Commit 24534501 authored by mashun1's avatar mashun1
Browse files

parallel_tool

parent c4ba4563
......@@ -20,7 +20,7 @@ from llamafactory.chat import ChatModel
from llamafactory.extras.packages import is_sglang_available
MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct"
MODEL_NAME = "Qwen/Qwen2.5-0.5B"
INFER_ARGS = {
......
......@@ -16,6 +16,7 @@ import pytest
import torch
from transformers import AutoConfig, AutoModelForVision2Seq
from llamafactory.extras.packages import is_transformers_version_greater_than
from llamafactory.hparams import FinetuningArguments, ModelArguments
from llamafactory.model.adapter import init_adapter
......@@ -45,10 +46,12 @@ def test_visual_full(freeze_vision_tower: bool, freeze_multi_modal_projector: bo
assert param.requires_grad != freeze_language_model
@pytest.mark.parametrize("freeze_vision_tower", (False, True))
def test_visual_lora(freeze_vision_tower: bool):
@pytest.mark.parametrize("freeze_vision_tower,freeze_language_model", ((False, False), (False, True), (True, False)))
def test_visual_lora(freeze_vision_tower: bool, freeze_language_model: bool):
model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct")
finetuning_args = FinetuningArguments(finetuning_type="lora", freeze_vision_tower=freeze_vision_tower)
finetuning_args = FinetuningArguments(
finetuning_type="lora", freeze_vision_tower=freeze_vision_tower, freeze_language_model=freeze_language_model
)
config = AutoConfig.from_pretrained(model_args.model_name_or_path)
with torch.device("meta"):
model = AutoModelForVision2Seq.from_config(config)
......@@ -61,10 +64,15 @@ def test_visual_lora(freeze_vision_tower: bool):
else:
frozen_params.add(name)
if freeze_vision_tower:
assert "base_model.model.visual.blocks.0.attn.qkv.lora_A.default.weight" not in trainable_params
if is_transformers_version_greater_than("4.52.0"):
visual_param_name = "base_model.model.model.visual.blocks.0.attn.qkv.lora_A.default.weight"
language_param_name = "base_model.model.model.language_model.layers.0.self_attn.q_proj.lora_A.default.weight"
merger_param_name = "base_model.model.model.visual.merger.lora_A.default.weight"
else:
assert "base_model.model.visual.blocks.0.attn.qkv.lora_A.default.weight" in trainable_params
visual_param_name = "base_model.model.visual.blocks.0.attn.qkv.lora_A.default.weight"
language_param_name = "base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight"
merger_param_name = "base_model.model.visual.merger.lora_A.default.weight"
assert "merger" not in trainable_params
assert "base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight" in trainable_params
assert (visual_param_name in trainable_params) != freeze_vision_tower
assert (language_param_name in trainable_params) != freeze_language_model
assert (merger_param_name in trainable_params) is False
# change if test fails or cache is outdated
0.9.3.106
0.9.3.107
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment