#include #include #include #include #include #include #include #include "utils.h" // Get type2 from type or vice versa (applied to half and bfloat16) template struct TypeConverter { using Type = half2; }; // keep for generality template <> struct TypeConverter { using Type = half; }; template <> struct TypeConverter { using Type = half2; }; template <> struct TypeConverter<__nv_bfloat162> { using Type = __nv_bfloat16; }; template <> struct TypeConverter<__nv_bfloat16> { using Type = __nv_bfloat162; }; #define ELTS_PER_THREAD 8 constexpr int CVT_FP8_ELTS_PER_THREAD = 8; constexpr int CVT_FP8_SF_VEC_SIZE = 32; // Convert 4 float2 values into 8 e4m3 values (represented as one uint64_t). inline __device__ uint64_t fp32_vec_to_e4m3(float2 (&array)[4]) { uint64_t val; asm volatile( "{\n" ".reg .b16 pack0;\n" ".reg .b16 pack1;\n" ".reg .b16 pack2;\n" ".reg .b16 pack3;\n" "cvt.rn.satfinite.e4m3x2.f32 pack0, %2, %1;\n" "cvt.rn.satfinite.e4m3x2.f32 pack1, %4, %3;\n" "cvt.rn.satfinite.e4m3x2.f32 pack2, %6, %5;\n" "cvt.rn.satfinite.e4m3x2.f32 pack3, %8, %7;\n" "mov.b64 %0, {pack0, pack1, pack2, pack3};\n" "}" : "=l"(val) : "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y), "f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y)); return val; } // Fast reciprocal. inline __device__ float reciprocal_approximate_ftz(float a) { float b; asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a)); return b; } template __device__ uint8_t* get_sf_out_address(int rowIdx, int colIdx, int numCols, SFType* SFout) { // #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000) static_assert(CVT_FP8_NUM_THREADS_PER_SF == 4); // one of 4 threads write one SF to global memory. // TODO: stage through smem for packed STG.32 // is it better than STG.8 from 4 threads ? if (threadIdx.x % CVT_FP8_NUM_THREADS_PER_SF == 0) { // SF vector index (16 elements share one SF in the K dimension). int32_t kIdx = colIdx / CVT_FP8_NUM_THREADS_PER_SF; int32_t mIdx = rowIdx; // SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)] // --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx] int32_t mTileIdx = mIdx / (32 * 4); // SF vector size 32. int factor = CVT_FP8_SF_VEC_SIZE * 4; int32_t numKTiles = (numCols + factor - 1) / factor; int64_t mTileStride = numKTiles * 32 * 4 * 4; int32_t kTileIdx = (kIdx / 4); int64_t kTileStride = 32 * 4 * 4; // M tile layout [32, 4] is column-major. int32_t outerMIdx = (mIdx % 32); // same as (mIdx % 128) % 32 int64_t outerMStride = 4 * 4; int32_t innerMIdx = (mIdx % (32 * 4)) / 32; int64_t innerMStride = 4; int32_t innerKIdx = (kIdx % 4); int64_t innerKStride = 1; // Compute the global offset. int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride + outerMIdx * outerMStride + innerMIdx * innerMStride + innerKIdx * innerKStride; return reinterpret_cast(SFout) + SFOffset; } else { // Other threads do not write to SFout. return nullptr; } } // Define a 16 bytes packed data type. template struct PackedVec { typename TypeConverter::Type elts[4]; }; template <> struct PackedVec<__nv_fp8_e4m3> { __nv_fp8x2_e4m3 elts[8]; }; // Quantizes the provided PackedVec into the uint64_t output template // Type can be half or bfloat16 __device__ uint64_t cvt_warp_fp16_to_fp8(PackedVec& vec, uint8_t* SFout) { // #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000) // Get absolute maximum values among the local 8 values. auto localMax = __habs2(vec.elts[0]); // Local maximum value. #pragma unroll for (int i = 1; i < CVT_FP8_ELTS_PER_THREAD / 2; i++) { localMax = __hmax2(localMax, __habs2(vec.elts[i])); } // Get the absolute maximum among all 32 values (four threads). localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax); localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 2), localMax); // Get the final absolute maximum values. float vecMax = float(__hmax(localMax.x, localMax.y)); // Get the SF (max value of the vector / max value of e4m3). // maximum value of e4m3 = 448.0. // TODO: use half as compute data type. float SFValue = (vecMax / 448.0f); // 8 bits representation of the SF. uint8_t fp8SFVal; // Write the SF to global memory (STG.8). __nv_fp8_e8m0 tmp; tmp.__x = __nv_cvt_float_to_e8m0(SFValue, __NV_SATFINITE, cudaRoundPosInf); SFValue = static_cast(tmp); fp8SFVal = tmp.__x; float outputScale = SFValue != 0 ? reciprocal_approximate_ftz(SFValue) : 0.0f; if (SFout) { // Write the SF to global memory (STG.8). *SFout = fp8SFVal; } // Convert the input to float. float2 fp2Vals[CVT_FP8_ELTS_PER_THREAD / 2]; #pragma unroll for (int i = 0; i < CVT_FP8_ELTS_PER_THREAD / 2; i++) { if constexpr (std::is_same_v) { fp2Vals[i] = __half22float2(vec.elts[i]); } else { fp2Vals[i] = __bfloat1622float2(vec.elts[i]); } fp2Vals[i].x *= outputScale; fp2Vals[i].y *= outputScale; } // Convert to e4m3 values. uint64_t e4m3Vec = fp32_vec_to_e4m3(fp2Vals); return e4m3Vec; } template // Type can be half or bfloat16 __global__ void // #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000) __launch_bounds__(256, 6) cvt_fp16_to_fp8( // #else // cvt_fp16_to_fp8( // #endif int32_t numRows, int32_t numCols, Type const* in, uint64_t* out, uint32_t* SFout) { // #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000) using PackedVec = PackedVec; static constexpr int CVT_FP8_NUM_THREADS_PER_SF = (CVT_FP8_SF_VEC_SIZE / CVT_FP8_ELTS_PER_THREAD); static_assert(sizeof(PackedVec) == sizeof(Type) * CVT_FP8_ELTS_PER_THREAD, "Vec size is not matched."); // Input tensor row/col loops. for (int rowIdx = blockIdx.x; rowIdx < numRows; rowIdx += gridDim.x) { for (int colIdx = threadIdx.x; colIdx < numCols / CVT_FP8_ELTS_PER_THREAD; colIdx += blockDim.x) { int64_t inOffset = rowIdx * (numCols / CVT_FP8_ELTS_PER_THREAD) + colIdx; PackedVec in_vec = reinterpret_cast(in)[inOffset]; // Get the output tensor offset. // Same as inOffset because 8 elements(E4M3) are packed into one uint64_t. int64_t outOffset = inOffset; auto& out_pos = out[outOffset]; auto sf_out = get_sf_out_address(rowIdx, colIdx, numCols, SFout); out_pos = cvt_warp_fp16_to_fp8(in_vec, sf_out); } } // #endif } template void invokeFP8Quantization( int m, int n, T const* input, int64_t* output, int32_t* SFOuput, int multiProcessorCount, cudaStream_t stream) { // Grid, Block size. // Each thread converts 8 values. dim3 block(std::min(int(n / ELTS_PER_THREAD), 256)); // Get number of blocks per SM (assume we can fully utilize the SM). int const numBlocksPerSM = 1536 / block.x; dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM)); // Launch the cvt kernel. cvt_fp16_to_fp8 <<>>( m, n, input, reinterpret_cast(output), reinterpret_cast(SFOuput)); } // Instantiate the function. template void invokeFP8Quantization( int m, int n, half const* input, int64_t* output, int32_t* SFOuput, int multiProcessorCount, cudaStream_t stream); template void invokeFP8Quantization( int m, int n, __nv_bfloat16 const* input, int64_t* output, int32_t* SFOuput, int multiProcessorCount, cudaStream_t stream); inline int getMultiProcessorCount() { static int multi_processor_count = []() { int device_id = 0; int count = 0; // Get the current CUDA device ID CHECK_CUDA_SUCCESS(cudaGetDevice(&device_id)); // Get the number of multiprocessors for the current device CHECK_CUDA_SUCCESS(cudaDeviceGetAttribute(&count, cudaDevAttrMultiProcessorCount, device_id)); return count; // Initialize the static variable }(); return multi_processor_count; // Return the cached value on subsequent calls } void scaled_mxfp8_quant_sm120( torch::Tensor& output, torch::Tensor const& input, torch::Tensor& output_sf) { int32_t m = input.size(0); int32_t n = input.size(1); TORCH_CHECK(n % 32 == 0, "The N dimension must be multiple of 32."); int multiProcessorCount = getMultiProcessorCount(); auto sf_out = static_cast(output_sf.data_ptr()); auto output_ptr = static_cast(output.data_ptr()); at::cuda::CUDAGuard device_guard{(char)input.get_device()}; const cudaStream_t stream = at::cuda::getCurrentCUDAStream(input.get_device()); switch (input.scalar_type()) { case torch::kHalf: { auto input_ptr = reinterpret_cast(input.data_ptr()); invokeFP8Quantization(m, n, input_ptr, output_ptr, sf_out, multiProcessorCount, stream); break; } case torch::kBFloat16: { auto input_ptr = reinterpret_cast<__nv_bfloat16 const*>(input.data_ptr()); invokeFP8Quantization(m, n, input_ptr, output_ptr, sf_out, multiProcessorCount, stream); break; } default: { std::cerr << "Observing: " << input.scalar_type() << " for the input datatype which is invalid"; throw std::runtime_error("Unsupported input data type for quantize_to_fp8."); } } }