Commit 317a82e2 authored by chenych's avatar chenych
Browse files

Add QWQ-32B

parent 37b0ad9f
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
reward_model: saves/llama3-8b/lora/reward
### method
stage: ppo
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/ppo
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### generate
max_new_tokens: 512
top_k: 0
top_p: 0.9
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
### method
stage: sft
do_predict: true
finetuning_type: lora
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 50
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/predict
overwrite_output_dir: true
### eval
per_device_eval_batch_size: 1
predict_with_generate: true
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: pt
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: c4_demo
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: rm
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: dpo_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/reward
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
tokenized_path: saves/llama3-8b/dataset/sft
### output
output_dir: saves/llama3-8b/lora/sft
overwrite_output_dir: true
### model
model_name_or_path: llava-hf/llava-1.5-7b-hf
visual_inputs: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: mllm_demo
template: vicuna
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llava1_5-7b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
### model
model_name_or_path: saves/llama3-8b/full/sft
template: llama3
trust_remote_code: true
### export
export_dir: output/llama3_full_sft
export_size: 5
export_device: cpu
export_legacy_format: false
...@@ -4,9 +4,9 @@ template: llama3 ...@@ -4,9 +4,9 @@ template: llama3
trust_remote_code: true trust_remote_code: true
### export ### export
export_dir: models/llama3_gptq export_dir: output/llama3_gptq
export_quantization_bit: 4 export_quantization_bit: 4
export_quantization_dataset: data/c4_demo.json export_quantization_dataset: data/c4_demo.json
export_size: 2 export_size: 5
export_device: cpu export_device: cpu
export_legacy_format: false export_legacy_format: false
...@@ -4,11 +4,10 @@ ...@@ -4,11 +4,10 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft adapter_name_or_path: saves/llama3-8b/lora/sft
template: llama3 template: llama3
finetuning_type: lora
trust_remote_code: true trust_remote_code: true
### export ### export
export_dir: models/llama3_lora_sft export_dir: output/llama3_lora_sft
export_size: 2 export_size: 5
export_device: cpu export_device: cpu
export_legacy_format: false export_legacy_format: false
...@@ -4,11 +4,10 @@ ...@@ -4,11 +4,10 @@
model_name_or_path: Qwen/Qwen2-VL-7B-Instruct model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
adapter_name_or_path: saves/qwen2_vl-7b/lora/sft adapter_name_or_path: saves/qwen2_vl-7b/lora/sft
template: qwen2_vl template: qwen2_vl
finetuning_type: lora
trust_remote_code: true trust_remote_code: true
### export ### export
export_dir: models/qwen2_vl_lora_sft export_dir: output/qwen2_vl_lora_sft
export_size: 2 export_size: 5
export_device: cpu export_device: cpu
export_legacy_format: false export_legacy_format: false
### model
model_name_or_path: ISTA-DASLab/Meta-Llama-3-8B-Instruct-AQLM-2Bit-1x16
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
### model
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-AWQ
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
quantization_bit: 4
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
### model
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-GPTQ
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
### model
model_name_or_path: saves/llama3-8b/full/sft
### method
stage: sft
do_predict: true
finetuning_type: full
### dataset
eval_dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 50
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/full/predict
overwrite_output_dir: true
### eval
per_device_eval_batch_size: 1
predict_with_generate: true
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: examples/deepspeed/ds_z3_config.json # choices: [ds_z0_config.json, ds_z2_config.json, ds_z3_config.json]
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
### model ### model
model_name_or_path: Qwen/Qwen2-VL-7B-Instruct model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
image_max_pixels: 262144
video_max_pixels: 16384
trust_remote_code: true trust_remote_code: true
### method ### method
...@@ -18,6 +20,7 @@ cutoff_len: 2048 ...@@ -18,6 +20,7 @@ cutoff_len: 2048
max_samples: 1000 max_samples: 1000
overwrite_cache: true overwrite_cache: true
preprocessing_num_workers: 16 preprocessing_num_workers: 16
dataloader_num_workers: 4
### output ### output
output_dir: saves/qwen2_vl-7b/full/sft output_dir: saves/qwen2_vl-7b/full/sft
...@@ -25,6 +28,7 @@ logging_steps: 10 ...@@ -25,6 +28,7 @@ logging_steps: 10
save_steps: 500 save_steps: 500
plot_loss: true plot_loss: true
overwrite_output_dir: true overwrite_output_dir: true
save_only_model: false
### train ### train
per_device_train_batch_size: 1 per_device_train_batch_size: 1
...@@ -35,9 +39,10 @@ lr_scheduler_type: cosine ...@@ -35,9 +39,10 @@ lr_scheduler_type: cosine
warmup_ratio: 0.1 warmup_ratio: 0.1
bf16: true bf16: true
ddp_timeout: 180000000 ddp_timeout: 180000000
resume_from_checkpoint: null
### eval ### eval
val_size: 0.1 # val_size: 0.1
per_device_eval_batch_size: 1 # per_device_eval_batch_size: 1
eval_strategy: steps # eval_strategy: steps
eval_steps: 500 # eval_steps: 500
...@@ -6,6 +6,7 @@ trust_remote_code: true ...@@ -6,6 +6,7 @@ trust_remote_code: true
stage: dpo stage: dpo
do_train: true do_train: true
finetuning_type: lora finetuning_type: lora
lora_rank: 8
lora_target: all lora_target: all
pref_beta: 0.1 pref_beta: 0.1
pref_loss: sigmoid # choices: [sigmoid (dpo), orpo, simpo] pref_loss: sigmoid # choices: [sigmoid (dpo), orpo, simpo]
...@@ -17,6 +18,7 @@ cutoff_len: 2048 ...@@ -17,6 +18,7 @@ cutoff_len: 2048
max_samples: 1000 max_samples: 1000
overwrite_cache: true overwrite_cache: true
preprocessing_num_workers: 16 preprocessing_num_workers: 16
dataloader_num_workers: 4
### output ### output
output_dir: saves/llama3-8b/lora/dpo output_dir: saves/llama3-8b/lora/dpo
...@@ -24,6 +26,7 @@ logging_steps: 10 ...@@ -24,6 +26,7 @@ logging_steps: 10
save_steps: 500 save_steps: 500
plot_loss: true plot_loss: true
overwrite_output_dir: true overwrite_output_dir: true
save_only_model: false
### train ### train
per_device_train_batch_size: 1 per_device_train_batch_size: 1
...@@ -34,9 +37,11 @@ lr_scheduler_type: cosine ...@@ -34,9 +37,11 @@ lr_scheduler_type: cosine
warmup_ratio: 0.1 warmup_ratio: 0.1
bf16: true bf16: true
ddp_timeout: 180000000 ddp_timeout: 180000000
resume_from_checkpoint: null
### eval ### eval
val_size: 0.1 # eval_dataset: dpo_en_demo
per_device_eval_batch_size: 1 # val_size: 0.1
eval_strategy: steps # per_device_eval_batch_size: 1
eval_steps: 500 # eval_strategy: steps
# eval_steps: 500
...@@ -6,6 +6,7 @@ trust_remote_code: true ...@@ -6,6 +6,7 @@ trust_remote_code: true
stage: kto stage: kto
do_train: true do_train: true
finetuning_type: lora finetuning_type: lora
lora_rank: 8
lora_target: all lora_target: all
pref_beta: 0.1 pref_beta: 0.1
...@@ -35,7 +36,7 @@ bf16: true ...@@ -35,7 +36,7 @@ bf16: true
ddp_timeout: 180000000 ddp_timeout: 180000000
### eval ### eval
val_size: 0.1 # val_size: 0.1
per_device_eval_batch_size: 1 # per_device_eval_batch_size: 1
eval_strategy: steps # eval_strategy: steps
eval_steps: 500 # eval_steps: 500
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment