Commit 317a82e2 authored by chenych's avatar chenych
Browse files

Add QWQ-32B

parent 37b0ad9f
...@@ -4,11 +4,13 @@ API_HOST= ...@@ -4,11 +4,13 @@ API_HOST=
API_PORT= API_PORT=
API_KEY= API_KEY=
API_MODEL_NAME= API_MODEL_NAME=
API_VERBOSE=
FASTAPI_ROOT_PATH= FASTAPI_ROOT_PATH=
MAX_CONCURRENT= MAX_CONCURRENT=
# general # general
DISABLE_VERSION_CHECK= DISABLE_VERSION_CHECK=
FORCE_CHECK_IMPORTS= FORCE_CHECK_IMPORTS=
ALLOW_EXTRA_ARGS=
LLAMAFACTORY_VERBOSITY= LLAMAFACTORY_VERBOSITY=
USE_MODELSCOPE_HUB= USE_MODELSCOPE_HUB=
USE_OPENMIND_HUB= USE_OPENMIND_HUB=
...@@ -32,7 +34,7 @@ GRADIO_SERVER_PORT= ...@@ -32,7 +34,7 @@ GRADIO_SERVER_PORT=
GRADIO_ROOT_PATH= GRADIO_ROOT_PATH=
GRADIO_IPV6= GRADIO_IPV6=
# setup # setup
ENABLE_SHORT_CONSOLE=1 ENABLE_SHORT_CONSOLE=
# reserved (do not use) # reserved (do not use)
LLAMABOARD_ENABLED= LLAMABOARD_ENABLED=
LLAMABOARD_WORKDIR= LLAMABOARD_WORKDIR=
...@@ -162,6 +162,9 @@ cython_debug/ ...@@ -162,6 +162,9 @@ cython_debug/
# vscode # vscode
.vscode/ .vscode/
# uv
uv.lock
# custom .gitignore # custom .gitignore
ms_cache/ ms_cache/
hf_cache/ hf_cache/
......
...@@ -15,6 +15,7 @@ LLaMA Factory是一个大语言模型训练和推理的框架,支持了魔搭 ...@@ -15,6 +15,7 @@ LLaMA Factory是一个大语言模型训练和推理的框架,支持了魔搭
## 支持模型结构列表 ## 支持模型结构列表
| 模型名 | 模型大小 | Template | | 模型名 | 模型大小 | Template |
| ------------------------------------------------------------ | -------------------------------- | --------- | | ------------------------------------------------------------ | -------------------------------- | --------- |
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 | | [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
...@@ -23,11 +24,10 @@ LLaMA Factory是一个大语言模型训练和推理的框架,支持了魔搭 ...@@ -23,11 +24,10 @@ LLaMA Factory是一个大语言模型训练和推理的框架,支持了魔搭
| [Gemma 2](https://huggingface.co/google) | 2B/9B | gemma | | [Gemma 2](https://huggingface.co/google) | 2B/9B | gemma |
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 | | [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [Llama 3/Llama 3.1](https://huggingface.co/meta-llama) | 8B/70B | llama3 | | [Llama 3/Llama 3.1](https://huggingface.co/meta-llama) | 8B/70B | llama3 |
| [Qwen1.5 (Code/MoE)/Qwen2/Qwen2.5](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B | qwen | | [Qwen1.5 (Code/MoE)/Qwen2/Qwen2.5/QwQ](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B | qwen |
| [XVERSE](https://hf-mirror.com/xverse) | 7B/13B | xverse | | [XVERSE](https://hf-mirror.com/xverse) | 7B/13B | xverse |
| [OLMo](https://hf-mirror.com/allenai) | 1B/7B | olmo | | [OLMo](https://hf-mirror.com/allenai) | 1B/7B | olmo |
持续更新中... 持续更新中...
注意:本版本仅支持deepseek蒸馏模型的监督微调(SFT),可参考[deepseek-r1-distill_vllm](https://developer.sourcefind.cn/codes/modelzoo/deepseek-r1-distill_vllm) 注意:本版本仅支持deepseek蒸馏模型的监督微调(SFT),可参考[deepseek-r1-distill_vllm](https://developer.sourcefind.cn/codes/modelzoo/deepseek-r1-distill_vllm)
......
![# LLaMA Factory](assets/logo.png) ![# LLaMA Factory](assets/logo.png)
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers) [![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main) [![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/) [![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-91-green)](#projects-using-llama-factory) [![Citation](https://img.shields.io/badge/citation-319-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls) [![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai) [![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![GitCode](https://gitcode.com/zhengyaowei/LLaMA-Factory/star/badge.svg)](https://gitcode.com/zhengyaowei/LLaMA-Factory)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
[![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) [![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board) [![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board) [![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![SageMaker](https://img.shields.io/badge/SageMaker-Open%20in%20AWS-blue)](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
[![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535) <h3 align="center">
Easily fine-tune 100+ large language models with zero-code <a href="#quickstart">CLI</a> and <a href="#fine-tuning-with-llama-board-gui-powered-by-gradio">Web UI</a>
</h3>
<p align="center">
<picture>
<img alt="Github trend" src="https://trendshift.io/api/badge/repositories/4535">
</picture>
</p>
👋 Join our [WeChat](assets/wechat.jpg) or [NPU user group](assets/wechat_npu.jpg). 👋 Join our [WeChat](assets/wechat.jpg) or [NPU user group](assets/wechat_npu.jpg).
...@@ -25,10 +37,11 @@ https://github.com/user-attachments/assets/7c96b465-9df7-45f4-8053-bf03e58386d3 ...@@ -25,10 +37,11 @@ https://github.com/user-attachments/assets/7c96b465-9df7-45f4-8053-bf03e58386d3
Choose your path: Choose your path:
- **Documentation (WIP)**: https://llamafactory.readthedocs.io/zh-cn/latest/
- **Colab**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing - **Colab**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
- **PAI-DSW**: [Llama3 Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) | [Qwen2-VL Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl)
- **Local machine**: Please refer to [usage](#getting-started) - **Local machine**: Please refer to [usage](#getting-started)
- **Documentation (WIP)**: https://llamafactory.readthedocs.io/zh-cn/latest/ - **PAI-DSW**: [Llama3 Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) | [Qwen2-VL Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl) | [DeepSeek-R1-Distill Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b)
- **Amazon SageMaker**: [Blog](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
> [!NOTE] > [!NOTE]
> Except for the above links, all other websites are unauthorized third-party websites. Please carefully use them. > Except for the above links, all other websites are unauthorized third-party websites. Please carefully use them.
...@@ -43,6 +56,16 @@ Choose your path: ...@@ -43,6 +56,16 @@ Choose your path:
- [Provided Datasets](#provided-datasets) - [Provided Datasets](#provided-datasets)
- [Requirement](#requirement) - [Requirement](#requirement)
- [Getting Started](#getting-started) - [Getting Started](#getting-started)
- [Installation](#installation)
- [Data Preparation](#data-preparation)
- [Quickstart](#quickstart)
- [Fine-Tuning with LLaMA Board GUI](#fine-tuning-with-llama-board-gui-powered-by-gradio)
- [Build Docker](#build-docker)
- [Deploy with OpenAI-style API and vLLM](#deploy-with-openai-style-api-and-vllm)
- [Download from ModelScope Hub](#download-from-modelscope-hub)
- [Download from Modelers Hub](#download-from-modelers-hub)
- [Use W&B Logger](#use-wb-logger)
- [Use SwanLab Logger](#use-swanlab-logger)
- [Projects using LLaMA Factory](#projects-using-llama-factory) - [Projects using LLaMA Factory](#projects-using-llama-factory)
- [License](#license) - [License](#license)
- [Citation](#citation) - [Citation](#citation)
...@@ -50,14 +73,22 @@ Choose your path: ...@@ -50,14 +73,22 @@ Choose your path:
## Features ## Features
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Qwen2-VL, Yi, Gemma, Baichuan, ChatGLM, Phi, etc. - **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Qwen2-VL, DeepSeek, Yi, Gemma, ChatGLM, Phi, etc.
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc. - **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
- **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ. - **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ.
- **Advanced algorithms**: [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [Adam-mini](https://github.com/zyushun/Adam-mini), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ, PiSSA and Agent tuning. - **Advanced algorithms**: [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [APOLLO](https://github.com/zhuhanqing/APOLLO), [Adam-mini](https://github.com/zyushun/Adam-mini), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and PiSSA.
- **Practical tricks**: [FlashAttention-2](https://github.com/Dao-AILab/flash-attention), [Unsloth](https://github.com/unslothai/unsloth), [Liger Kernel](https://github.com/linkedin/Liger-Kernel), RoPE scaling, NEFTune and rsLoRA. - **Practical tricks**: [FlashAttention-2](https://github.com/Dao-AILab/flash-attention), [Unsloth](https://github.com/unslothai/unsloth), [Liger Kernel](https://github.com/linkedin/Liger-Kernel), RoPE scaling, NEFTune and rsLoRA.
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, etc. - **Wide tasks**: Multi-turn dialogue, tool using, image understanding, visual grounding, video recognition, audio understanding, etc.
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, SwanLab, etc.
- **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker. - **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker.
### Day-N Support for Fine-Tuning Cutting-Edge Models
| Support Date | Model Name |
| ------------ | ---------------------------------------------------------- |
| Day 0 | Qwen2.5 / Qwen2-VL / QwQ / QvQ / InternLM3 / MiniCPM-o-2.6 |
| Day 1 | Llama 3 / GLM-4 / Mistral Small / PaliGemma2 |
## Benchmark ## Benchmark
Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning), LLaMA Factory's LoRA tuning offers up to **3.7 times faster** training speed with a better Rouge score on the advertising text generation task. By leveraging 4-bit quantization technique, LLaMA Factory's QLoRA further improves the efficiency regarding the GPU memory. Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning), LLaMA Factory's LoRA tuning offers up to **3.7 times faster** training speed with a better Rouge score on the advertising text generation task. By leveraging 4-bit quantization technique, LLaMA Factory's QLoRA further improves the efficiency regarding the GPU memory.
...@@ -75,19 +106,41 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ ...@@ -75,19 +106,41 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog ## Changelog
[24/09/19] We support fine-tuning the **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** models. [25/02/24] Announcing **[EasyR1](https://github.com/hiyouga/EasyR1)**, an efficient, scalable and multi-modality RL training framework for efficient GRPO training.
[24/08/30] We support fine-tuning the **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** models. Thank [@simonJJJ](https://github.com/simonJJJ)'s PR. [25/02/11] We supported saving the **[Ollama](https://github.com/ollama/ollama)** modelfile when exporting the model checkpoints. See [examples](examples/README.md) for usage.
[24/08/27] We support **[Liger Kernel](https://github.com/linkedin/Liger-Kernel)**. Try `enable_liger_kernel: true` for efficient training. [25/02/05] We supported fine-tuning the **[Qwen2-Audio](Qwen/Qwen2-Audio-7B-Instruct)** and **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** on audio understanding tasks.
[24/08/09] We support **[Adam-mini](https://github.com/zyushun/Adam-mini)** optimizer. See [examples](examples/README.md) for usage. Thank [@relic-yuexi](https://github.com/relic-yuexi)'s PR. [25/01/31] We supported fine-tuning the **[DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1)** and **[Qwen2.5-VL](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)** model.
<details><summary>Full Changelog</summary> <details><summary>Full Changelog</summary>
[24/07/04] We support [contamination-free packed training](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing). Use `neat_packing: true` to activate it. Thank [@chuan298](https://github.com/chuan298)'s PR. [25/01/15] We supported **[APOLLO](https://arxiv.org/abs/2412.05270)** optimizer. See [examples](examples/README.md) for usage.
[25/01/14] We supported fine-tuning the **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** and **[MiniCPM-V-2.6](https://huggingface.co/openbmb/MiniCPM-V-2_6)** models. Thank [@BUAADreamer](https://github.com/BUAADreamer)'s PR.
[25/01/14] We supported fine-tuning the **[InternLM3](https://huggingface.co/collections/internlm/)** models. Thank [@hhaAndroid](https://github.com/hhaAndroid)'s PR.
[25/01/10] We supported fine-tuning the **[Phi-4](https://huggingface.co/microsoft/phi-4)** model.
[24/12/21] We supported using **[SwanLab](https://github.com/SwanHubX/SwanLab)** for experiment tracking and visualization. See [this section](#use-swanlab-logger) for details.
[24/11/27] We supported fine-tuning the **[Skywork-o1](https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B)** model and the **[OpenO1](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)** dataset.
[24/10/09] We supported downloading pre-trained models and datasets from the **[Modelers Hub](https://modelers.cn/models)**. See [this tutorial](#download-from-modelers-hub) for usage.
[24/09/19] We supported fine-tuning the **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** models.
[24/08/30] We supported fine-tuning the **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** models. Thank [@simonJJJ](https://github.com/simonJJJ)'s PR.
[24/06/16] We support **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage. [24/08/27] We supported **[Liger Kernel](https://github.com/linkedin/Liger-Kernel)**. Try `enable_liger_kernel: true` for efficient training.
[24/08/09] We supported **[Adam-mini](https://github.com/zyushun/Adam-mini)** optimizer. See [examples](examples/README.md) for usage. Thank [@relic-yuexi](https://github.com/relic-yuexi)'s PR.
[24/07/04] We supported [contamination-free packed training](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing). Use `neat_packing: true` to activate it. Thank [@chuan298](https://github.com/chuan298)'s PR.
[24/06/16] We supported **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage.
[24/06/07] We supported fine-tuning the **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** and **[GLM-4](https://github.com/THUDM/GLM-4)** models. [24/06/07] We supported fine-tuning the **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** and **[GLM-4](https://github.com/THUDM/GLM-4)** models.
...@@ -133,7 +186,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ ...@@ -133,7 +186,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
[23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement). [23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).
[23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#download-from-modelscope-hub) for usage. [23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)**. See [this tutorial](#download-from-modelscope-hub) for usage.
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `neftune_noise_alpha: 5` argument to activate NEFTune. [23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `neftune_noise_alpha: 5` argument to activate NEFTune.
...@@ -166,31 +219,46 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ ...@@ -166,31 +219,46 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Supported Models ## Supported Models
| Model | Model size | Template | | Model | Model size | Template |
| ----------------------------------------------------------------- | -------------------------------- | ---------------- | | ----------------------------------------------------------------- | -------------------------------- | ------------------- |
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 | | [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - | | [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 | | [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere | | [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek | | [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [DeepSeek 2.5/3](https://huggingface.co/deepseek-ai) | 236B/671B | deepseek3 |
| [DeepSeek R1 (Distill)](https://huggingface.co/deepseek-ai) | 1.5B/7B/8B/14B/32B/70B/671B | deepseek3 |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon | | [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma | | [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
| [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 | | [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
| [InternLM2/InternLM2.5](https://huggingface.co/internlm) | 7B/20B | intern2 | | [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
| [Granite 3.0-3.1](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
| [InternLM 2-3](https://huggingface.co/internlm) | 7B/8B/20B | intern2 |
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - | | [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 | | [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [Llama 3-3.2](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 | | [Llama 3-3.3](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
| [Llama 3.2 Vision](https://huggingface.co/meta-llama) | 11B/90B | mllama |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava | | [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next | | [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video | | [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
| [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 | | [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
| [MiniCPM-o-2.6/MiniCPM-V-2.6](https://huggingface.co/openbmb) | 8B | minicpm_o/minicpm_v |
| [Ministral/Mistral-Nemo](https://huggingface.co/mistralai) | 8B/12B | ministral |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral | | [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [Mistral Small](https://huggingface.co/mistralai) | 24B | mistral_small |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - | | [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma](https://huggingface.co/google) | 3B | paligemma | | [PaliGemma/PaliGemma2](https://huggingface.co/google) | 3B/10B/28B | paligemma |
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - | | [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi | | [Phi-3/Phi-3.5](https://huggingface.co/microsoft) | 4B/14B | phi |
| [Qwen (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen | | [Phi-3-small](https://huggingface.co/microsoft) | 7B | phi_small |
| [Qwen2-VL](https://huggingface.co/Qwen) | 2B/7B/72B | qwen2_vl | | [Phi-4](https://huggingface.co/microsoft) | 14B | phi4 |
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
| [Qwen/QwQ (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
| [Qwen2-Audio](https://huggingface.co/Qwen) | 7B | qwen2_audio |
| [Qwen2-VL/Qwen2.5-VL/QVQ](https://huggingface.co/Qwen) | 2B/3B/7B/72B | qwen2_vl |
| [Skywork o1](https://huggingface.co/Skywork) | 8B | skywork_o1 |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - | | [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [TeleChat2](https://huggingface.co/Tele-AI) | 3B/7B/35B/115B | telechat2 |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse | | [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi | | [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl | | [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
...@@ -278,9 +346,13 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t ...@@ -278,9 +346,13 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
- [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction) - [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
- [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo) - [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
- [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2) - [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
- [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered) - [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
- [Magpie-ultra-v0.1 (en)](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1) - [Magpie-ultra-v0.1 (en)](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1)
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
- [OpenO1-SFT (en&zh)](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)
- [Open-Thoughts (en)](https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k)
- [Open-R1-Math (en)](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k)
- [Chinese-DeepSeek-R1-Distill (zh)](https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT)
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k) - [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
- [Pokemon-gpt4o-captions (en&zh)](https://huggingface.co/datasets/jugg1024/pokemon-gpt4o-captions) - [Pokemon-gpt4o-captions (en&zh)](https://huggingface.co/datasets/jugg1024/pokemon-gpt4o-captions)
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de) - [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
...@@ -320,32 +392,32 @@ huggingface-cli login ...@@ -320,32 +392,32 @@ huggingface-cli login
| Mandatory | Minimum | Recommend | | Mandatory | Minimum | Recommend |
| ------------ | ------- | --------- | | ------------ | ------- | --------- |
| python | 3.8 | 3.11 | | python | 3.9 | 3.10 |
| torch | 1.13.1 | 2.4.0 | | torch | 1.13.1 | 2.5.1 |
| transformers | 4.41.2 | 4.43.4 | | transformers | 4.41.2 | 4.49.0 |
| datasets | 2.16.0 | 2.20.0 | | datasets | 2.16.0 | 3.2.0 |
| accelerate | 0.30.1 | 0.32.0 | | accelerate | 0.34.0 | 1.2.1 |
| peft | 0.11.1 | 0.12.0 | | peft | 0.11.1 | 0.12.0 |
| trl | 0.8.6 | 0.9.6 | | trl | 0.8.6 | 0.9.6 |
| Optional | Minimum | Recommend | | Optional | Minimum | Recommend |
| ------------ | ------- | --------- | | ------------ | ------- | --------- |
| CUDA | 11.6 | 12.2 | | CUDA | 11.6 | 12.2 |
| deepspeed | 0.10.0 | 0.14.0 | | deepspeed | 0.10.0 | 0.16.2 |
| bitsandbytes | 0.39.0 | 0.43.1 | | bitsandbytes | 0.39.0 | 0.43.1 |
| vllm | 0.4.3 | 0.5.0 | | vllm | 0.4.3 | 0.7.3 |
| flash-attn | 2.3.0 | 2.6.3 | | flash-attn | 2.3.0 | 2.7.2 |
### Hardware Requirement ### Hardware Requirement
\* *estimated* \* *estimated*
| Method | Bits | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B | | Method | Bits | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
| ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ | | ------------------------ | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB | | Full | 32 | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB | | Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB | | Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB | | LoRA/GaLore/APOLLO/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB | | QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB | | QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB | | QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
...@@ -363,36 +435,56 @@ cd LLaMA-Factory ...@@ -363,36 +435,56 @@ cd LLaMA-Factory
pip install -e ".[torch,metrics]" pip install -e ".[torch,metrics]"
``` ```
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, badam, adam-mini, qwen, modelscope, quality Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, apollo, badam, adam-mini, qwen, minicpm_v, modelscope, openmind, swanlab, quality
> [!TIP] > [!TIP]
> Use `pip install --no-deps -e .` to resolve package conflicts. > Use `pip install --no-deps -e .` to resolve package conflicts.
<details><summary>Setting up a virtual environment with <b>uv</b></summary>
Create an isolated Python environment with [uv](https://github.com/astral-sh/uv):
```bash
uv sync --extra torch --extra metrics --prerelease=allow
```
Run LLaMA-Factory in the isolated environment:
```bash
uv run --prerelease=allow llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
```
</details>
<details><summary>For Windows users</summary> <details><summary>For Windows users</summary>
#### Install BitsAndBytes
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you need to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version. If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you need to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
```bash ```bash
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
``` ```
To enable FlashAttention-2 on the Windows platform, you need to install the precompiled `flash-attn` library, which supports CUDA 12.1 to 12.2. Please download the corresponding version from [flash-attention](https://github.com/bdashore3/flash-attention/releases) based on your requirements. #### Install Flash Attention-2
To enable FlashAttention-2 on the Windows platform, please use the script from [flash-attention-windows-wheel](https://huggingface.co/lldacing/flash-attention-windows-wheel) to compile and install it by yourself.
</details> </details>
<details><summary>For Ascend NPU users</summary> <details><summary>For Ascend NPU users</summary>
To install LLaMA Factory on Ascend NPU devices, please specify extra dependencies: `pip install -e ".[torch-npu,metrics]"`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands: To install LLaMA Factory on Ascend NPU devices, please upgrade Python to version 3.10 or higher and specify extra dependencies: `pip install -e ".[torch-npu,metrics]"`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
```bash ```bash
# replace the url according to your CANN version and devices # replace the url according to your CANN version and devices
# install CANN Toolkit # install CANN Toolkit
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C20SPC702/Ascend-cann-toolkit_8.0.0.alpha002_linux-"$(uname -i)".run
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install bash Ascend-cann-toolkit_8.0.0.alpha002_linux-"$(uname -i)".run --install
# install CANN Kernels # install CANN Kernels
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C20SPC702/Ascend-cann-kernels-910b_8.0.0.alpha002_linux-"$(uname -i)".run
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install bash Ascend-cann-kernels-910b_8.0.0.alpha002_linux-"$(uname -i)".run --install
# set env variables # set env variables
source /usr/local/Ascend/ascend-toolkit/set_env.sh source /usr/local/Ascend/ascend-toolkit/set_env.sh
...@@ -400,10 +492,10 @@ source /usr/local/Ascend/ascend-toolkit/set_env.sh ...@@ -400,10 +492,10 @@ source /usr/local/Ascend/ascend-toolkit/set_env.sh
| Requirement | Minimum | Recommend | | Requirement | Minimum | Recommend |
| ------------ | ------- | ----------- | | ------------ | ------- | ----------- |
| CANN | 8.0.RC1 | 8.0.RC1 | | CANN | 8.0.RC1 | 8.0.0.alpha002 |
| torch | 2.1.0 | 2.1.0 | | torch | 2.1.0 | 2.4.0 |
| torch-npu | 2.1.0 | 2.1.0.post3 | | torch-npu | 2.1.0 | 2.4.0.post2 |
| deepspeed | 0.13.2 | 0.13.2 | | deepspeed | 0.13.2 | 0.16.2 |
Remember to use `ASCEND_RT_VISIBLE_DEVICES` instead of `CUDA_VISIBLE_DEVICES` to specify the device to use. Remember to use `ASCEND_RT_VISIBLE_DEVICES` instead of `CUDA_VISIBLE_DEVICES` to specify the device to use.
...@@ -411,11 +503,45 @@ If you cannot infer model on NPU devices, try setting `do_sample: false` in the ...@@ -411,11 +503,45 @@ If you cannot infer model on NPU devices, try setting `do_sample: false` in the
Download the pre-built Docker images: [32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html) Download the pre-built Docker images: [32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
#### Install BitsAndBytes
To use QLoRA based on bitsandbytes on Ascend NPU, please follow these 3 steps:
1. Manually compile bitsandbytes: Refer to [the installation documentation](https://huggingface.co/docs/bitsandbytes/installation?backend=Ascend+NPU&platform=Ascend+NPU) for the NPU version of bitsandbytes to complete the compilation and installation. The compilation requires a cmake version of at least 3.22.1 and a g++ version of at least 12.x.
```bash
# Install bitsandbytes from source
# Clone bitsandbytes repo, Ascend NPU backend is currently enabled on multi-backend-refactor branch
git clone -b multi-backend-refactor https://github.com/bitsandbytes-foundation/bitsandbytes.git
cd bitsandbytes/
# Install dependencies
pip install -r requirements-dev.txt
# Install the dependencies for the compilation tools. Note that the commands for this step may vary depending on the operating system. The following are provided for reference
apt-get install -y build-essential cmake
# Compile & install
cmake -DCOMPUTE_BACKEND=npu -S .
make
pip install .
```
2. Install transformers from the main branch.
```bash
git clone -b main https://github.com/huggingface/transformers.git
cd transformers
pip install .
```
3. Set `double_quantization: false` in the configuration. You can refer to the [example](examples/train_qlora/llama3_lora_sft_bnb_npu.yaml).
</details> </details>
### Data Preparation ### Data Preparation
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk. Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope / Modelers hub or load the dataset in local disk.
> [!NOTE] > [!NOTE]
> Please update `data/dataset_info.json` to use your custom dataset. > Please update `data/dataset_info.json` to use your custom dataset.
...@@ -483,6 +609,7 @@ docker build -f ./docker/docker-cuda/Dockerfile \ ...@@ -483,6 +609,7 @@ docker build -f ./docker/docker-cuda/Dockerfile \
docker run -dit --gpus=all \ docker run -dit --gpus=all \
-v ./hf_cache:/root/.cache/huggingface \ -v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \ -v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./data:/app/data \ -v ./data:/app/data \
-v ./output:/app/output \ -v ./output:/app/output \
-p 7860:7860 \ -p 7860:7860 \
...@@ -507,6 +634,7 @@ docker build -f ./docker/docker-npu/Dockerfile \ ...@@ -507,6 +634,7 @@ docker build -f ./docker/docker-npu/Dockerfile \
docker run -dit \ docker run -dit \
-v ./hf_cache:/root/.cache/huggingface \ -v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \ -v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./data:/app/data \ -v ./data:/app/data \
-v ./output:/app/output \ -v ./output:/app/output \
-v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/dcmi:/usr/local/dcmi \
...@@ -540,6 +668,7 @@ docker build -f ./docker/docker-rocm/Dockerfile \ ...@@ -540,6 +668,7 @@ docker build -f ./docker/docker-rocm/Dockerfile \
docker run -dit \ docker run -dit \
-v ./hf_cache:/root/.cache/huggingface \ -v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \ -v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./data:/app/data \ -v ./data:/app/data \
-v ./output:/app/output \ -v ./output:/app/output \
-v ./saves:/app/saves \ -v ./saves:/app/saves \
...@@ -560,6 +689,7 @@ docker exec -it llamafactory bash ...@@ -560,6 +689,7 @@ docker exec -it llamafactory bash
- `hf_cache`: Utilize Hugging Face cache on the host machine. Reassignable if a cache already exists in a different directory. - `hf_cache`: Utilize Hugging Face cache on the host machine. Reassignable if a cache already exists in a different directory.
- `ms_cache`: Similar to Hugging Face cache but for ModelScope users. - `ms_cache`: Similar to Hugging Face cache but for ModelScope users.
- `om_cache`: Similar to Hugging Face cache but for Modelers users.
- `data`: Place datasets on this dir of the host machine so that they can be selected on LLaMA Board GUI. - `data`: Place datasets on this dir of the host machine so that they can be selected on LLaMA Board GUI.
- `output`: Set export dir to this location so that the merged result can be accessed directly on the host machine. - `output`: Set export dir to this location so that the merged result can be accessed directly on the host machine.
...@@ -573,6 +703,8 @@ API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml ...@@ -573,6 +703,8 @@ API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
> [!TIP] > [!TIP]
> Visit [this page](https://platform.openai.com/docs/api-reference/chat/create) for API document. > Visit [this page](https://platform.openai.com/docs/api-reference/chat/create) for API document.
>
> Examples: [Image understanding](scripts/api_example/test_image.py) | [Function calling](scripts/api_example/test_toolcall.py)
### Download from ModelScope Hub ### Download from ModelScope Hub
...@@ -584,6 +716,16 @@ export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows ...@@ -584,6 +716,16 @@ export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows
Train the model by specifying a model ID of the ModelScope Hub as the `model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `LLM-Research/Meta-Llama-3-8B-Instruct`. Train the model by specifying a model ID of the ModelScope Hub as the `model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `LLM-Research/Meta-Llama-3-8B-Instruct`.
### Download from Modelers Hub
You can also use Modelers Hub to download models and datasets.
```bash
export USE_OPENMIND_HUB=1 # `set USE_OPENMIND_HUB=1` for Windows
```
Train the model by specifying a model ID of the Modelers Hub as the `model_name_or_path`. You can find a full list of model IDs at [Modelers Hub](https://modelers.cn/models), e.g., `TeleAI/TeleChat-7B-pt`.
### Use W&B Logger ### Use W&B Logger
To use [Weights & Biases](https://wandb.ai) for logging experimental results, you need to add the following arguments to yaml files. To use [Weights & Biases](https://wandb.ai) for logging experimental results, you need to add the following arguments to yaml files.
...@@ -595,6 +737,21 @@ run_name: test_run # optional ...@@ -595,6 +737,21 @@ run_name: test_run # optional
Set `WANDB_API_KEY` to [your key](https://wandb.ai/authorize) when launching training tasks to log in with your W&B account. Set `WANDB_API_KEY` to [your key](https://wandb.ai/authorize) when launching training tasks to log in with your W&B account.
### Use SwanLab Logger
To use [SwanLab](https://github.com/SwanHubX/SwanLab) for logging experimental results, you need to add the following arguments to yaml files.
```yaml
use_swanlab: true
swanlab_run_name: test_run # optional
```
When launching training tasks, you can log in to SwanLab in three ways:
1. Add `swanlab_api_key=<your_api_key>` to the yaml file, and set it to your [API key](https://swanlab.cn/settings).
2. Set the environment variable `SWANLAB_API_KEY` to your [API key](https://swanlab.cn/settings).
3. Use the `swanlab login` command to complete the login.
## Projects using LLaMA Factory ## Projects using LLaMA Factory
If you have a project that should be incorporated, please contact via email or create a pull request. If you have a project that should be incorporated, please contact via email or create a pull request.
...@@ -682,16 +839,20 @@ If you have a project that should be incorporated, please contact via email or c ...@@ -682,16 +839,20 @@ If you have a project that should be incorporated, please contact via email or c
1. Zeng et al. Perceive, Reflect, and Plan: Designing LLM Agent for Goal-Directed City Navigation without Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2408.04168) 1. Zeng et al. Perceive, Reflect, and Plan: Designing LLM Agent for Goal-Directed City Navigation without Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2408.04168)
1. Xia et al. Using Pre-trained Language Model for Accurate ESG Prediction. FinNLP 2024. [[paper]](https://aclanthology.org/2024.finnlp-2.1/) 1. Xia et al. Using Pre-trained Language Model for Accurate ESG Prediction. FinNLP 2024. [[paper]](https://aclanthology.org/2024.finnlp-2.1/)
1. Liang et al. I-SHEEP: Self-Alignment of LLM from Scratch through an Iterative Self-Enhancement Paradigm. 2024. [[arxiv]](https://arxiv.org/abs/2408.08072) 1. Liang et al. I-SHEEP: Self-Alignment of LLM from Scratch through an Iterative Self-Enhancement Paradigm. 2024. [[arxiv]](https://arxiv.org/abs/2408.08072)
1. Bai et al. Aligning Large Language Model with Direct Multi-Preference Optimization for Recommendation. CIKM 2024. [[paper]](https://dl.acm.org/doi/10.1145/3627673.3679611)
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B. 1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge. 1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B. 1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B. 1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods. 1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods.
1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**: A large language model specialized in generate metadata for stable diffusion. [[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt) 1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**: A large language model specialized in generate metadata for stable diffusion. [[demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**: A multimodal large language model specialized in Chinese medical domain, based on LLaVA-1.5-7B. 1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**: A multimodal large language model specialized in Chinese medical domain, based on LLaVA-1.5-7B.
1. **[AutoRE](https://github.com/THUDM/AutoRE)**: A document-level relation extraction system based on large language models. 1. **[AutoRE](https://github.com/THUDM/AutoRE)**: A document-level relation extraction system based on large language models.
1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**: SDKs for fine-tuning LLMs on Windows PC for NVIDIA RTX. 1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**: SDKs for fine-tuning LLMs on Windows PC for NVIDIA RTX.
1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**: An easy and lazy way for building multi-agent LLMs applications and supports model fine-tuning via LLaMA Factory. 1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**: An easy and lazy way for building multi-agent LLMs applications and supports model fine-tuning via LLaMA Factory.
1. **[RAG-Retrieval](https://github.com/NLPJCL/RAG-Retrieval)**: A full pipeline for RAG retrieval model fine-tuning, inference, and distillation. [[blog]](https://zhuanlan.zhihu.com/p/987727357)
1. **[360-LLaMA-Factory](https://github.com/Qihoo360/360-LLaMA-Factory)**: A modified library that supports long sequence SFT & DPO using ring attention.
1. **[Sky-T1](https://novasky-ai.github.io/posts/sky-t1/)**: An o1-like model fine-tuned by NovaSky AI with very small cost.
</details> </details>
...@@ -699,7 +860,7 @@ If you have a project that should be incorporated, please contact via email or c ...@@ -699,7 +860,7 @@ If you have a project that should be incorporated, please contact via email or c
This repository is licensed under the [Apache-2.0 License](LICENSE). This repository is licensed under the [Apache-2.0 License](LICENSE).
Please follow the model licenses to use the corresponding model weights: [Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan) Please follow the model licenses to use the corresponding model weights: [Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [GPT-2](https://github.com/openai/gpt-2/blob/master/LICENSE) / [Granite](LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3/Phi-4](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [Skywork](https://huggingface.co/Skywork/Skywork-13B-base/blob/main/Skywork%20Community%20License.pdf) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [TeleChat2](https://huggingface.co/Tele-AI/telechat-7B/blob/main/TeleChat%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
## Citation ## Citation
......
![# LLaMA Factory](assets/logo.png) ![# LLaMA Factory](assets/logo.png)
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers) [![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main) [![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/) [![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-91-green)](#使用了-llama-factory-的项目) [![Citation](https://img.shields.io/badge/citation-319-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls) [![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai) [![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![GitCode](https://gitcode.com/zhengyaowei/LLaMA-Factory/star/badge.svg)](https://gitcode.com/zhengyaowei/LLaMA-Factory)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
[![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) [![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board) [![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board) [![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![SageMaker](https://img.shields.io/badge/SageMaker-Open%20in%20AWS-blue)](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
<h3 align="center">
使用零代码<a href="#快速开始">命令行</a><a href="#llama-board-可视化微调由-gradio-驱动">Web UI</a> 轻松微调百余种大模型
</h3>
<p align="center">
<picture>
<img alt="Github trend" src="https://trendshift.io/api/badge/repositories/4535">
</picture>
</p>
[![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535)
👋 加入我们的[微信群](assets/wechat.jpg)[NPU 用户群](assets/wechat_npu.jpg) 👋 加入我们的[微信群](assets/wechat.jpg)[NPU 用户群](assets/wechat_npu.jpg)
...@@ -25,11 +38,12 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272 ...@@ -25,11 +38,12 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
选择你的打开方式: 选择你的打开方式:
- **Colab**:https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
- **PAI-DSW**[Llama3 案例](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) | [Qwen2-VL 案例](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl)
- **本地机器**:请见[如何使用](#如何使用)
- **入门教程**:https://zhuanlan.zhihu.com/p/695287607 - **入门教程**:https://zhuanlan.zhihu.com/p/695287607
- **框架文档**:https://llamafactory.readthedocs.io/zh-cn/latest/ - **框架文档**:https://llamafactory.readthedocs.io/zh-cn/latest/
- **Colab**:https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
- **本地机器**:请见[如何使用](#如何使用)
- **PAI-DSW**[Llama3 案例](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) | [Qwen2-VL 案例](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl) | [DeepSeek-R1-Distill 案例](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b)
- **Amazon SageMaker**[博客](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
> [!NOTE] > [!NOTE]
> 除上述链接以外的其他网站均为未经许可的第三方网站,请小心甄别。 > 除上述链接以外的其他网站均为未经许可的第三方网站,请小心甄别。
...@@ -44,6 +58,16 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272 ...@@ -44,6 +58,16 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
- [数据集](#数据集) - [数据集](#数据集)
- [软硬件依赖](#软硬件依赖) - [软硬件依赖](#软硬件依赖)
- [如何使用](#如何使用) - [如何使用](#如何使用)
- [安装 LLaMA Factory](#安装-llama-factory)
- [数据准备](#数据准备)
- [快速开始](#快速开始)
- [LLaMA Board 可视化微调](#llama-board-可视化微调由-gradio-驱动)
- [构建 Docker](#构建-docker)
- [利用 vLLM 部署 OpenAI API](#利用-vllm-部署-openai-api)
- [从魔搭社区下载](#从魔搭社区下载)
- [从魔乐社区下载](#从魔乐社区下载)
- [使用 W&B 面板](#使用-wb-面板)
- [使用 SwanLab 面板](#使用-swanlab-面板)
- [使用了 LLaMA Factory 的项目](#使用了-llama-factory-的项目) - [使用了 LLaMA Factory 的项目](#使用了-llama-factory-的项目)
- [协议](#协议) - [协议](#协议)
- [引用](#引用) - [引用](#引用)
...@@ -51,14 +75,22 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272 ...@@ -51,14 +75,22 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
## 项目特色 ## 项目特色
- **多种模型**:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Qwen2-VL、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。 - **多种模型**:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Qwen2-VL、DeepSeek、Yi、Gemma、ChatGLM、Phi 等等。
- **集成方法**:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。 - **集成方法**:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
- **多种精度**:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。 - **多种精度**:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
- **先进算法**[GaLore](https://github.com/jiaweizzhao/GaLore)[BAdam](https://github.com/Ledzy/BAdam)[Adam-mini](https://github.com/zyushun/Adam-mini)、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQPiSSA 和 Agent 微调 - **先进算法**[GaLore](https://github.com/jiaweizzhao/GaLore)[BAdam](https://github.com/Ledzy/BAdam)[APOLLO](https://github.com/zhuhanqing/APOLLO)[Adam-mini](https://github.com/zyushun/Adam-mini)、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQPiSSA。
- **实用技巧**[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)[Unsloth](https://github.com/unslothai/unsloth)[Liger Kernel](https://github.com/linkedin/Liger-Kernel)、RoPE scaling、NEFTune 和 rsLoRA。 - **实用技巧**[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)[Unsloth](https://github.com/unslothai/unsloth)[Liger Kernel](https://github.com/linkedin/Liger-Kernel)、RoPE scaling、NEFTune 和 rsLoRA。
- **实验监控**:LlamaBoard、TensorBoard、Wandb、MLflow 等等。 - **广泛任务**:多轮对话、工具调用、图像理解、视觉定位、视频识别和语音理解等等。
- **实验监控**:LlamaBoard、TensorBoard、Wandb、MLflow、SwanLab 等等。
- **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。 - **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
### 最新模型的 Day-N 微调适配
| 适配时间 | 模型名称 |
| ------------ | ---------------------------------------------------------- |
| Day 0 | Qwen2.5 / Qwen2-VL / QwQ / QvQ / InternLM3 / MiniCPM-o-2.6 |
| Day 1 | Llama 3 / GLM-4 / Mistral Small / PaliGemma2 |
## 性能指标 ## 性能指标
与 ChatGLM 官方的 [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning) 微调相比,LLaMA Factory 的 LoRA 微调提供了 **3.7 倍**的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。 与 ChatGLM 官方的 [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning) 微调相比,LLaMA Factory 的 LoRA 微调提供了 **3.7 倍**的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。
...@@ -76,6 +108,30 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272 ...@@ -76,6 +108,30 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
## 更新日志 ## 更新日志
[25/02/24] 我们宣布开源 **[EasyR1](https://github.com/hiyouga/EasyR1)**,一个高效可扩展的多模态强化学习框架,支持高效的 GRPO 训练。
[25/02/11] 我们支持了在导出模型时保存 **[Ollama](https://github.com/ollama/ollama)** 配置文件。详细用法请参照 [examples](examples/README_zh.md)
[25/02/05] 我们支持了在语音理解任务上微调 **[Qwen2-Audio](Qwen/Qwen2-Audio-7B-Instruct)** 和 **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** 模型。
[25/01/31] 我们支持了 **[DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1)** 和 **[Qwen2.5-VL](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)** 模型的微调。
<details><summary>展开日志</summary>
[25/01/15] 我们支持了 **[APOLLO](https://arxiv.org/abs/2412.05270)** 优化器。详细用法请参照 [examples](examples/README_zh.md)
[25/01/14] 我们支持了 **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** 和 **[MiniCPM-V-2.6](https://huggingface.co/openbmb/MiniCPM-V-2_6)** 模型的微调。 感谢 [@BUAADreamer](https://github.com/BUAADreamer) 的 PR.
[25/01/14] 我们支持了 **[InternLM3](https://huggingface.co/collections/internlm/)** 模型的微调。感谢 [@hhaAndroid](https://github.com/hhaAndroid) 的 PR。
[25/01/10] 我们支持了 **[Phi-4](https://huggingface.co/microsoft/phi-4)** 模型的微调。
[24/12/21] 我们支持了使用 **[SwanLab](https://github.com/SwanHubX/SwanLab)** 跟踪与可视化实验。详细用法请参考 [此部分](#使用-swanlab-面板)
[24/11/27] 我们支持了 **[Skywork-o1](https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B)** 模型的微调和 **[OpenO1](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)** 数据集。
[24/10/09] 我们支持了从 **[魔乐社区](https://modelers.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#从魔乐社区下载)
[24/09/19] 我们支持了 **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** 模型的微调。 [24/09/19] 我们支持了 **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** 模型的微调。
[24/08/30] 我们支持了 **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** 模型的微调。感谢 [@simonJJJ](https://github.com/simonJJJ) 的 PR。 [24/08/30] 我们支持了 **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** 模型的微调。感谢 [@simonJJJ](https://github.com/simonJJJ) 的 PR。
...@@ -84,8 +140,6 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272 ...@@ -84,8 +140,6 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
[24/08/09] 我们支持了 **[Adam-mini](https://github.com/zyushun/Adam-mini)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。感谢 [@relic-yuexi](https://github.com/relic-yuexi) 的 PR。 [24/08/09] 我们支持了 **[Adam-mini](https://github.com/zyushun/Adam-mini)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。感谢 [@relic-yuexi](https://github.com/relic-yuexi) 的 PR。
<details><summary>展开日志</summary>
[24/07/04] 我们支持了[无污染打包训练](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing)。请使用 `neat_packing: true` 参数。感谢 [@chuan298](https://github.com/chuan298) 的 PR。 [24/07/04] 我们支持了[无污染打包训练](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing)。请使用 `neat_packing: true` 参数。感谢 [@chuan298](https://github.com/chuan298) 的 PR。
[24/06/16] 我们支持了 **[PiSSA](https://arxiv.org/abs/2404.02948)** 算法。详细用法请参照 [examples](examples/README_zh.md) [24/06/16] 我们支持了 **[PiSSA](https://arxiv.org/abs/2404.02948)** 算法。详细用法请参照 [examples](examples/README_zh.md)
...@@ -166,32 +220,47 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272 ...@@ -166,32 +220,47 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
## 模型 ## 模型
| 模型名 | 模型大小 | Template | | 模型名 | 参数量 | Template |
| ----------------------------------------------------------------- | -------------------------------- | ---------------- | | ----------------------------------------------------------------- | -------------------------------- | ------------------- |
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 | | [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - | | [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 | | [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere | | [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek | | [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [DeepSeek 2.5/3](https://huggingface.co/deepseek-ai) | 236B/671B | deepseek3 |
| [DeepSeek R1 (Distill)](https://huggingface.co/deepseek-ai) | 1.5B/7B/8B/14B/32B/70B/671B | deepseek3 |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon | | [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma | | [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
| [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 | | [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
| [InternLM2/InternLM2.5](https://huggingface.co/internlm) | 7B/20B | intern2 | | [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
| [Granite 3.0-3.1](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
| [InternLM 2-3](https://huggingface.co/internlm) | 7B/8B/20B | intern2 |
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - | | [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 | | [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [Llama 3-3.2](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 | | [Llama 3-3.3](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
| [Llama 3.2 Vision](https://huggingface.co/meta-llama) | 11B/90B | mllama |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava | | [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next | | [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video | | [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
| [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 | | [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
| [MiniCPM-o-2.6/MiniCPM-V-2.6](https://huggingface.co/openbmb) | 8B | minicpm_o/minicpm_v |
| [Ministral/Mistral-Nemo](https://huggingface.co/mistralai) | 8B/12B | ministral |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral | | [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [Mistral Small](https://huggingface.co/mistralai) | 24B | mistral_small |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - | | [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma](https://huggingface.co/google) | 3B | paligemma | | [PaliGemma/PaliGemma2](https://huggingface.co/google) | 3B/10B/28B | paligemma |
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - | | [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi | | [Phi-3/Phi-3.5](https://huggingface.co/microsoft) | 4B/14B | phi |
| [Qwen (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen | | [Phi-3-small](https://huggingface.co/microsoft) | 7B | phi_small |
| [Qwen2-VL](https://huggingface.co/Qwen) | 2B/7B/72B | qwen2_vl | | [Phi-4](https://huggingface.co/microsoft) | 14B | phi4 |
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
| [Qwen/QwQ (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
| [Qwen2-Audio](https://huggingface.co/Qwen) | 7B | qwen2_audio |
| [Qwen2-VL/Qwen2.5-VL/QVQ](https://huggingface.co/Qwen) | 2B/3B/7B/72B | qwen2_vl |
| [Skywork o1](https://huggingface.co/Skywork) | 8B | skywork_o1 |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - | | [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [TeleChat2](https://huggingface.co/Tele-AI) | 3B/7B/35B/115B | telechat2 |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse | | [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi | | [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl | | [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
...@@ -209,7 +278,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272 ...@@ -209,7 +278,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
## 训练方法 ## 训练方法
| 方法 | 全参数训练 | 部分参数训练 | LoRA | QLoRA | | 方法 | 全参数训练 | 部分参数训练 | LoRA | QLoRA |
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ | | --------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
| 预训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | 预训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| 指令监督微调 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | 指令监督微调 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| 奖励模型训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | 奖励模型训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
...@@ -279,9 +348,13 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272 ...@@ -279,9 +348,13 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
- [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction) - [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
- [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo) - [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
- [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2) - [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
- [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered) - [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
- [Magpie-ultra-v0.1 (en)](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1) - [Magpie-ultra-v0.1 (en)](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1)
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
- [OpenO1-SFT (en&zh)](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)
- [Open-Thoughts (en)](https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k)
- [Open-R1-Math (en)](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k)
- [Chinese-DeepSeek-R1-Distill (zh)](https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT)
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k) - [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
- [Pokemon-gpt4o-captions (en&zh)](https://huggingface.co/datasets/jugg1024/pokemon-gpt4o-captions) - [Pokemon-gpt4o-captions (en&zh)](https://huggingface.co/datasets/jugg1024/pokemon-gpt4o-captions)
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de) - [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
...@@ -321,32 +394,32 @@ huggingface-cli login ...@@ -321,32 +394,32 @@ huggingface-cli login
| 必需项 | 至少 | 推荐 | | 必需项 | 至少 | 推荐 |
| ------------ | ------- | --------- | | ------------ | ------- | --------- |
| python | 3.8 | 3.11 | | python | 3.9 | 3.10 |
| torch | 1.13.1 | 2.4.0 | | torch | 1.13.1 | 2.5.1 |
| transformers | 4.41.2 | 4.43.4 | | transformers | 4.41.2 | 4.49.0 |
| datasets | 2.16.0 | 2.20.0 | | datasets | 2.16.0 | 3.2.0 |
| accelerate | 0.30.1 | 0.32.0 | | accelerate | 0.34.0 | 1.2.1 |
| peft | 0.11.1 | 0.12.0 | | peft | 0.11.1 | 0.12.0 |
| trl | 0.8.6 | 0.9.6 | | trl | 0.8.6 | 0.9.6 |
| 可选项 | 至少 | 推荐 | | 可选项 | 至少 | 推荐 |
| ------------ | ------- | --------- | | ------------ | ------- | --------- |
| CUDA | 11.6 | 12.2 | | CUDA | 11.6 | 12.2 |
| deepspeed | 0.10.0 | 0.14.0 | | deepspeed | 0.10.0 | 0.16.2 |
| bitsandbytes | 0.39.0 | 0.43.1 | | bitsandbytes | 0.39.0 | 0.43.1 |
| vllm | 0.4.3 | 0.5.0 | | vllm | 0.4.3 | 0.7.3 |
| flash-attn | 2.3.0 | 2.6.3 | | flash-attn | 2.3.0 | 2.7.2 |
### 硬件依赖 ### 硬件依赖
\* *估算值* \* *估算值*
| 方法 | 精度 | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B | | 方法 | 精度 | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
| ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ | | ------------------------ | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB | | Full | 32 | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB | | Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB | | Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB | | LoRA/GaLore/APOLLO/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB | | QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB | | QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB | | QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
...@@ -364,26 +437,47 @@ cd LLaMA-Factory ...@@ -364,26 +437,47 @@ cd LLaMA-Factory
pip install -e ".[torch,metrics]" pip install -e ".[torch,metrics]"
``` ```
可选的额外依赖项:torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、adam-mini、qwen、modelscope、quality 可选的额外依赖项:torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、apollo、badam、adam-mini、qwen、minicpm_v、modelscope、openmind、swanlab、quality
> [!TIP] > [!TIP]
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。 > 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
<details><summary>使用 <b>uv</b> 构建虚拟环境</summary>
使用 [uv](https://github.com/astral-sh/uv) 创建隔离的 Python 环境:
```bash
uv sync --extra torch --extra metrics --prerelease=allow
```
在环境中运行 LLaMA-Factory:
```bash
uv run --prerelease=allow llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
```
</details>
<details><summary>Windows 用户指南</summary> <details><summary>Windows 用户指南</summary>
#### 安装 BitsAndBytes
如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.2, 请根据您的 CUDA 版本情况选择适合的[发布版本](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) 如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.2, 请根据您的 CUDA 版本情况选择适合的[发布版本](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels)
```bash ```bash
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
``` ```
如果要在 Windows 平台上开启 FlashAttention-2,需要安装预编译的 `flash-attn` 库,支持 CUDA 12.1 到 12.2,请根据需求到 [flash-attention](https://github.com/bdashore3/flash-attention/releases) 下载对应版本安装。 #### 安装 Flash Attention-2
如果要在 Windows 平台上开启 FlashAttention-2,请使用 [flash-attention-windows-wheel](https://huggingface.co/lldacing/flash-attention-windows-wheel) 中的脚本自行编译与安装。
</details> </details>
<details><summary>昇腾 NPU 用户指南</summary> <details><summary>昇腾 NPU 用户指南</summary>
在昇腾 NPU 设备上安装 LLaMA Factory 时,需要指定额外依赖项,使用 `pip install -e ".[torch-npu,metrics]"` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit 与 Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令: 在昇腾 NPU 设备上安装 LLaMA Factory 时,请升级 Python 到 3.10 及以上,并需要指定额外依赖项,使用 `pip install -e ".[torch-npu,metrics]"` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit 与 Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令:
```bash ```bash
# 请替换 URL 为 CANN 版本和设备型号对应的 URL # 请替换 URL 为 CANN 版本和设备型号对应的 URL
...@@ -412,11 +506,45 @@ source /usr/local/Ascend/ascend-toolkit/set_env.sh ...@@ -412,11 +506,45 @@ source /usr/local/Ascend/ascend-toolkit/set_env.sh
下载预构建 Docker 镜像:[32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html) 下载预构建 Docker 镜像:[32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
#### 安装 BitsAndBytes
如果要在 Ascend NPU 上进行基于 bitsandbytes 的 QLoRA 量化微调,请执行如下步骤:
1. 手动编译 bitsandbytes:请参考[安装文档](https://huggingface.co/docs/bitsandbytes/installation?backend=Ascend+NPU&platform=Ascend+NPU)完成 NPU 版的 bitsandbytes 安装,编译要求环境 cmake 版本不低于 3.22.1,g++ 版本不低于 12.x。
```bash
# 从源码安装 bitsandbytes
# 克隆 bitsandbytes 仓库, Ascend NPU 目前在 multi-backend-refactor 中支持
git clone -b multi-backend-refactor https://github.com/bitsandbytes-foundation/bitsandbytes.git
cd bitsandbytes/
# 安装依赖
pip install -r requirements-dev.txt
# 安装编译工具依赖,该步骤在不同系统上命令有所不同,供参考
apt-get install -y build-essential cmake
# 编译 & 安装
cmake -DCOMPUTE_BACKEND=npu -S .
make
pip install .
```
2. 安装 transformers 的 main 分支版本。
```bash
git clone -b main https://github.com/huggingface/transformers.git
cd transformers
pip install .
```
3. 在训练参数中设置 `double_quantization: false`,可参考[示例](examples/train_qlora/llama3_lora_sft_bnb_npu.yaml)
</details> </details>
### 数据准备 ### 数据准备
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。 关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope / Modelers 上的数据集或加载本地数据集。
> [!NOTE] > [!NOTE]
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。 > 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
...@@ -484,6 +612,7 @@ docker build -f ./docker/docker-cuda/Dockerfile \ ...@@ -484,6 +612,7 @@ docker build -f ./docker/docker-cuda/Dockerfile \
docker run -dit --gpus=all \ docker run -dit --gpus=all \
-v ./hf_cache:/root/.cache/huggingface \ -v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \ -v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./data:/app/data \ -v ./data:/app/data \
-v ./output:/app/output \ -v ./output:/app/output \
-p 7860:7860 \ -p 7860:7860 \
...@@ -508,6 +637,7 @@ docker build -f ./docker/docker-npu/Dockerfile \ ...@@ -508,6 +637,7 @@ docker build -f ./docker/docker-npu/Dockerfile \
docker run -dit \ docker run -dit \
-v ./hf_cache:/root/.cache/huggingface \ -v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \ -v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./data:/app/data \ -v ./data:/app/data \
-v ./output:/app/output \ -v ./output:/app/output \
-v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/dcmi:/usr/local/dcmi \
...@@ -541,6 +671,7 @@ docker build -f ./docker/docker-rocm/Dockerfile \ ...@@ -541,6 +671,7 @@ docker build -f ./docker/docker-rocm/Dockerfile \
docker run -dit \ docker run -dit \
-v ./hf_cache:/root/.cache/huggingface \ -v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \ -v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./data:/app/data \ -v ./data:/app/data \
-v ./output:/app/output \ -v ./output:/app/output \
-v ./saves:/app/saves \ -v ./saves:/app/saves \
...@@ -561,6 +692,7 @@ docker exec -it llamafactory bash ...@@ -561,6 +692,7 @@ docker exec -it llamafactory bash
- `hf_cache`:使用宿主机的 Hugging Face 缓存文件夹,允许更改为新的目录。 - `hf_cache`:使用宿主机的 Hugging Face 缓存文件夹,允许更改为新的目录。
- `ms_cache`:类似 Hugging Face 缓存文件夹,为 ModelScope 用户提供。 - `ms_cache`:类似 Hugging Face 缓存文件夹,为 ModelScope 用户提供。
- `om_cache`:类似 Hugging Face 缓存文件夹,为 Modelers 用户提供。
- `data`:宿主机中存放数据集的文件夹路径。 - `data`:宿主机中存放数据集的文件夹路径。
- `output`:将导出目录设置为该路径后,即可在宿主机中访问导出后的模型。 - `output`:将导出目录设置为该路径后,即可在宿主机中访问导出后的模型。
...@@ -574,6 +706,8 @@ API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml ...@@ -574,6 +706,8 @@ API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
> [!TIP] > [!TIP]
> API 文档请查阅[这里](https://platform.openai.com/docs/api-reference/chat/create)。 > API 文档请查阅[这里](https://platform.openai.com/docs/api-reference/chat/create)。
>
> 示例:[图像理解](scripts/api_example/test_image.py) | [工具调用](scripts/api_example/test_toolcall.py)
### 从魔搭社区下载 ### 从魔搭社区下载
...@@ -585,6 +719,16 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1` ...@@ -585,6 +719,16 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
`model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `LLM-Research/Meta-Llama-3-8B-Instruct` `model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `LLM-Research/Meta-Llama-3-8B-Instruct`
### 从魔乐社区下载
您也可以通过下述方法,使用魔乐社区下载数据集和模型。
```bash
export USE_OPENMIND_HUB=1 # Windows 使用 `set USE_OPENMIND_HUB=1`
```
`model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔乐社区](https://modelers.cn/models)查看所有可用的模型,例如 `TeleAI/TeleChat-7B-pt`
### 使用 W&B 面板 ### 使用 W&B 面板
若要使用 [Weights & Biases](https://wandb.ai) 记录实验数据,请在 yaml 文件中添加下面的参数。 若要使用 [Weights & Biases](https://wandb.ai) 记录实验数据,请在 yaml 文件中添加下面的参数。
...@@ -596,6 +740,21 @@ run_name: test_run # 可选 ...@@ -596,6 +740,21 @@ run_name: test_run # 可选
在启动训练任务时,将 `WANDB_API_KEY` 设置为[密钥](https://wandb.ai/authorize)来登录 W&B 账户。 在启动训练任务时,将 `WANDB_API_KEY` 设置为[密钥](https://wandb.ai/authorize)来登录 W&B 账户。
### 使用 SwanLab 面板
若要使用 [SwanLab](https://github.com/SwanHubX/SwanLab) 记录实验数据,请在 yaml 文件中添加下面的参数。
```yaml
use_swanlab: true
swanlab_run_name: test_run # 可选
```
在启动训练任务时,登录SwanLab账户有以下三种方式:
方式一:在 yaml 文件中添加 `swanlab_api_key=<your_api_key>` ,并设置为你的 [API 密钥](https://swanlab.cn/settings)
方式二:将环境变量 `SWANLAB_API_KEY` 设置为你的 [API 密钥](https://swanlab.cn/settings)
方式三:启动前使用 `swanlab login` 命令完成登录。
## 使用了 LLaMA Factory 的项目 ## 使用了 LLaMA Factory 的项目
如果您有项目希望添加至下述列表,请通过邮件联系或者创建一个 PR。 如果您有项目希望添加至下述列表,请通过邮件联系或者创建一个 PR。
...@@ -683,16 +842,20 @@ run_name: test_run # 可选 ...@@ -683,16 +842,20 @@ run_name: test_run # 可选
1. Zeng et al. Perceive, Reflect, and Plan: Designing LLM Agent for Goal-Directed City Navigation without Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2408.04168) 1. Zeng et al. Perceive, Reflect, and Plan: Designing LLM Agent for Goal-Directed City Navigation without Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2408.04168)
1. Xia et al. Using Pre-trained Language Model for Accurate ESG Prediction. FinNLP 2024. [[paper]](https://aclanthology.org/2024.finnlp-2.1/) 1. Xia et al. Using Pre-trained Language Model for Accurate ESG Prediction. FinNLP 2024. [[paper]](https://aclanthology.org/2024.finnlp-2.1/)
1. Liang et al. I-SHEEP: Self-Alignment of LLM from Scratch through an Iterative Self-Enhancement Paradigm. 2024. [[arxiv]](https://arxiv.org/abs/2408.08072) 1. Liang et al. I-SHEEP: Self-Alignment of LLM from Scratch through an Iterative Self-Enhancement Paradigm. 2024. [[arxiv]](https://arxiv.org/abs/2408.08072)
1. Bai et al. Aligning Large Language Model with Direct Multi-Preference Optimization for Recommendation. CIKM 2024. [[paper]](https://dl.acm.org/doi/10.1145/3627673.3679611)
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper,基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。 1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper,基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM,基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。 1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM,基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao,基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。 1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao,基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT,基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。 1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT,基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**:MBTI性格大模型项目,根据数据集与训练方式让任意 LLM 拥有 16 个不同的性格类型。 1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**:MBTI性格大模型项目,根据数据集与训练方式让任意 LLM 拥有 16 个不同的性格类型。
1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**:一个用于生成 Stable Diffusion 提示词的大型语言模型。[[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt) 1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**:一个用于生成 Stable Diffusion 提示词的大型语言模型。[[demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**:中文多模态医学大模型,基于 LLaVA-1.5-7B 在中文多模态医疗数据上微调而得。 1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**:中文多模态医学大模型,基于 LLaVA-1.5-7B 在中文多模态医疗数据上微调而得。
1. **[AutoRE](https://github.com/THUDM/AutoRE)**:基于大语言模型的文档级关系抽取系统。 1. **[AutoRE](https://github.com/THUDM/AutoRE)**:基于大语言模型的文档级关系抽取系统。
1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**:在 Windows 主机上利用英伟达 RTX 设备进行大型语言模型微调的开发包。 1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**:在 Windows 主机上利用英伟达 RTX 设备进行大型语言模型微调的开发包。
1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**:一个低代码构建多 Agent 大模型应用的开发工具,支持基于 LLaMA Factory 的模型微调. 1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**:一个低代码构建多 Agent 大模型应用的开发工具,支持基于 LLaMA Factory 的模型微调.
1. **[RAG-Retrieval](https://github.com/NLPJCL/RAG-Retrieval)**:一个全链路 RAG 检索模型微调、推理和蒸馏代码库。[[blog]](https://zhuanlan.zhihu.com/p/987727357)
1. **[360-LLaMA-Factory](https://github.com/Qihoo360/360-LLaMA-Factory)**:一个魔改后的代码库,通过 Ring Attention 支持长序列的 SFT 和 DPO 训练。
1. **[Sky-T1](https://novasky-ai.github.io/posts/sky-t1/)**:由 NovaSky AI 微调的低成本类 o1 长推理模型。
</details> </details>
...@@ -700,7 +863,7 @@ run_name: test_run # 可选 ...@@ -700,7 +863,7 @@ run_name: test_run # 可选
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。 本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
使用模型权重时,请遵循对应的模型协议:[Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan) 使用模型权重时,请遵循对应的模型协议:[Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [GPT-2](https://github.com/openai/gpt-2/blob/master/LICENSE) / [Granite](LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3/Phi-4](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [Skywork](https://huggingface.co/Skywork/Skywork-13B-base/blob/main/Skywork%20Community%20License.pdf) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [TeleChat2](https://huggingface.co/Tele-AI/telechat-7B/blob/main/TeleChat%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
## 引用 ## 引用
......
assets/wechat.jpg

164 KB | W: | H:

assets/wechat.jpg

167 KB | W: | H:

assets/wechat.jpg
assets/wechat.jpg
assets/wechat.jpg
assets/wechat.jpg
  • 2-up
  • Swipe
  • Onion skin
assets/wechat_npu.jpg

167 KB | W: | H:

assets/wechat_npu.jpg

167 KB | W: | H:

assets/wechat_npu.jpg
assets/wechat_npu.jpg
assets/wechat_npu.jpg
assets/wechat_npu.jpg
  • 2-up
  • Swipe
  • Onion skin
...@@ -24,6 +24,7 @@ Currently we support datasets in **alpaca** and **sharegpt** format. ...@@ -24,6 +24,7 @@ Currently we support datasets in **alpaca** and **sharegpt** format.
"tools": "the column name in the dataset containing the tool description. (default: None)", "tools": "the column name in the dataset containing the tool description. (default: None)",
"images": "the column name in the dataset containing the image inputs. (default: None)", "images": "the column name in the dataset containing the image inputs. (default: None)",
"videos": "the column name in the dataset containing the videos inputs. (default: None)", "videos": "the column name in the dataset containing the videos inputs. (default: None)",
"audios": "the column name in the dataset containing the audios inputs. (default: None)",
"chosen": "the column name in the dataset containing the chosen answers. (default: None)", "chosen": "the column name in the dataset containing the chosen answers. (default: None)",
"rejected": "the column name in the dataset containing the rejected answers. (default: None)", "rejected": "the column name in the dataset containing the rejected answers. (default: None)",
"kto_tag": "the column name in the dataset containing the kto tags. (default: None)" "kto_tag": "the column name in the dataset containing the kto tags. (default: None)"
...@@ -150,6 +151,10 @@ An additional column `images` is required. Please refer to the [sharegpt](#share ...@@ -150,6 +151,10 @@ An additional column `images` is required. Please refer to the [sharegpt](#share
An additional column `videos` is required. Please refer to the [sharegpt](#sharegpt-format) format for details. An additional column `videos` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
### Multimodal Audio Dataset
An additional column `audios` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
## Sharegpt Format ## Sharegpt Format
### Supervised Fine-Tuning Dataset ### Supervised Fine-Tuning Dataset
...@@ -296,7 +301,7 @@ Regarding the above dataset, the *dataset description* in `dataset_info.json` sh ...@@ -296,7 +301,7 @@ Regarding the above dataset, the *dataset description* in `dataset_info.json` sh
- [Example dataset](mllm_demo.json) - [Example dataset](mllm_demo.json)
Multimodal image datasets require a `images` column containing the paths to the input images. Multimodal image datasets require an `images` column containing the paths to the input images.
The number of images should be identical to the `<image>` tokens in the conversations. The number of images should be identical to the `<image>` tokens in the conversations.
...@@ -374,6 +379,47 @@ Regarding the above dataset, the *dataset description* in `dataset_info.json` sh ...@@ -374,6 +379,47 @@ Regarding the above dataset, the *dataset description* in `dataset_info.json` sh
} }
``` ```
### Multimodal Audio Dataset
- [Example dataset](mllm_audio_demo.json)
Multimodal audio datasets require an `audios` column containing the paths to the input audios.
The number of audios should be identical to the `<audio>` tokens in the conversations.
```json
[
{
"conversations": [
{
"from": "human",
"value": "<audio>human instruction"
},
{
"from": "gpt",
"value": "model response"
}
],
"audios": [
"audio path (required)"
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"audios": "audios"
}
}
```
### OpenAI Format ### OpenAI Format
The openai format is simply a special case of the sharegpt format, where the first message may be a system prompt. The openai format is simply a special case of the sharegpt format, where the first message may be a system prompt.
......
...@@ -24,6 +24,7 @@ ...@@ -24,6 +24,7 @@
"tools": "数据集代表工具描述的表头名称(默认:None)", "tools": "数据集代表工具描述的表头名称(默认:None)",
"images": "数据集代表图像输入的表头名称(默认:None)", "images": "数据集代表图像输入的表头名称(默认:None)",
"videos": "数据集代表视频输入的表头名称(默认:None)", "videos": "数据集代表视频输入的表头名称(默认:None)",
"audios": "数据集代表音频输入的表头名称(默认:None)",
"chosen": "数据集代表更优回答的表头名称(默认:None)", "chosen": "数据集代表更优回答的表头名称(默认:None)",
"rejected": "数据集代表更差回答的表头名称(默认:None)", "rejected": "数据集代表更差回答的表头名称(默认:None)",
"kto_tag": "数据集代表 KTO 标签的表头名称(默认:None)" "kto_tag": "数据集代表 KTO 标签的表头名称(默认:None)"
...@@ -150,6 +151,10 @@ KTO 数据集需要提供额外的 `kto_tag` 列。详情请参阅 [sharegpt](#s ...@@ -150,6 +151,10 @@ KTO 数据集需要提供额外的 `kto_tag` 列。详情请参阅 [sharegpt](#s
多模态视频数据集需要提供额外的 `videos` 列。详情请参阅 [sharegpt](#sharegpt-格式) 多模态视频数据集需要提供额外的 `videos` 列。详情请参阅 [sharegpt](#sharegpt-格式)
### 多模态音频数据集
多模态音频数据集需要提供额外的 `audios` 列。详情请参阅 [sharegpt](#sharegpt-格式)
## Sharegpt 格式 ## Sharegpt 格式
### 指令监督微调数据集 ### 指令监督微调数据集
...@@ -374,6 +379,48 @@ KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人 ...@@ -374,6 +379,48 @@ KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人
} }
``` ```
### 多模态音频数据集
- [样例数据集](mllm_audio_demo.json)
多模态音频数据集需要额外添加一个 `audios` 列,包含输入音频的路径。
注意音频的数量必须与文本中所有 `<audio>` 标记的数量严格一致。
```json
[
{
"conversations": [
{
"from": "human",
"value": "<audio>人类指令"
},
{
"from": "gpt",
"value": "模型回答"
}
],
"audios": [
"音频路径(必填)"
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"audios": "audios"
}
}
```
### OpenAI 格式 ### OpenAI 格式
OpenAI 格式仅仅是 sharegpt 格式的一种特殊情况,其中第一条消息可能是系统提示词。 OpenAI 格式仅仅是 sharegpt 格式的一种特殊情况,其中第一条消息可能是系统提示词。
......
...@@ -38,6 +38,20 @@ ...@@ -38,6 +38,20 @@
"assistant_tag": "assistant" "assistant_tag": "assistant"
} }
}, },
"mllm_audio_demo": {
"file_name": "mllm_audio_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"audios": "audios"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"mllm_video_demo": { "mllm_video_demo": {
"file_name": "mllm_video_demo.json", "file_name": "mllm_video_demo.json",
"formatting": "sharegpt", "formatting": "sharegpt",
...@@ -304,6 +318,38 @@ ...@@ -304,6 +318,38 @@
"response": "response" "response": "response"
} }
}, },
"open_thoughts": {
"hf_hub_url": "llamafactory/OpenThoughts-114k",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
},
"open_r1_math": {
"hf_hub_url": "llamafactory/OpenR1-Math-94k",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
},
"chinese_r1_distill": {
"hf_hub_url": "Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT",
"ms_hub_url": "liucong/Chinese-DeepSeek-R1-Distill-data-110k-SFT"
},
"llava_1k_en": { "llava_1k_en": {
"hf_hub_url": "BUAADreamer/llava-en-zh-2k", "hf_hub_url": "BUAADreamer/llava-en-zh-2k",
"subset": "en", "subset": "en",
......
[
{
"messages": [
{
"content": "<audio>What's that sound?",
"role": "user"
},
{
"content": "It is the sound of glass shattering.",
"role": "assistant"
}
],
"audios": [
"mllm_demo_data/1.mp3"
]
},
{
"messages": [
{
"content": "<audio>What can you hear?",
"role": "user"
},
{
"content": "A woman is coughing.",
"role": "assistant"
}
],
"audios": [
"mllm_demo_data/2.wav"
]
},
{
"messages": [
{
"content": "<audio>What does the person say?",
"role": "user"
},
{
"content": "Mister Quiller is the apostle of the middle classes and we are glad to welcome his gospel.",
"role": "assistant"
}
],
"audios": [
"mllm_demo_data/3.flac"
]
}
]
FROM image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.2-py3.10
...@@ -17,16 +17,28 @@ ARG INSTALL_LIGER_KERNEL=false ...@@ -17,16 +17,28 @@ ARG INSTALL_LIGER_KERNEL=false
ARG INSTALL_HQQ=false ARG INSTALL_HQQ=false
ARG INSTALL_EETQ=false ARG INSTALL_EETQ=false
ARG PIP_INDEX=https://pypi.org/simple ARG PIP_INDEX=https://pypi.org/simple
ARG HTTP_PROXY=
# Set the working directory # Set the working directory
WORKDIR /app WORKDIR /app
# Set http proxy
RUN if [ -n "$HTTP_PROXY" ]; then \
echo "Configuring proxy..."; \
export http_proxy=$HTTP_PROXY; \
export https_proxy=$HTTP_PROXY; \
fi
# Install the requirements # Install the requirements
COPY requirements.txt /app COPY requirements.txt /app
RUN pip config set global.index-url "$PIP_INDEX" && \ RUN pip config set global.index-url "$PIP_INDEX" && \
pip config set global.extra-index-url "$PIP_INDEX" && \ pip config set global.extra-index-url "$PIP_INDEX" && \
python -m pip install --upgrade pip && \ python -m pip install --upgrade pip && \
python -m pip install -r requirements.txt if [ -n "$HTTP_PROXY" ]; then \
python -m pip install --proxy=$HTTP_PROXY -r requirements.txt; \
else \
python -m pip install -r requirements.txt; \
fi
# Copy the rest of the application into the image # Copy the rest of the application into the image
COPY . /app COPY . /app
...@@ -51,13 +63,30 @@ RUN EXTRA_PACKAGES="metrics"; \ ...@@ -51,13 +63,30 @@ RUN EXTRA_PACKAGES="metrics"; \
if [ "$INSTALL_EETQ" == "true" ]; then \ if [ "$INSTALL_EETQ" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},eetq"; \ EXTRA_PACKAGES="${EXTRA_PACKAGES},eetq"; \
fi; \ fi; \
pip install -e ".[$EXTRA_PACKAGES]" if [ -n "$HTTP_PROXY" ]; then \
pip install --proxy=$HTTP_PROXY -e ".[$EXTRA_PACKAGES]"; \
else \
pip install -e ".[$EXTRA_PACKAGES]"; \
fi
# Rebuild flash attention # Rebuild flash attention
RUN pip uninstall -y transformer-engine flash-attn && \ RUN pip uninstall -y transformer-engine flash-attn && \
if [ "$INSTALL_FLASHATTN" == "true" ]; then \ if [ "$INSTALL_FLASHATTN" == "true" ]; then \
pip uninstall -y ninja && pip install ninja && \ pip uninstall -y ninja && \
if [ -n "$HTTP_PROXY" ]; then \
pip install --proxy=$HTTP_PROXY ninja && \
pip install --proxy=$HTTP_PROXY --no-cache-dir flash-attn --no-build-isolation; \
else \
pip install ninja && \
pip install --no-cache-dir flash-attn --no-build-isolation; \ pip install --no-cache-dir flash-attn --no-build-isolation; \
fi; \
fi
# Unset http proxy
RUN if [ -n "$HTTP_PROXY" ]; then \
unset http_proxy; \
unset https_proxy; \
fi fi
# Set up volumes # Set up volumes
......
# Use the Ubuntu 22.04 image with CANN 8.0.rc1 # Use the Ubuntu 22.04 image with CANN 8.0.rc1
# More versions can be found at https://hub.docker.com/r/ascendai/cann/tags # More versions can be found at https://hub.docker.com/r/ascendai/cann/tags
# FROM ascendai/cann:8.0.rc1-910-ubuntu22.04-py3.8 # FROM ascendai/cann:8.0.rc1-910-ubuntu22.04-py3.8
FROM ascendai/cann:8.0.rc1-910b-ubuntu22.04-py3.8 FROM ascendai/cann:8.0.0-910b-ubuntu22.04-py3.10
# FROM ascendai/cann:8.0.rc1-910-openeuler22.03-py3.8 # FROM ascendai/cann:8.0.rc1-910-openeuler22.03-py3.8
# FROM ascendai/cann:8.0.rc1-910b-openeuler22.03-py3.8 # FROM ascendai/cann:8.0.rc1-910b-openeuler22.03-py3.8
...@@ -12,16 +12,28 @@ ENV DEBIAN_FRONTEND=noninteractive ...@@ -12,16 +12,28 @@ ENV DEBIAN_FRONTEND=noninteractive
ARG INSTALL_DEEPSPEED=false ARG INSTALL_DEEPSPEED=false
ARG PIP_INDEX=https://pypi.org/simple ARG PIP_INDEX=https://pypi.org/simple
ARG TORCH_INDEX=https://download.pytorch.org/whl/cpu ARG TORCH_INDEX=https://download.pytorch.org/whl/cpu
ARG HTTP_PROXY=
# Set the working directory # Set the working directory
WORKDIR /app WORKDIR /app
# Set http proxy
RUN if [ -n "$HTTP_PROXY" ]; then \
echo "Configuring proxy..."; \
export http_proxy=$HTTP_PROXY; \
export https_proxy=$HTTP_PROXY; \
fi
# Install the requirements # Install the requirements
COPY requirements.txt /app COPY requirements.txt /app
RUN pip config set global.index-url "$PIP_INDEX" && \ RUN pip config set global.index-url "$PIP_INDEX" && \
pip config set global.extra-index-url "$TORCH_INDEX" && \ pip config set global.extra-index-url "$TORCH_INDEX" && \
python -m pip install --upgrade pip && \ python -m pip install --upgrade pip && \
python -m pip install -r requirements.txt if [ -n "$HTTP_PROXY" ]; then \
python -m pip install --proxy=$HTTP_PROXY -r requirements.txt; \
else \
python -m pip install -r requirements.txt; \
fi
# Copy the rest of the application into the image # Copy the rest of the application into the image
COPY . /app COPY . /app
...@@ -31,7 +43,17 @@ RUN EXTRA_PACKAGES="torch-npu,metrics"; \ ...@@ -31,7 +43,17 @@ RUN EXTRA_PACKAGES="torch-npu,metrics"; \
if [ "$INSTALL_DEEPSPEED" == "true" ]; then \ if [ "$INSTALL_DEEPSPEED" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \ EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \
fi; \ fi; \
pip install -e ".[$EXTRA_PACKAGES]" if [ -n "$HTTP_PROXY" ]; then \
pip install --proxy=$HTTP_PROXY -e ".[$EXTRA_PACKAGES]"; \
else \
pip install -e ".[$EXTRA_PACKAGES]"; \
fi
# Unset http proxy
RUN if [ -n "$HTTP_PROXY" ]; then \
unset http_proxy; \
unset https_proxy; \
fi
# Set up volumes # Set up volumes
VOLUME [ "/root/.cache/huggingface", "/root/.cache/modelscope", "/app/data", "/app/output" ] VOLUME [ "/root/.cache/huggingface", "/root/.cache/modelscope", "/app/data", "/app/output" ]
......
...@@ -4,7 +4,7 @@ services: ...@@ -4,7 +4,7 @@ services:
dockerfile: ./docker/docker-npu/Dockerfile dockerfile: ./docker/docker-npu/Dockerfile
context: ../.. context: ../..
args: args:
INSTALL_DEEPSPEED: false INSTALL_DEEPSPEED: "false"
PIP_INDEX: https://pypi.org/simple PIP_INDEX: https://pypi.org/simple
container_name: llamafactory container_name: llamafactory
volumes: volumes:
......
...@@ -13,16 +13,28 @@ ARG INSTALL_FLASHATTN=false ...@@ -13,16 +13,28 @@ ARG INSTALL_FLASHATTN=false
ARG INSTALL_LIGER_KERNEL=false ARG INSTALL_LIGER_KERNEL=false
ARG INSTALL_HQQ=false ARG INSTALL_HQQ=false
ARG PIP_INDEX=https://pypi.org/simple ARG PIP_INDEX=https://pypi.org/simple
ARG HTTP_PROXY=
# Set the working directory # Set the working directory
WORKDIR /app WORKDIR /app
# Set http proxy
RUN if [ -n "$HTTP_PROXY" ]; then \
echo "Configuring proxy..."; \
export http_proxy=$HTTP_PROXY; \
export https_proxy=$HTTP_PROXY; \
fi
# Install the requirements # Install the requirements
COPY requirements.txt /app COPY requirements.txt /app
RUN pip config set global.index-url "$PIP_INDEX" && \ RUN pip config set global.index-url "$PIP_INDEX" && \
pip config set global.extra-index-url "$PIP_INDEX" && \ pip config set global.extra-index-url "$PIP_INDEX" && \
python -m pip install --upgrade pip && \ python -m pip install --upgrade pip && \
python -m pip install -r requirements.txt if [ -n "$HTTP_PROXY" ]; then \
python -m pip install --proxy=$HTTP_PROXY -r requirements.txt; \
else \
python -m pip install -r requirements.txt; \
fi
# Copy the rest of the application into the image # Copy the rest of the application into the image
COPY . /app COPY . /app
...@@ -44,13 +56,29 @@ RUN EXTRA_PACKAGES="metrics"; \ ...@@ -44,13 +56,29 @@ RUN EXTRA_PACKAGES="metrics"; \
if [ "$INSTALL_HQQ" == "true" ]; then \ if [ "$INSTALL_HQQ" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},hqq"; \ EXTRA_PACKAGES="${EXTRA_PACKAGES},hqq"; \
fi; \ fi; \
pip install -e ".[$EXTRA_PACKAGES]" if [ -n "$HTTP_PROXY" ]; then \
pip install --proxy=$HTTP_PROXY -e ".[$EXTRA_PACKAGES]"; \
else \
pip install -e ".[$EXTRA_PACKAGES]"; \
fi
# Rebuild flash attention # Rebuild flash attention
RUN pip uninstall -y transformer-engine flash-attn && \ RUN pip uninstall -y transformer-engine flash-attn && \
if [ "$INSTALL_FLASHATTN" == "true" ]; then \ if [ "$INSTALL_FLASHATTN" == "true" ]; then \
pip uninstall -y ninja && pip install ninja && \ pip uninstall -y ninja && \
if [ -n "$HTTP_PROXY" ]; then \
pip install --proxy=$HTTP_PROXY ninja && \
pip install --proxy=$HTTP_PROXY --no-cache-dir flash-attn --no-build-isolation; \
else \
pip install ninja && \
pip install --no-cache-dir flash-attn --no-build-isolation; \ pip install --no-cache-dir flash-attn --no-build-isolation; \
fi; \
fi
# Unset http proxy
RUN if [ -n "$HTTP_PROXY" ]; then \
unset http_proxy; \
unset https_proxy; \
fi fi
# Set up volumes # Set up volumes
......
...@@ -98,7 +98,7 @@ FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3. ...@@ -98,7 +98,7 @@ FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.
#### Supervised Fine-Tuning with Ray on 4 GPUs #### Supervised Fine-Tuning with Ray on 4 GPUs
```bash ```bash
USE_RAY=1 llamafactory-cli train examples/train_full/llama3_lora_sft_ray.yaml USE_RAY=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ray.yaml
``` ```
### QLoRA Fine-Tuning ### QLoRA Fine-Tuning
...@@ -170,6 +170,12 @@ llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml ...@@ -170,6 +170,12 @@ llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
``` ```
### Save Ollama modelfile
```bash
llamafactory-cli export examples/merge_lora/llama3_full_sft.yaml
```
### Inferring LoRA Fine-Tuned Models ### Inferring LoRA Fine-Tuned Models
#### Batch Generation using vLLM Tensor Parallel #### Batch Generation using vLLM Tensor Parallel
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment