# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import argparse import os from process_pipepline import ProcessPipeline def get_preprocess_parser(): parser = argparse.ArgumentParser(description="The preprocessing pipeline for Wan-animate.") parser.add_argument("--ckpt_path", type=str, default=None, help="The path to the preprocessing model's checkpoint directory. ") parser.add_argument("--video_path", type=str, default=None, help="The path to the driving video.") parser.add_argument("--refer_path", type=str, default=None, help="The path to the refererence image.") parser.add_argument("--save_path", type=str, default=None, help="The path to save the processed results.") parser.add_argument( "--resolution_area", type=int, nargs=2, default=[1280, 720], help="The target resolution for processing, specified as [width, height]. To handle different aspect ratios, the video is resized to have a total area equivalent to width * height, while preserving the original aspect ratio.", ) parser.add_argument("--fps", type=int, default=30, help="The target FPS for processing the driving video. Set to -1 to use the video's original FPS.") parser.add_argument("--replace_flag", action="store_true", default=False, help="Whether to use replacement mode.") parser.add_argument("--retarget_flag", action="store_true", default=False, help="Whether to use pose retargeting. Currently only supported in animation mode") parser.add_argument( "--use_flux", action="store_true", default=False, help="Whether to use image editing in pose retargeting. Recommended if the character in the reference image or the first frame of the driving video is not in a standard, front-facing pose", ) # Parameters for the mask strategy in replacement mode. These control the mask's size and shape. Refer to https://arxiv.org/pdf/2502.06145 parser.add_argument("--iterations", type=int, default=3, help="Number of iterations for mask dilation.") parser.add_argument("--k", type=int, default=7, help="Number of kernel size for mask dilation.") parser.add_argument( "--w_len", type=int, default=1, help="The number of subdivisions for the grid along the 'w' dimension. A higher value results in a more detailed contour. A value of 1 means no subdivision is performed.", ) parser.add_argument( "--h_len", type=int, default=1, help="The number of subdivisions for the grid along the 'h' dimension. A higher value results in a more detailed contour. A value of 1 means no subdivision is performed.", ) return parser def process_input_video(args): args_dict = vars(args) print(args_dict) assert len(args.resolution_area) == 2, "resolution_area should be a list of two integers [width, height]" assert not args.use_flux or args.retarget_flag, "Image editing with FLUX can only be used when pose retargeting is enabled." pose2d_checkpoint_path = os.path.join(args.ckpt_path, "pose2d/vitpose_h_wholebody.onnx") det_checkpoint_path = os.path.join(args.ckpt_path, "det/yolov10m.onnx") sam2_checkpoint_path = os.path.join(args.ckpt_path, "sam2/sam2_hiera_large.pt") if args.replace_flag else None flux_kontext_path = os.path.join(args.ckpt_path, "FLUX.1-Kontext-dev") if args.use_flux else None process_pipeline = ProcessPipeline( det_checkpoint_path=det_checkpoint_path, pose2d_checkpoint_path=pose2d_checkpoint_path, sam_checkpoint_path=sam2_checkpoint_path, flux_kontext_path=flux_kontext_path ) os.makedirs(args.save_path, exist_ok=True) process_pipeline( video_path=args.video_path, refer_image_path=args.refer_path, output_path=args.save_path, resolution_area=args.resolution_area, fps=args.fps, iterations=args.iterations, k=args.k, w_len=args.w_len, h_len=args.h_len, retarget_flag=args.retarget_flag, use_flux=args.use_flux, replace_flag=args.replace_flag, ) if __name__ == "__main__": parser = get_preprocess_parser() args = parser.parse_args() process_input_video(args)