# 注意力机制 ### Sparse VideoGen: Accelerating Video Diffusion Transformers with Spatial-Temporal Sparsity [paper](https://arxiv.org/abs/2502.01776) | [code](https://github.com/svg-project/Sparse-VideoGen) ### Sparse VideoGen2: Accelerate Video Generation with Sparse Attention via Semantic-Aware Permutation [paper](https://arxiv.org/abs/2505.18875) ### Training-free and Adaptive Sparse Attention for Efficient Long Video Generation [paper](https://arxiv.org/abs/2502.21079) ### DSV: Exploiting Dynamic Sparsity to Accelerate Large-Scale Video DiT Training [paper](https://arxiv.org/abs/2502.07590) ### MMInference: Accelerating Pre-filling for Long-Context VLMs via Modality-Aware Permutation Sparse Attention [paper](https://github.com/microsoft/MInference) ### FPSAttention: Training-Aware FP8 and Sparsity Co-Design for Fast Video Diffusion [paper](https://arxiv.org/abs/2506.04648) ### VORTA: Efficient Video Diffusion via Routing Sparse Attention [paper](https://arxiv.org/abs/2505.18809) ### Training-Free Efficient Video Generation via Dynamic Token Carving [paper](https://arxiv.org/abs/2505.16864) ### RainFusion: Adaptive Video Generation Acceleration via Multi-Dimensional Visual Redundancy [paper](https://arxiv.org/abs/2505.21036) ### Radial Attention: O(nlogn) Sparse Attention with Energy Decay for Long Video Generation [paper](https://arxiv.org/abs/2506.19852) ### VMoBA: Mixture-of-Block Attention for Video Diffusion Models [paper](https://arxiv.org/abs/2506.23858) ### SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference [paper](https://arxiv.org/abs/2502.18137) | [code](https://github.com/thu-ml/SpargeAttn) ### Fast Video Generation with Sliding Tile Attention [paper](https://arxiv.org/abs/2502.04507) | [code](https://github.com/hao-ai-lab/FastVideo) ### PAROAttention: Pattern-Aware ReOrdering for Efficient Sparse and Quantized Attention in Visual Generation Models [paper](https://arxiv.org/abs/2506.16054) ### Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light [paper](https://arxiv.org/abs/2504.16922) ### Astraea: A GPU-Oriented Token-wise Acceleration Framework for Video Diffusion Transformers [paper](https://arxiv.org/abs/2506.05096) ### ∇NABLA: Neighborhood Adaptive Block-Level Attention [paper](https://arxiv.org/abs/2507.13546v1) [code](https://github.com/gen-ai-team/Wan2.1-NABLA) ### Compact Attention: Exploiting Structured Spatio-Temporal Sparsity for Fast Video Generation [paper](https://arxiv.org/abs/2508.12969) ### A Survey of Efficient Attention Methods: Hardware-efficient, Sparse, Compact, and Linear Attention [paper](https://attention-survey.github.io/files/Attention_Survey.pdf) ### Bidirectional Sparse Attention for Faster Video Diffusion Training [paper](https://arxiv.org/abs/2509.01085) ### Mixture of Contexts for Long Video Generation [paper](https://arxiv.org/abs/2508.21058) ### LoViC: Efficient Long Video Generation with Context Compression [paper](https://arxiv.org/abs/2507.12952) ### MagiAttention: A Distributed Attention Towards Linear Scalability for Ultra-Long Context, Heterogeneous Mask Training [paper](https://sandai-org.github.io/MagiAttention/blog/) [code](https://github.com/SandAI-org/MagiAttention) ### DraftAttention: Fast Video Diffusion via Low-Resolution Attention Guidance [paper](https://arxiv.org/abs/2505.14708) [code](https://github.com/shawnricecake/draft-attention) ### XAttention: Block Sparse Attention with Antidiagonal Scoring [paper](https://arxiv.org/abs/2503.16428) [code](https://github.com/mit-han-lab/x-attention) ### VSA: Faster Video Diffusion with Trainable Sparse Attention [paper](https://arxiv.org/abs/2505.13389) [code](https://github.com/hao-ai-lab/FastVideo) ### QuantSparse: Comprehensively Compressing Video Diffusion Transformer with Model Quantization and Attention Sparsification [paper](https://arxiv.org/abs/2509.23681) ### SLA: Beyond Sparsity in Diffusion Transformers via Fine-Tunable Sparse-Linear Attention [paper](https://arxiv.org/abs/2509.24006)