +20,7 @@ from datasets import load_dataset ...@@ -20,7 +20,7 @@ from datasets import load_dataset
from transformers import AutoTokenizer from transformers import AutoTokenizer
from llamafactory.extras.constants import IGNORE_INDEX from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.train.test_utils import load_train_dataset from llamafactory.train.test_utils import load_dataset_module
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data") DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
...@@ -36,7 +36,6 @@ TRAIN_ARGS = { ...@@ -36,7 +36,6 @@ TRAIN_ARGS = {
"finetuning_type": "full", "finetuning_type": "full",
"template": "llama3", "template": "llama3",
"cutoff_len": 8192, "cutoff_len": 8192,
"overwrite_cache": True,
"output_dir": "dummy_dir", "output_dir": "dummy_dir",
"overwrite_output_dir": True, "overwrite_output_dir": True,
"fp16": True, "fp16": True,
...@@ -45,7 +44,7 @@ TRAIN_ARGS = { ...@@ -45,7 +44,7 @@ TRAIN_ARGS = {
@pytest.mark.parametrize("num_samples", [16]) @pytest.mark.parametrize("num_samples", [16])
def test_supervised_single_turn(num_samples: int): def test_supervised_single_turn(num_samples: int):
train_dataset = load_train_dataset(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS) train_dataset = load_dataset_module(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS)["train_dataset"]
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
original_data = load_dataset(TINY_DATA, split="train") original_data = load_dataset(TINY_DATA, split="train")
indexes = random.choices(range(len(original_data)), k=num_samples) indexes = random.choices(range(len(original_data)), k=num_samples)
...@@ -64,7 +63,9 @@ def test_supervised_single_turn(num_samples: int): ...@@ -64,7 +63,9 @@ def test_supervised_single_turn(num_samples: int):
@pytest.mark.parametrize("num_samples", [8]) @pytest.mark.parametrize("num_samples", [8])
def test_supervised_multi_turn(num_samples: int): def test_supervised_multi_turn(num_samples: int):
train_dataset = load_train_dataset(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS) train_dataset = load_dataset_module(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS)[
"train_dataset"
]
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train") original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
indexes = random.choices(range(len(original_data)), k=num_samples) indexes = random.choices(range(len(original_data)), k=num_samples)
...@@ -75,9 +76,9 @@ def test_supervised_multi_turn(num_samples: int): ...@@ -75,9 +76,9 @@ def test_supervised_multi_turn(num_samples: int):
@pytest.mark.parametrize("num_samples", [4]) @pytest.mark.parametrize("num_samples", [4])
def test_supervised_train_on_prompt(num_samples: int): def test_supervised_train_on_prompt(num_samples: int):
train_dataset = load_train_dataset( train_dataset = load_dataset_module(
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", train_on_prompt=True, **TRAIN_ARGS dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", train_on_prompt=True, **TRAIN_ARGS
) )["train_dataset"]
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train") original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
indexes = random.choices(range(len(original_data)), k=num_samples) indexes = random.choices(range(len(original_data)), k=num_samples)
...@@ -89,9 +90,9 @@ def test_supervised_train_on_prompt(num_samples: int): ...@@ -89,9 +90,9 @@ def test_supervised_train_on_prompt(num_samples: int):
@pytest.mark.parametrize("num_samples", [4]) @pytest.mark.parametrize("num_samples", [4])
def test_supervised_mask_history(num_samples: int): def test_supervised_mask_history(num_samples: int):
train_dataset = load_train_dataset( train_dataset = load_dataset_module(
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", mask_history=True, **TRAIN_ARGS dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", mask_history=True, **TRAIN_ARGS
) )["train_dataset"]
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train") original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
indexes = random.choices(range(len(original_data)), k=num_samples) indexes = random.choices(range(len(original_data)), k=num_samples)
......
...@@ -19,7 +19,7 @@ import pytest ...@@ -19,7 +19,7 @@ import pytest
from datasets import load_dataset from datasets import load_dataset
from transformers import AutoTokenizer from transformers import AutoTokenizer
from llamafactory.train.test_utils import load_train_dataset from llamafactory.train.test_utils import load_dataset_module
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data") DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
...@@ -39,7 +39,6 @@ TRAIN_ARGS = { ...@@ -39,7 +39,6 @@ TRAIN_ARGS = {
"dataset_dir": "REMOTE:" + DEMO_DATA, "dataset_dir": "REMOTE:" + DEMO_DATA,
"template": "llama3", "template": "llama3",
"cutoff_len": 8192, "cutoff_len": 8192,
"overwrite_cache": True,
"output_dir": "dummy_dir", "output_dir": "dummy_dir",
"overwrite_output_dir": True, "overwrite_output_dir": True,
"fp16": True, "fp16": True,
...@@ -48,7 +47,7 @@ TRAIN_ARGS = { ...@@ -48,7 +47,7 @@ TRAIN_ARGS = {
@pytest.mark.parametrize("num_samples", [16]) @pytest.mark.parametrize("num_samples", [16])
def test_unsupervised_data(num_samples: int): def test_unsupervised_data(num_samples: int):
train_dataset = load_train_dataset(**TRAIN_ARGS) train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train") original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
indexes = random.choices(range(len(original_data)), k=num_samples) indexes = random.choices(range(len(original_data)), k=num_samples)
......
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from llamafactory.data import Role from llamafactory.data import Role
from llamafactory.data.converter import get_dataset_converter from llamafactory.data.converter import get_dataset_converter
from llamafactory.data.parser import DatasetAttr from llamafactory.data.parser import DatasetAttr
......
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from llamafactory.train.test_utils import load_dataset_module
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
TINY_DATA = os.getenv("TINY_DATA", "llamafactory/tiny-supervised-dataset")
TRAIN_ARGS = {
"model_name_or_path": TINY_LLAMA,
"stage": "sft",
"do_train": True,
"finetuning_type": "full",
"template": "llama3",
"dataset": TINY_DATA,
"dataset_dir": "ONLINE",
"cutoff_len": 8192,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,
}
def test_load_train_only():
dataset_module = load_dataset_module(**TRAIN_ARGS)
assert dataset_module.get("train_dataset") is not None
assert dataset_module.get("eval_dataset") is None
def test_load_val_size():
dataset_module = load_dataset_module(val_size=0.1, **TRAIN_ARGS)
assert dataset_module.get("train_dataset") is not None
assert dataset_module.get("eval_dataset") is not None
def test_load_eval_data():
dataset_module = load_dataset_module(eval_dataset=TINY_DATA, **TRAIN_ARGS)
assert dataset_module.get("train_dataset") is not None
assert dataset_module.get("eval_dataset") is not None
...@@ -32,7 +32,6 @@ TRAIN_ARGS = { ...@@ -32,7 +32,6 @@ TRAIN_ARGS = {
"dataset_dir": "REMOTE:" + DEMO_DATA, "dataset_dir": "REMOTE:" + DEMO_DATA,
"template": "llama3", "template": "llama3",
"cutoff_len": 1, "cutoff_len": 1,
"overwrite_cache": False,
"overwrite_output_dir": True, "overwrite_output_dir": True,
"per_device_train_batch_size": 1, "per_device_train_batch_size": 1,
"max_steps": 1, "max_steps": 1,
......
...@@ -33,7 +33,6 @@ TRAIN_ARGS = { ...@@ -33,7 +33,6 @@ TRAIN_ARGS = {
"dataset_dir": "ONLINE", "dataset_dir": "ONLINE",
"template": "llama3", "template": "llama3",
"cutoff_len": 1024, "cutoff_len": 1024,
"overwrite_cache": True,
"output_dir": "dummy_dir", "output_dir": "dummy_dir",
"overwrite_output_dir": True, "overwrite_output_dir": True,
"fp16": True, "fp16": True,
......
...@@ -20,23 +20,16 @@ from llamafactory.hparams import FinetuningArguments, ModelArguments ...@@ -20,23 +20,16 @@ from llamafactory.hparams import FinetuningArguments, ModelArguments
from llamafactory.model.adapter import init_adapter from llamafactory.model.adapter import init_adapter
@pytest.mark.parametrize( @pytest.mark.parametrize("freeze_vision_tower", (False, True))
"freeze_vision_tower,freeze_multi_modal_projector,train_mm_proj_only", @pytest.mark.parametrize("freeze_multi_modal_projector", (False, True))
[ @pytest.mark.parametrize("freeze_language_model", (False, True))
(False, False, False), def test_visual_full(freeze_vision_tower: bool, freeze_multi_modal_projector: bool, freeze_language_model: bool):
(False, True, False),
(True, False, False),
(True, True, False),
(True, False, True),
],
)
def test_visual_full(freeze_vision_tower: bool, freeze_multi_modal_projector: bool, train_mm_proj_only: bool):
model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct") model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct")
finetuning_args = FinetuningArguments( finetuning_args = FinetuningArguments(
finetuning_type="full", finetuning_type="full",
freeze_vision_tower=freeze_vision_tower, freeze_vision_tower=freeze_vision_tower,
freeze_multi_modal_projector=freeze_multi_modal_projector, freeze_multi_modal_projector=freeze_multi_modal_projector,
train_mm_proj_only=train_mm_proj_only, freeze_language_model=freeze_language_model,
) )
config = AutoConfig.from_pretrained(model_args.model_name_or_path) config = AutoConfig.from_pretrained(model_args.model_name_or_path)
with torch.device("meta"): with torch.device("meta"):
...@@ -49,10 +42,10 @@ def test_visual_full(freeze_vision_tower: bool, freeze_multi_modal_projector: bo ...@@ -49,10 +42,10 @@ def test_visual_full(freeze_vision_tower: bool, freeze_multi_modal_projector: bo
elif "visual.merger" in name: elif "visual.merger" in name:
assert param.requires_grad != freeze_multi_modal_projector assert param.requires_grad != freeze_multi_modal_projector
else: else:
assert param.requires_grad != train_mm_proj_only assert param.requires_grad != freeze_language_model
@pytest.mark.parametrize("freeze_vision_tower", [False, True]) @pytest.mark.parametrize("freeze_vision_tower", (False, True))
def test_visual_lora(freeze_vision_tower: bool): def test_visual_lora(freeze_vision_tower: bool):
model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct") model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct")
finetuning_args = FinetuningArguments(finetuning_type="lora", freeze_vision_tower=freeze_vision_tower) finetuning_args = FinetuningArguments(finetuning_type="lora", freeze_vision_tower=freeze_vision_tower)
......
...@@ -30,7 +30,6 @@ TRAIN_ARGS = { ...@@ -30,7 +30,6 @@ TRAIN_ARGS = {
"dataset_dir": "ONLINE", "dataset_dir": "ONLINE",
"template": "llama3", "template": "llama3",
"cutoff_len": 1024, "cutoff_len": 1024,
"overwrite_cache": True,
"output_dir": "dummy_dir", "output_dir": "dummy_dir",
"overwrite_output_dir": True, "overwrite_output_dir": True,
"fp16": True, "fp16": True,
......
...@@ -30,7 +30,6 @@ TRAIN_ARGS = { ...@@ -30,7 +30,6 @@ TRAIN_ARGS = {
"dataset_dir": "ONLINE", "dataset_dir": "ONLINE",
"template": "llama3", "template": "llama3",
"cutoff_len": 1024, "cutoff_len": 1024,
"overwrite_cache": True,
"output_dir": "dummy_dir", "output_dir": "dummy_dir",
"overwrite_output_dir": True, "overwrite_output_dir": True,
"fp16": True, "fp16": True,
......
...@@ -42,7 +42,6 @@ TRAIN_ARGS = { ...@@ -42,7 +42,6 @@ TRAIN_ARGS = {
"dataset_dir": "ONLINE", "dataset_dir": "ONLINE",
"template": "llama3", "template": "llama3",
"cutoff_len": 1024, "cutoff_len": 1024,
"overwrite_cache": True,
"output_dir": "dummy_dir", "output_dir": "dummy_dir",
"overwrite_output_dir": True, "overwrite_output_dir": True,
"fp16": True, "fp16": True,
......
...@@ -34,7 +34,6 @@ TRAIN_ARGS = { ...@@ -34,7 +34,6 @@ TRAIN_ARGS = {
"dataset_dir": "ONLINE", "dataset_dir": "ONLINE",
"template": "llama3", "template": "llama3",
"cutoff_len": 1024, "cutoff_len": 1024,
"overwrite_cache": True,
"output_dir": "dummy_dir", "output_dir": "dummy_dir",
"overwrite_output_dir": True, "overwrite_output_dir": True,
"fp16": True, "fp16": True,
......
...@@ -38,7 +38,6 @@ TRAIN_ARGS = { ...@@ -38,7 +38,6 @@ TRAIN_ARGS = {
"dataset_dir": "ONLINE", "dataset_dir": "ONLINE",
"template": "llama3", "template": "llama3",
"cutoff_len": 1024, "cutoff_len": 1024,
"overwrite_cache": False,
"overwrite_output_dir": True, "overwrite_output_dir": True,
"per_device_train_batch_size": 1, "per_device_train_batch_size": 1,
"max_steps": 1, "max_steps": 1,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment